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Modeling the uncertainty.

Key challenges:
» How to represent the relations in the presence of uncertainty?
» How to manipulate such knowledge to make inferences?

— Humans can reason with uncertainty.

Pneumonia

71

CS 1571 Intro to Al M. Hauskrecht




Methods for representing uncertainty

Probability theory

» A well defined theory for modeling and reasoning in the
presence of uncertainty

» A natural choice to replace certainty factors

Facts (propositional statements)
» Are represented via random variables with two or more values
Example: Pneumonia is a random variable
values: True and False
» Each value can be achieved with some probability:

P(Pneumonia=True) = 0.001
P(WBCcount = high) =0.005
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Probability theory

» Well-defined theory for representing and manipulating
statements with uncertainty

Axioms of probability:
For any two propositions A, B.
1. 0<P(A)L1
2. P(True)=1 and P(False)=0
3. P(AvB)=P(A)+P(B)-P(AAB)

True
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Methods for representing uncertainty

Probabilistic extension of propositional logic
* Propositions:
— statements about the world

— Statements are represented by the assignment of values to
random variables

e Random variables:
I -~ Boolean Pneumonia iseither True, False
Random variable Values

' — Multi-valued Pain isoneof {Nopain Mild, Moderate Severe}

Random variable Values
— Continuous HeartRate is a value in <0;180 >
Random variable Values
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Probabilities

Unconditional probabilities (prior probabilities)
P(Pneumonia) =0.001 or P(Pneumonia=True)=0.001

P(Pneumonia = False) =0.999
P(WBCcount = high) =0.005

Probability distribution

» Defines probabilities for all possible value assignments to a
random variable

» Values are mutually exclusive

Pneumonia |P(Pneumonia)

True 0.001
False 0.999

P(Pneumonia=True) =0.001
P(Pneumonia = False) = 0.999
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Probability distribution

Defines probability for all possible value assignments

Example 1:

P(Pneumonia=True) = 0.001
P(Pneumonia = False) =0.999

P(Pneumonia=True)+ P(Pneumonia= False) =1

Probabilities sum to

Example 2:

P(WBCcount = high) =0.005

P(WBCcount = normal) =0.993
P(WBCcount = high) =0.002

Pneumonia |P(Pneumonia)
True 0.001
False 0.999

1m

WBCcount | P(WBCcount)

high 0.005
normal 0.993
low 0.002
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Joint probability distribution

Joint probability distribution (for a set variables)
» Defines probabilities for all possible assignments of values to

variables in the set

Example: variables Pneumonia and WBCcount

P(pneumonia,WBCcount)

Is represented by 2 x 3 array(matrix)

WBCcount
high  normal low
Pheumonia True | 0.0008 0.0001 0.0001
False | 0.0042 0.9929 0.0019
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Joint probability distribution

Joint probability distribution (for a set variables)

» Defines probabilities for all possible assignments of values to
variables in the set

Example 2: Assume variables:
Pneumonia (2 values)
WBCcount (3 values)
Pain (4 values)

P(pneumonia,WBCcount, Pain) is represented by 2x3x 4 array

ya
4

Example of an entry in the array

) P(pneumonia =T,WBCcount = high, Pain = severe)
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Joint probabilities: marginalization

Marginalization

* reduces the dimension of the joint distribution
» Sums variables out

P(pneumonia,WBCcount)  2x3 matrix

P(Pneumonia)
WBCcount

high  normal low
Pneumonia | TYue | 0.0008 0.0001 0.0001 0.001
False | 0.0042 0.9929 0.0019 0.999
0.005 0.993  0.002 \

P(WBCcount)
Marginalization (here summing of columns or rows)
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Marginalization

Marginalization
* reduces the dimension of the joint distribution

P(Xy, Xpree Xog) = Do P(Xy, Xp0 X1, X))
{Xn}
» We can continue doing this
P(X,... X, 0) = D P(Xy, X, X1, X,)

{XnaXn}

What is the maximal joint probability distribution?
* Full joint probability
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Full joint distribution

» the joint distribution for all variables in the problem
— It defines the complete probability model for the problem
Example: pneumonia diagnosis
* Variables: Pneumonia, Fever, Paleness, WBCcount, Cough
 Full joint probability: P(Pneumonia, Fever, Paleness, WBCcount, Cough)
— defines the probability for all possible assignments of values to these
variables
P(Pneumonia=T,WBCcount= High, Fever=T,Cough=T, Paleness=T)
P(Pneumonia=T,WBCcount= High, Fever=T,Cough=T, Paleness= F)
P(Pneumonia=T,WBCcount= High, Fever=T,Cough=F, Paleness=T)
etc

