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Modeling uncertainty with probabilities

* Defining the full joint distribution makes it possible to
represent and reason with uncertainty in a uniform way

* We are able to handle an arbitrary inference problem
Problems:

— Space complexity. To store a full joint distribution we
need to remember O(d") numbers.

n — number of random variables, d — number of values
— Inference (time) complexity. To compute some queries
requires O(d")  steps.
— Acquisition problem. Who is going to define all of the
probability entries?
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Bayesian belief networks (BBNS)

Bayesian belief networks.

» Represent the full joint distribution over the variables more
compactly with a smaller number of parameters.

» Take advantage of conditional and marginal independences
among random variables

* Aand B are independent
P(A,B)=P(A)P(B)
* A and B are conditionally independent given C
P(A,BIC)=P(A|C)P(B]C)
P(A|C,B)=P(A|C)
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Alarm system example

» Assume your house has an alarm system against burglary.
You live in the seismically active area and the alarm system
can get occasionally set off by an earthquake. You have two
neighbors, Mary and John, who do not know each other. If
they hear the alarm they call you, but this is not guaranteed.

» We want to represent the probability distribution of events:

— Burglary, Earthquake, Alarm, Mary calls and John calls

Causal relations
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Bayesian belief network

1. Directed acyclic graph
* Nodes =random variables
Burglary, Earthquake, Alarm, Mary calls and John calls
* Links = direct (causal) dependencies between variables.

The chance of Alarm is influenced by Earthquake, The
chance of John calling is affected by the Alarm

Burglary Earthquake

v

Cavarm )
Conncas) \
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Bayesian belief network

2. Local conditional distributions
* relate variables and their parents

g

@ P(A|B,E)
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Bayesian belief network

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 Earthquake ) [0.002 0.998
P(A|B,E)
/ BE| T F

T T | 0.95 0.05
T F | 0.94 0.06
F T | 029 0.71
F F | 0.001 0.999

PUIA)

\ P(M|A)
Al T F Al T F
T| 0.90 0.1 0.7 0.3
F | 0.05 0.95

0.01 0.99
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Bayesian belief networks (general)

Two components: B =(S,0,) () B E
« Directed acyclic graph \f
— Nodes correspond to random variables A

— (Missing) links encode independences C/
J M
o Parameters
— Local conditional probability distributions

for every variable-parent configuration P(AIB,E)
BE| T F
P(X; | pa(X;)) T T |0.95 0.05
Where: T F | 094 006
F T |020 071
pa(X;) - stand for parents of X; F F | 0.0010.999
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional
distributions (obtained via the chain rule):

P(Xy, Xy, X)) = Hp(xi | pa(X;))

i=1,..n
B E
Example: O\ @P
Assume the following assignment A
of values to random variables C/ E
J M

B=T,E=T,A=T,J=T,M=F

Then its probability is:
P(B=T,E=T,A=T,J=T,M=F)=

PB=T)P(E=T)P(A=T|B=T,E=T)P(J =T|A=T)P(M=F| A=T)
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Bayesian belief networks (BBNS)

Bayesian belief networks

» Represent the full joint distribution over the variables more
compactly using the product of local conditionals.

» But how did we get to local parameterizations?
Answer:
e Chainrule +

» Graphical structure encodes conditional and marginal
independences among random variables

« Aand B are independent P(A,B)=P(A)P(B)

* A and B are conditionally independent given C
P(A|C,B)=P(A|C) P(A,B|C)=P(A|C)P(B|C)

» The graph structure implies the decomposition !!!
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Independences in BBNs

3 basic independence structures:

1 Burglary

=
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Independences in BBNs

1 Burglary

=

1. JohnCalls is independent of Burglary given Alarm
P(J|AB)=P[A)
P(J,B|A)=P [A)P(B|A)
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Independences in BBNs

l. - 2 . 3.
Burglary

Gurgtary>
Gomcans)

2. Burglary is independent of Earthquake (not knowing Alarm)
Burglary and Earthquake become dependent given Alarm !!

P(B,E)=P(B)P(E)
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Independences in BBNs

1. 2. 3.

