

	Oil w	vildcatte	er prob	lem	
• Assume th option to r	at in addit un the <mark>seis</mark>	ion to the o smic reson	drill/no-dr ance test	ill choices we have an	
Seismic re	esonance t	test results	s:		
- Closed	pattern (more likel	y when the	e hole holds the oil)	
– Diffuse	e pattern ((more likel	y when it	is empty)	
P (Seist	nic resond	ance test C	Dil)		
	Seismic resonance test pattern				
		closed	diffuse		
0:1	True	0.8	0.2		
Ou	False	0.3	0.7		
• Test cost:	10K				
		CS 1571 Intr	o to Al	M. Hauskrecht	

CS 1571 Intro to Al

Utility theory				
• Defines axioms on preferences that involve uncertainty and ways to manipulate them.				
• Uncertainty is modeled through lotteries				
– Lottery:				
[p:A;(1-p):C]				
• Outcome A with probability p				
• Outcome C with probability (1-p)				
• The following six constraints are known as the axioms of utility theory. The axioms are the most obvious semantic constraints on preferences with lotteries.				
Notation:				
≻ - preferable				
 ∼ - indifferent (equally preferable) 				
CS 1571 Intro to AI M. Hauskrecht				

Axioms of the utility theory

• **Orderability:** Given any two states, a rational agent prefers one of them, else the two as equally preferable.

 $(A \succ B) \lor (B \succ A) \lor (A \sim B)$

• **Transitivity:** Given any three states, if an agent prefers *A* to *B* and prefers *B* to C, the agent must prefer *A* to C.

 $(A \succ B) \land (B \succ C) \Longrightarrow (A \succ C)$

• **Continuity:** If some state *B* is between *A* and C in preference, then there is a *p* for which the rational agent will be indifferent between state B and the lottery in which A comes with probability p, C with probability (1-p).

$$(A \succ B \succ C) \Longrightarrow \exists p [p:A; (1-p):C] \sim B$$

CS 1571 Intro to Al

M. Hauskrecht