* How many probabilities are there?
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Full joint distribution

» the joint distribution for all variables in the problem

— It defines the complete probability model for the problem
Example: pneumonia diagnosis

Variables: Pneumonia, Fever, Paleness, WBCcount, Cough
Full joint probability: P(Pneumonia, Fever, Paleness, WBCcount, Cough)

— defines the probability for all possible assignments of values to these
variables
P(Pneumonia=T,WBCcount= High, Fever=T,Cough=T, Paleness=T)

P(Pneumonia=T ,WBCcount= High, Fever=T,Cough=T, Paleness=F)

P(Pneumonia=T,WBCcount= High, Fever=T,Cough=F, Paleness=T)
etc

* How many probabilities are there?

» Exponential in the number of variables
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Full joint distribution

* Any joint probability over a subset of variables can be
obtained via marginalization

P(Pneumonia,WBCcount, Fever) =
z P(Pneumonia,WBCcount, Fever,Cough = c, Paleness = p)

c,p={T,F}

* Isit possible to recover the full joint from the joint
probabilities over a subset of variables?
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Joint probabilities

 Is it possible to recover the full joint from the joint
probabilities over a subset of variables?

P(pneumonia,WBCcount)  2x3 matrix
P(Pneumonia)
WBCcount
high  normal low
.| True ? ? ? 0.001
Pneumonia False ’ ’ ’ 0.999
0.005 0.993  0.002 ‘
P(WBCcount)
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Joint probabilities and independence

» Is it possible to recover the full joint from the joint
probabilities over a subset of variables?

* Only if the variables are independent !!!

P(pneumonia,WBCcount)  2x3 matrix )
P(Pneumonia)
WBCcount
high  normal low
.| True ? ? ? 0.001
Pneumonia False ’ ’ ’ 0.999
0.005 0.993  0.002 ‘

P(WBCcount)
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Variable independence

» The two events A, B are said to be independent if:
P(A, B) =P(A)P(B)

» The variables X, Y are said to be independent if their joint
can be expressed as a product of marginals:
P(X,Y) =P(X)P(Y)
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Conditional probabilities
» Conditional probability distribution
P(A|B)="?
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Conditional probabilities

» Conditional probability distribution

P(A|B) = P(A.B)
P(B)
* Product rule. Join probability can be expressed in terms of
conditional probabilities

s.t. P(B)=0

P(A,B)=P(A|B)P(B)
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Conditional probabilities

» Conditional probability distribution

P(A|B) = P(AB)
(B)
* Product rule. Join probability can be expressed in terms of
conditional probabilities

s.t. P(B)#0

P(A,B)=P(A|B)P(B)

* Chain rule. Any joint probability can be expressed as a
product of conditionals

P(Xy, Xy, X)) = P(X, | Xy o X, )P(X, o X )
= P(X, | Xy o Xy )P(X o | Xy o X ) P(Xy e X )

=TT POX X, %)
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Conditional probabilities

Conditional probability
 Isdefined in terms of the joint probability:

_P(A/B)
P(A|B)= P(B) s.t. P(B)#0
* Example:

P(pneumonia=true| WBCcount= high) =
P(pneumonia=true, WBCcount= high)

P(WBCcount= high)

P(pneumonia= false|WBCcount= high) =
P(pneumonia= false, WBCcount= high)

P(WBCcount= high)
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Conditional probabilities

Conditional probability distribution
» Defines probabilities for all possible assignments, given a
fixed assignment to some other variable values

P(Pneumonia = true | WBCcount = high)

3 element vector of 2 elements
Pneumonia
True False

0.08 092 |10

high
0.0001 0.9999]| 1.0

normal
/ low | 00001 0.9999

P(Pneumonia = true [WBCcount = high)

Variable we
condition on + P(Pneumonia = false [WBCcount = high)
M. Hauskrecht
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Bayes rule
Conditional probability.

P(A|B) = P(A.B)=P(B| AP(A)

Bayes rule:
P(A|B) =—P(BF|)'(A‘|;;)(A)

When is it useful?

» When we are interested in computing the diagnostic query
from the causal probability

P (effect | cause)P(cause)
P (effect)
» Reason: It is often easier to assess causal probability
— E.g. Probability of pneumonia causing fever
vs. probability of pneumonia given fever

P(cause | effect) =
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Bayes Rule in a simple diagnostic inference

» Device (equipment) operating normally or malfunctioning.
— Operation of the device sensed indirectly via a sensor
» Sensor reading is either High or Low

P(Device status)

Device status normal malfunctioning

0.9 0.1

P(Sensor reading| Device status)

Status\Sensor High Low

Sensor reading normal 0.1 0.9

malfunc 0.6 0.4
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Bayes Rule in a simple diagnostic inference.