Burglary Earthd @

Burglary

3. MarycCalls is independent of JohnCalls given Alarm
POIAM)=PU[A)
P(J,M[A)=PU |A)P(M [A)
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Independences in BBN

BBN distribution models many conditional independence
relations among distant variables and sets of variables

These are defined in terms of the graphical criterion called d-
separation

D-separation and independence
— Let X,Y and Z be three sets of nodes

— If X'and Y are d-separated by Z, then X and Y are
conditionally independent given Z

D-separation :

— A'is d-separated from B given C if every undirected path
between them is blocked with C

Path blocking
— 3 cases that expand on three basic independence structures
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Undirected path blocking

A is d-separated from B given C if every undirected path
between them is blocked

O

\_/
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Undirected path blocking

A is d-separated from B given C if every undirected path

between them is blocked
@ B

A C
.
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Undirected path blocking

A is d-separated from B given C if every undirected path
between them is blocked

aC

» 1. Path blocking with a linear substructure

Z
XOr===O—@—Cr-=-0 v

] ZinC .
XInA YinB
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Undirected path blocking

A is d-separated from B given C if every undirected path
between them is blocked

» 2. Path blocking with the wedge substructure
z

X _ _ Y
O zinc O O
XinA YinB
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Undirected path blocking

A is d-separated from B given C if every undirected path
between them is blocked

» 3. Path blocking with the vee substructure

XinA YinB

XO----0__ , O----07

Q/ ®

Z or any of its descendants not in C
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Independences in BBNs

@

o S e

Earthquake and Burglary are independent given MaryCalls F
Burglary and MaryCalls are independent (not knowing Alarm) F
Burglary and RadioReport are independent given Earthquake T
Burglary and RadioReport are independent given MaryCalls F
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Bayesian belief networks (BBNS)

Bayesian belief networks

* Represents the full joint distribution over the variables more
compactly using the product of local conditionals.

» So how did we get to local parameterizations?

P(Xy, Xy, X)) = HP(Xi | pa(X;))

i=1,..n

* The decomposition is implied by the set of independences
encoded in the belief network.
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Full joint distribution in BBNs

QB
Rewrite the full joint probability using the
product rule:

PB=T,E=T,A=T,J=T,M=F)= J M

=P(J=T|B=T,E=T,A=T,M=F)P(B=T,E=T,A=T,M =F)
=P(J=T|A=T)P(B=T,E=T,A=T,M=F)
P(M=F|B=T,E=T,A=T)P(B=T,E=T,A=T)
P(M=F|A=T)P(B=T,E=T,A=T)
P(A=T|B=T,E=T)P(B=T,E=T)
| PB=T)P(E=T)

—P(J T|A TPM=F|A=T)P(A=T|B=T,E= T)P(B T)P(E T
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Parameter complexity problem

 Inthe BBN the full joint distribution is defined as:
P(X, X, X)) = H P(X;|pa(X;))

« What did we save? =ten

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:
2% -132 CEarthquaie

One parameter is for free:
2°-1=31

CS 1571 Intro to Al M. Hauskrecht
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Parameter complexity problem

 Inthe BBN the full joint distribution is defined as:
P(X, X, X)) = H P(X;|pa(X;))

« What did we save? =ten

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:

2% -132 e

One parameter is for free: /

2°-1=31
# of parameters of the BBN: ?
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Bayesian belief network.

 Inthe BBN the full joint distribution is expressed using a set
of local conditional distributions

P(B) P(E)
T F T F
Burglary Earthquake
0.001 0.999 0.002 0.998
P(A|B,E)
/ BE| T F

T T | 0.95 0.05
T F 0.94 0.06
F T | 0.29 0.71
F F | 0.001 0.999

PUIA)

\ P(M]A)
T F Al T F
0.90 0.1 0.7 0.3
0.05 0.95

0.01 0.99
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Bayesian belief network.

 Inthe BBN the full joint distribution is expressed using a set
of local conditional distributions

2 2
P(B) P(E)
T F
Burglary Earthquake) | T F
0.001 0.999 0.002 0.998
P(A|B,E)
/ BE| T F 8
T T 0.95 0.05
T F 0.94 0.06
F T 0.29 0.71
F F 0.001 0.999

PUIA)

\ P(M|A)

T F 4 Al T F 4
0.90 0.1 @ T| 07 0.3
0.05 0.95 F|0.01 0.99

m-|>
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Parameter complexity problem

 Inthe BBN the full joint distribution is defined as:
P(X 1, X, X)) = H P(X; | pa(X;))

« What did we save? =t

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:

25 =32 CEarthquaite
One parameter is for free:
2° -1=31

# of parameters of the BBN:

2%+ 2(22)+2(2) =20  Conncais Grarycais

One parameter in every conditional is for free:
22 +2(2)+2(1) =10

CS 1571 Intro to Al M. Hauskrecht
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Model acquisition problem

The structure of the BBN
* typically reflects causal relations
(BBNs are also sometime referred to as causal networks)

 Causal structure is intuitive in many applications domain and it
is relatively easy to define to the domain expert

Probability parameters of BBN

« are conditional distributions relating random variables and
their parents

» Complexity is much smaller than the full joint

* Itis much easier to obtain such probabilities from the expert or
learn them automatically from data
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BBNs built in practice

