CS 1571 Introduction to AI Lecture 14

First-order logic

Milos Hauskrecht

milos@cs.pitt.edu5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Midterm

- The midterm for the course will be held on
 - October 28, 2014
 - In class exam
 - Closed book
 - Material covered by October 23, 2014

CS 1571 Intro to Al

Simulated annealing competition

Tournament winner:

• Adam Schwab (66.87)

Second

• Michael Minella (68.09)

Third

• Chris Iwaszko (68.90)

Congratulations!

CS 1571 Intro to Al

M. Hauskrecht

Limitations of propositional logic

World we want to represent and reason about consists of a number of **objects** with variety of **properties** and **relations** among them

Propositional logic:

- Represents statements about the world without reflecting this structure and without modeling these entities explicitly
- Example: 'Peter likes ice-cream' treated as an atomic entity

Consequence:

- some knowledge is hard or impossible to encode in the propositional logic.
- Two cases that are hard to represent:
 - Statements about similar objects, or relations
 - Statements referring to groups of objects.

CS 1571 Intro to Al

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- **Example:** Seniority of people domain knowledge that would support inferences we need:

 $\textit{John is older than Mary} \ \land \ \textit{Mary is older than Paul}$

 \Rightarrow John is older than Paul

Jane is older than Mary ∧ Mary is older than Paul

- \Rightarrow Jane is older than Paul
- **Problem:** if we have many people and their age relations we need to represent many rules to support the inferences
- Solution: ??

CS 1571 Intro to Al

M. Hauskrecht

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

For inferences we need:

John is older than Mary A Mary is older than Paul

 \Rightarrow John is older than Paul

Jane is older than Mary \wedge Mary is older than Paul

- \Rightarrow Jane is older than Paul
- **Problem:** if we have many people and their age relations we need to represent many rules to support the inferences
- Solution: introduce variables

<u>PersA</u> is older than <u>PersB</u> \land <u>PersB</u> is older than <u>PersC</u>

 \Rightarrow <u>PersA</u> is older than <u>PersC</u>

CS 1571 Intro to Al

Limitations of propositional logic

- Statements referring to groups of objects require exhaustive enumeration of objects
- Example:

Assume we want to express Every student likes vacation

Doing this in propositional logic would require to include statements about every student

John likes vacation

Mary likes vacation ∧

Ann likes vacation

. . .

• Solution: Allow quantified statements

CS 1571 Intro to Al

M. Hauskrecht

First-order logic (FOL)

- More expressive than propositional logic
- Eliminates deficiencies of PL by:
 - Representing objects, their properties, relations and statements about them;
 - Introducing variables that refer to an arbitrary objects and can be substituted by a specific object
 - Introducing quantifiers allowing us to make statements over groups objects without the need to represent each of them separately

CS 1571 Intro to Al

Logic

Logic is defined by:

- A set of sentences
 - A sentence is constructed from a set of primitives according to syntax rules.
- A set of interpretations
 - An interpretation gives a semantic to primitives. It associates primitives with objects, values in the real world.
- The valuation (meaning) function V
 - Assigns a truth value to a given sentence under some interpretation

V: sentence \times interpretation $\rightarrow \{True, False\}$

CS 1571 Intro to Al

M. Hauskrecht

First-order logic: Syntax

Term – a syntactic entity for representing objects

Terms in FOL:

- Constant symbols: represent specific objects
 - E.g. John, France, car89
- **Variables:** represent objects of a certain type (type = domain of discourse)
 - E.g. x,y,z
- **Functions** applied to one or more terms
 - E.g. father-of (John)father-of(father-of(John))

CS 1571 Intro to Al

First order logic: Syntax

Sentences in FOL:

- Atomic sentences:
 - A predicate symbol applied to 0 or more termsExamples:

Red(car12),
Sister(Amy, Jane);
Manager(father-of(John));

- t1 = t2 equivalence of terms

Example:

John = father-of(Peter)

CS 1571 Intro to Al

M. Hauskrecht

First order logic: Syntax

Sentences in FOL:

- Complex sentences:
- Assume ϕ , ψ are sentences in FOL. Then:

-
$$(\phi \land \psi)$$
 $(\phi \lor \psi)$ $(\phi \Rightarrow \psi)$ $(\phi \Leftrightarrow \psi) \neg \psi$ and

$$- \quad \forall x \phi \qquad \exists y \phi$$
 are sentences

Symbols \exists, \forall

- stand for the existential and the universal quantifier

CS 1571 Intro to Al

Semantics: Interpretation

An interpretation *I* is defined by **mapping** constants, functions and predicates to the **domain of discourse D or relations on D**