» Diagnostic inference: compute the probability of device
operating normally or malfunctioning given a sensor reading

P (Device status |Sensor reading = high)=7?

B P (Device status = normal | Sensor reading = high)
| P(Device status = malfunctio ning | Sensor reading = high)

» Note that typically the opposite conditional probabilities are
given to us: they are much easier to estimate

» Solution: apply Bayes rule to reverse the conditioning
variables
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Bayes Rule in a simple diagnostic inference

» Device (equipment) operating normally or malfunctioning.
— Operation of the device sensed indirectly via a sensor
» Sensor reading is either High or Low

P(Device status)

Device status normal malfunctioning
0.9 0.1
P(Sensor reading| Device status)

Sensor reading Status\Sensor | High Low

normal 0.1 0.9
malfunc 0.6 0.4

P (Device status |Sensor reading = high)=7?
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Bayes rule

Assume a variable A with multiple values a&;,a,,...3,
Bayes rule can be rewritten as:

P(B=b|A=a))P(A=a,)
P(B =h)
_ P(B=bl|A=a)P(A=a,)
> P(B=b|A=a,)P(A=a,)

P(A=a,|B=b)=

Used in practice when we want to compute:

P(A|B=b) forall valuesof a;,a,,...a,
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Probabilistic inference

Various inference tasks:

» Diagnostic task. (from effect to cause)

P(Pneumonia| Fever=T)
* Prediction task. (from cause to effect)

P(Fever | Pneumonia=T)

» Other probabilistic queries (queries on joint distributions).
P (Fever)

P(Fever, ChestPain)
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Inference

Any query can be computed from the full joint distribution !!!
» Joint over a subset of variables is obtained through
marginalization

P(A=a,C=c)=3 > P(A=a,B=h,C=c,D=d))

» Conditional probability over set of variables, given other
variables’ values is obtained through marginalization and
definition of conditionals

P(D=d|A=a,C=c)=A=aC=cD=0d)

P(A=a,C=c)
2.P(A=a,B=b,C=c,D=d)

:ZIZP(Aza,szi,Czc,Dzdj)
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Inference

Any query can be computed from the full joint distribution !!!

» Any joint probability can be expressed as a product of
conditionals via the chain rule.

P(Xy, Xy, X)) = P(X, | Xy o X, )P(X, o X )
= P(X, | Xy o X )P | X e X )P (X o X, )

=T PCX X, ... %)

* Sometimes it is easier to define the distribution in terms of
conditional probabilities:

- Eg. P(Fever|Pneumonia=T)
P(Fever | Pneumonia= F)
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Modeling uncertainty with probabilities

Defining the full joint distribution makes it possible to
represent and reason with uncertainty in a uniform way

» We are able to handle an arbitrary inference problem

Problems:

— Space complexity. To store a full joint distribution we
need to remember O(d") numbers.
n — number of random variables, d — number of values

— Inference (time) complexity. To compute some queries
requires O(d")  steps.

— Acquisition problem. Who is going to define all of the
probability entries?
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Medical diagnosis example

» Space complexity.
— Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F),
WBCcount (3: high, normal, low), paleness (2: T,F)
— Number of assignments: 2*2*2*3*2=48
— We need to define at least 47 probabilities.
* Time complexity.
— Assume we need to compute the marginal of Pneumonia=T
from the full joint

P(Pneumonia=T) =
=3 3 3 3 P(Fever =i,Cough = jWBCcount =k, Pale = u)

ieT,F jeT,F k=h,n,l ueT ,F

— Sum over: 2*2*3*2=24 combinations
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Modeling uncertainty with probabilities

* Knowledge based system era (70s — early 80°s)
— Extensional non-probabilistic models

— Solve the space, time and acquisition bottlenecks in
probability-based models

— froze the development and advancement of KB systems
and contributed to the slow-down of Al in 80s in general

» Breakthrough (late 80s, beginning of 90s)
— Bayesian belief networks
* Give solutions to the space, acquisition bottlenecks
* Partial solutions for time complexities
» Bayesian belief network
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Bayesian belief networks (BBNS)

Bayesian belief networks.

» Represent the full joint distribution over the variables more
compactly with a smaller number of parameters.

» Take advantage of conditional and marginal independences
among random variables

* Aand B are independent
P(A,B)=P(A)P(B)
* A and B are conditionally independent given C
P(A,BIC)=P(A|C)P(B|C)
P(A|C,B)=P(A|C)
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