* Invarious areas:
— Intelligent user interfaces (Microsoft)
— Troubleshooting, diagnosis of a technical device
Medical diagnosis:
» Pathfinder (Intellipath)
» CPSC
* Munin
« QMR-DT
Collaborative filtering
Military applications
Business and finance
* Insurance, credit applications

CS 1571 Intro to Al M. Hauskrecht
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Diagnosis of car engine

» Diagnose the engine start problem
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Car insurance example

 Predict claim costs (medical, liability) based on application data

e
O&niol'Tl'ain 4
/]
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(ICU) Alarm network

HYPOVOLEMIA LV FAILURE ANAPHYLAXIS PULMONARY EMBOLUS

ANESTHESIA
INSUFFICIENT KINKED

PAR SHUNT |\ rugATION  TUBE  DISCONMNECTION

CATECHOLAMINE YENT & WEMT MACHINE

MW SETTING
PRESSLIRE
MINUTE
ERRCR VEMTILATION
LOW CUTPUT
ARTERIAL
co2
HR BF HREKG HR SAT EXFIRED
coz
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CPCS

» Computer-based Patient Case Simulation system (CPCS-PM)
developed by Parker and Miller (University of Pittsburgh)

- = 3 S b .I‘ . ;
e e
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QMR-DT

» Medical diagnosis in internal medicine
* Based on QMR system built at U Pittsburgh

Bipartite network of disease/findings relations

OMR-DT derived from Internist-1/ QMR KB

534 diseases

[aRalals] oooo

Qoo GoDo

40740 arcs 4040 findings
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Inference in Bayesian network

* Bad news:
— Exact inference problem in BBNs is NP-hard (Cooper)
— Approximate inference is NP-hard (Dagum, Luby)
» But very often we can achieve significant improvements
» Assume our Alarm network

e

S

oS e

+ Assume we want to compute: P (J =T)

CS 1571 Intro to Al M. Hauskrecht
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Inference in Bayesian networks

Computing: P(J =T)

Approach 1. Blind approach.

* Sum out all un-instantiated variables from the full joint,
 express the joint distribution as a product of conditionals

PO =T)=

= Z Z Z ZP(B:b,E:e,A:a,J:T,M:m)

beT ,F eeT ,F aeT ,F meT ,F

=> > > YPU=T|A=a)P(M=m|A=a)P(A=a|B=b,E=e)P(B=b)P(E =€)

beT ,F e<T ,F a<T ,F meT ,F

Computational cost:
Number of additions: 15
Number of products: 16*4=64
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Inference in Bayesian networks

Approach 2. Interleave sums and products

e Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)

Y af(x)=a) f(x)
s 3
PU=T)=
= Z Z z ZP(J =T|A=a)P(M =m|A=a)P(A=aB=b,E=e)P(B=h)P(E=¢)

beT ,F e<T ,F a<T ,F meT ,F

=> > Y PU=T|A=a)P(M=m| A:a)P(B:b){ > P(A=a|B=b, E=e)P(E=e)}

beT F a<T.F meT | F <T,F

= > PQJ :T|A:a){ > PM :m|A:a)}|: > P(B:b){ZP(A:aM B:b,E:e)P(E:e)}

aeT F meT ,F beT ,F e<T ,F

Computational cost: ?

CS 1571 Intro to Al M. Hauskrecht
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Inference in Bayesian networks

Approach 2. Interleave sums and products

» Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)

aeT ,F meT ,F beT ,F ecT,F

\

1

=Y PUT|A= a){ZP(M m|A= a)}{ZP(B b){ZP(A a|B=b,E=e)P(E= e)

Computational cost:
Number of additions: ?
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Inference in Bayesian networks

Approach 2. Interleave sums and products

e Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)

_ZP(J =T|A= a){ZP(M m|A= a)}{ZP(B b){ZP(A a|B=b,E=e)P(E= e)

.
.
.
.
S~

<
2*1

Computational cost:
Number of additions: ?

CS 1571 Intro to Al M. Hauskrecht
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Inference in Bayesian networks

Approach 2. Interleave sums and products

» Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)

_ZP(J =T|A= a){ZP(M m|A= a)}{ZP(B b){ZP(A a|B=b,E=e)P(E= e)

aeT, F meT ,F beT ,F ecT,F

.
.

2*%2*1

Computational cost:
Number of additions: ?