• **domain of discourse:** a set of objects in the world we represent and refer to;

An interpretation *I* maps:

- Constant symbols to objects in D $I(John) = \frac{\circ}{1}$
- Predicate symbols to relations, properties on D

$$I(brother) = \left\{ \left\langle \stackrel{\sim}{\mathcal{T}} \stackrel{\sim}{\mathcal{T}} \right\rangle; \left\langle \stackrel{\sim}{\mathcal{T}} \stackrel{\sim}{\mathcal{T}} \right\rangle; \dots \right\}$$

• Function symbols to functional relations on D

$$I(father-of) = \left\{ \left\langle \stackrel{\circ}{\uparrow} \right\rangle \rightarrow \stackrel{\circ}{\uparrow} ; \left\langle \stackrel{\circ}{\uparrow} \right\rangle \rightarrow \stackrel{\circ}{\uparrow} ; \dots \right\}$$

CS 1571 Intro to Al

M. Hauskrecht

Semantics of sentences

Meaning (evaluation) function:

V: sentence \times interpretation $\rightarrow \{True, False\}$

A **predicate** *predicate*(*term-1*, *term-2*, ..., *term-n*) is true for the interpretation *I*, iff the objects referred to by *term-1*, *term-2*, ..., *term-n* are in the relation referred to by *predicate*

$$I(John) = \frac{?}{\uparrow} \qquad I(Paul) = \frac{?}{\uparrow}$$

$$I(brother) = \left\{ \left\langle \frac{?}{\uparrow} \frac{?}{\uparrow} \right\rangle; \left\langle \frac{?}{\uparrow} \frac{?}{\uparrow} \right\rangle; \dots \right\}$$

$$brother(John, Paul) = \left\langle \frac{?}{\uparrow} \frac{?}{\uparrow} \right\rangle \qquad \text{in } I(brother)$$

V(brother(John, Paul), I) = True

CS 1571 Intro to Al

Semantics of sentences

- Equality V(term-1 = term-2, I) = TrueIff I(term-1) = I(term-2)
- Boolean expressions: standard

E.g.
$$V(sentence-1 \lor sentence-2, I) = True$$

Iff $V(sentence-1,I) = True$ or $V(sentence-2,I) = True$

Quantifications

$$V(\forall x \ \phi, I) = \textbf{True}$$
 substitution of x with d

Iff for all $d \in D$ $V(\phi, I[x/d]) = \textbf{True}$
 $V(\exists x \ \phi, I) = \textbf{True}$

Iff there is a $d \in D$, s.t. $V(\phi, I[x/d]) = \textbf{True}$

CS 1571 Intro to Al

M. Hauskrecht

Sentences with quantifiers

• Universal quantification

All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

 $\forall x \ smart(x)$

Assume the universe of discourse of x are students

 $\forall x \ at(x, Upitt) \Rightarrow smart(x)$

• Assume the universe of discourse of x are people

 $\forall x \ student(x) \land at(x, Upitt) \Rightarrow smart(x)$

CS 1571 Intro to Al

Sentences with quantifiers

• Universal quantification

All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

 $\forall x \ smart(x)$

Assume the universe of discourse of x are students

$$\forall x \ at(x, Upitt) \Rightarrow smart(x)$$

• Assume the universe of discourse of x are people

$$\forall x \ student(x) \land at(x, Upitt) \Rightarrow smart(x)$$

Typically the universal quantifier connects with an implication

CS 1571 Intro to Al

M. Hauskrecht

Sentences with quantifiers

• Existential quantification

Someone at CMU is smart

• Assume the universe of discourse of x are CMU affiliates

 $\exists x \ smart(x)$

• Assume the universe of discourse of x are people

 $\exists x \ at(x, CMU) \land smart(x)$

CS 1571 Intro to Al

Sentences with quantifiers

• Existential quantification

Someone at CMU is smart

• Assume the universe of discourse of x are CMU affiliates

 $\exists x \ smart(x)$

• Assume the universe of discourse of x are people

 $\exists x \ at(x, CMU) \land smart(x)$

Typically the existential quantifier connects with a conjunction

CS 1571 Intro to Al

M. Hauskrecht

Translation with quantifiers

• Assume two predicates S(x) and P(x)

Universal statements typically tie with implications

- All S(x) is P(x)
 - $\forall x (S(x) \rightarrow P(x))$
- No S(x) is P(x)
 - $\forall x (S(x) \rightarrow \neg P(x))$

Existential statements typically tie with conjunction

- Some S(x) is P(x)
 - $-\exists x (S(x) \land P(x))$
- Some S(x) is not P(x)
 - $-\exists x (S(x) \land \neg P(x))$

CS 1571 Intro to Al

Nested quantifiers

 More than one quantifier may be necessary to capture the meaning of a statement in the predicate logic.