CS 1571 Intro to Al M. Hauskrecht

Inference in Bayesian networks

Approach 2. Interleave sums and products

e Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)

_ZP(J =T|A= a){ZP(M m|A= a)}{ZP(B b){ZP(A a|B=b,E=e)P(E= e)

aeT ,F meT ,F beT ,F ecT,F

T gxx
2*1
Computational cost:
Number of additions: ?
CS 1571 Intro to Al M. Hauskrecht
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Inference in Bayesian networks

Approach 2. Interleave sums and products

» Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)

=Y PUT|A= a){ZP(M m|A= a)}{ZP(B b){ZP(A a|B=b,E=e)P(E= e)

aeT ,F meT ,F beT ,F ecT,F

}*1 é*l - 2*2*1

Computational cost:
Number of additions: ?
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Inference in Bayesian networks

Approach 2. Interleave sums and products

e Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)

=Y PUT|A= a){ZP(M m|A= a)}{ZP(B b){ZP(A a|B=b,E=e)P(E= e)

aeT ,F meT ,F beT ,F ecT,F

}*1 é*l - 2*2*1

Computational cost:
Number of additions: 1+2*[1+1+2*1]=9

CS 1571 Intro to Al M. Hauskrecht
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Inference in Bayesian networks

Approach 2. Interleave sums and products

» Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)

aeT ,F meT ,F beT ,F ecT,F

=Y PUT|A= a){ZP(M m|A= a)}{ZP(B b){ZP(A a|B=b,E=e)P(E= e)

Computational cost:
Number of products: ?

CS 1571 Intro to Al M. Hauskrecht

Inference in Bayesian networks

Approach 2. Interleave sums and products

e Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)

aeT, F meT ,F beT ,F ecT,F

% wpx]

=Y PUT|A= a){ZP(M m|A= a)}{ZP(B b){ZP(A a|B=b,E=e)P(E= e)

Computational cost:
Number of products: ?

CS 1571 Intro to Al M. Hauskrecht

23



Inference in Bayesian networks

Approach 2. Interleave sums and products

» Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)

2%2

Computational cost:
Number of products: 2*[2+2*(1+2*1)]=16
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Inference in Bayesian networks

Approach 2. Interleave sums and products
e Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)
P(J=T)=
=> > > > PU=T|A=a)P(M=m|A=a)P(A=aB=h,E=€)P(B=b)P(E=¢)

beT ,F eeT,F aeT ,F meT ,F

=2, 2, 2 PO=TIA=aP(M =mIA=a)P(B=b){ > P(A=al B=b,E=e)P(E=e)}

beT F a<T.F meT | F <T,F

= > PUT| A:a){ D> PM=m| A:a)”: > P(B:b){ZP(A:aw B=b,E=e)P(E=¢)

aeT F meT ,F beT ,F e<T ,F

Computational cost:
Number of additions: 1+2*[1+1+2*1]=9
Number of products: 2*[2+2*(1+2*1)]=16

|
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Variable elimination

e Variable elimination:

— Similar idea but interleave sum and products one variable
at the time during inference

— E.g. Query P(J =T) requires to eliminate A,B,E,M and
this can be done in different order

P =T)=
=3 3 Y SPU=T|A=a)P(M=m|A=a)P(A=aB=b,E =e)P(B=b)P(E =¢)

beT ,F e<T ,F a<T ,F meT ,F
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Variable elimination
Assume order: M, E, B,A to calculate P(J =T)
=Y > > >PU=T|A=a)P(M=m|A=a)P(A=aB=h,E=e)P(B=b)P(E=¢)

beT ,F e<T ,F a<T ,F meT ,F

=> > SPQ =T|A=a)P(A=a|B=b,E=e)P(B=b)P(E=e){ S P(M =m|A=a)

beT F ecT F acT ,F meT ,F

Z D> P(J=T|A=a)P(A=a|B=bE=€)P(B=b)P(E=¢e) 1

z F aeT ,F
=> Z (J T|A:a)P(B:b){Z P(A:a|B:b,E:e)P(E:e)}
aeT,F beT,F eeT ,F /

P(J =T |A=a)P(B=h) z,(A=a,B=b)

beT ,F /

J=T|A=a) r,(A=a) =|PQ=T)

-2 ¥
Z (J =T|A= a){z P(B=b)r,(A=a,B= b)}
=3P

CS 1571 Intro to Al M. Hauskrecht
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Inference in Bayesian network

» Exact inference algorithms:
==)> - Variable elimination
Book  _ Recursive decomposition (Cooper, Darwiche)
— Symbolic inference (D’ Ambrosio)
— Belief propagation algorithm (Pearl)

mm) — Clustering and joint tree approach (Lauritzen,
Book  Spiegelhalter)

— Arc reversal (Olmsted, Schachter)

» Approximate inference algorithms:
Bm — Monte Carlo methods:
 Forward sampling, Likelihood sampling
— Variational methods
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