Example:

- There is a person who loves everybody.
- Translation:
 - Assume:
 - Variables x and y denote people
 - A predicate L(x,y) denotes: "x loves y"
- Then we can write in the predicate logic:

?

CS 1571 Intro to Al

M. Hauskrecht

Nested quantifiers

• More than one quantifier may be necessary to capture the meaning of a statement in the predicate logic.

Example:

- There is a person who loves everybody.
- Translation:
 - Assume:
 - Variables x and y denote people
 - A predicate L(x,y) denotes: "x loves y"
- Then we can write in the predicate logic:

 $\exists x \forall y L(x,y)$

CS 1571 Intro to Al

Translation exercise

Suppose:

- Variables x,y denote people
- L(x,y) denotes "x loves y".

Translate:

- Everybody loves Raymond. $\forall x L(x,Raymond)$
- Everybody loves somebody. $\forall x \exists y L(x,y)$
- There is somebody whom everybody loves. $\exists y \forall x L(x,y)$
- There is somebody who Raymond doesn't love. $\exists y \neg L(Raymond, y)$
- There is somebody whom no one loves.

$$\exists y \ \forall x \ \neg L(x,y)$$

CS 1571 Intro to Al

M. Hauskrecht

Order of quantifiers

• Order of quantifiers of the same type does not matter

For all x and y, if x is a parent of y then y is a child of x $\forall x, y \text{ parent } (x, y) \Rightarrow \text{child } (y, x)$

$$\forall x, y \text{ parent } (x, y) \Rightarrow \text{ child } (y, x)$$

 $\forall y, x \text{ parent } (x, y) \Rightarrow \text{ child } (y, x)$

Order of different quantifiers changes the meaning

$$\forall x \exists y \ loves \ (x, y)$$

Everybody loves somebody

$$\exists y \forall x \ loves \ (x, y)$$

There is someone who is loved by everyone

CS 1571 Intro to Al

Connections between quantifiers

Everyone likes ice cream ?

CS 1571 Intro to Al

M. Hauskrecht

Connections between quantifiers

Everyone likes ice cream

 $\forall x \ likes (x, IceCream)$

Is it possible to convey the same meaning using an existential quantifier?

There is no one who does not like ice cream

 $\neg \exists x \neg likes (x, IceCream)$

A universal quantifier in the sentence can be expressed using an existential quantifier !!!

CS 1571 Intro to Al

Connections between quantifiers

Someone likes ice cream

 $\exists x \ likes \ (x, IceCream)$

Is it possible to convey the same meaning using a universal quantifier?

Not everyone does not like ice cream

 $\neg \forall x \neg likes (x, IceCream)$

An existential quantifier in the sentence can be expressed using a universal quantifier !!!

CS 1571 Intro to Al

M. Hauskrecht

Representing knowledge in FOL

Example:

Kinship domain

• Objects: people

John, Mary, Jane, ...

• **Properties:** gender

Male(x), Female(x)

• Relations: parenthood, brotherhood, marriage

Parent (x, y), Brother (x, y), Spouse (x, y)

• **Functions:** mother-of (one for each person x)

MotherOf(x)

CS 1571 Intro to Al

Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

• Male and female are disjoint categories

$$\forall x \; Male \; (x) \Leftrightarrow \neg Female \; (x)$$

• Parent and child relations are inverse

$$\forall x, y \ Parent \ (x, y) \Leftrightarrow Child \ (y, x)$$

• A grandparent is a parent of parent

$$\forall g, c \ Grandparent(g, c) \Leftrightarrow \exists p \ Parent(g, p) \land Parent(p, c)$$

• A sibling is another child of one's parents

$$\forall x, y \; Sibling \; (x, y) \Leftrightarrow (x \neq y) \land \exists p \; Parent \; (p, x) \land Parent \; (p, y)$$

• And so on

CS 1571 Intro to Al