CS 1571 Introduction to AI Lecture 12

Propositional logic

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

Announcements

- Homework assignment 4 due today
- Homework assignment 5 is out
- Programming and experiments
- Tic-tac-toe player
- Competition

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs1571/

Knowledge representation

- Knowledge representation
- Objective: express the knowledge about the world in a computer-tractable form
- Knowledge representation languages (KRLs)
- Inference procedures:
- A set of procedures that use the knowledge representational language (KRL) to infer new facts from known ones or answer a variety of KB queries. Typically require a search.
- Last and this lecture:
- use of Propositional logic as KRL

Logical inference problem

Logical inference problem:

- Given:
- a knowledge base KB (a set of sentences) and
- a sentence α (called a theorem),
- Does a KB semantically entail α ? $K B \mid=\alpha$?

In other words: In all interpretations in which sentences in the
KB are true, is also α true?

Sound and complete inference.

Inference is a process by which conclusions are reached.

- We want to implement the inference process on a computer !!

Assume an inference procedure i that

- derives a sentence α from the KB : $K B \vdash_{i} \alpha$

Properties of the inference procedure in terms of entailment

- Soundness: An inference procedure is sound

If $K B \vdash_{i} \alpha$ then it is true that $K B \mid=\alpha$

- Completeness: An inference procedure is complete

If $\quad K B \mid=\alpha$ then it is true that $\quad K B \vdash_{i} \alpha$

Solving logical inference problem

In the following:
How to design the procedure that answers:

$$
K B \mid=\alpha ?
$$

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
- Resolution-refutation

Truth-table approach

A two steps procedure:

1. Generate table for all possible interpretations
2. Check whether the sentence α evaluates to true whenever $K B$ evaluates to true
Example: $\quad K B=(A \vee C) \wedge(B \vee \neg C) \quad \alpha=(A \vee B)$

A	B	C	$A \vee C$	$(B \vee \neg C)$	$K B$	α
True	True	True				
True	True	False				
True	False	True				
True	False	False				
False	True	True				
False	True	False				
False	False	True				
False	False	False				

Truth-table approach

A two steps procedure:

1. Generate table for all possible interpretations
2. Check whether the sentence α evaluates to true whenever $K B$ evaluates to true

Example: $\quad K B=(A \vee C) \wedge(B \vee \neg C) \quad \alpha=(A \vee B)$

| A | B | C | A $\vee C$ | $(B \vee \neg C)$ | KB | α |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| True |
True	True	False	True	True	True	True
True	False	True	True	False	False	True
True	False	False	True	True	True	True
False	True	True	True	True	True	True
False	True	False	False	True	False	True
False	False	True	True	False	False	False
False	False	False	False	True	False	False

Truth-table approach

A two steps procedure:

1. Generate table for all possible interpretations
2. Check whether the sentence α evaluates to true whenever $K B$ evaluates to true
Example: $\quad K B=(A \vee C) \wedge(B \vee \neg C) \quad \alpha=(A \vee B)$

A	B	C	$A \vee C$	$(B \vee \neg C)$	KB	α
True						
True	True	False	True	True	True	True
True	False	True	True	False	False	True
True	False	False	True	True	True	True
False	True	True	True	True	True	True
False	True	False	False	True	False	True
False	False	True	True	False	False	False
False	False	False	False	True	False	False
Cs 1571 Intro to Al						

Truth-table approach

$K B=(A \vee C) \wedge(B \vee \neg C)$						
A	B	C	A $\alpha=C$	$(B \vee \neg C)$	KB	α
True						
True	True	False	True	True	True	True
True	False	True	True	False	False	True
True	False	False	True	True	True	True
False	True	True	True	True	True	True
False	True	False	False	True	False	True
False	False	True	True	False	False	False
False	False	False	False	True	False	False

KB entails α

- The truth-table approach is sound and complete for the propositional logic!!

Limitations of the truth table approach

$$
K B \mid=\alpha ?
$$

- What is the computational complexity of the truth table approach?

Exponential in the number of the propositional symbols

$2^{n} \quad$ Rows in the table has to be filled

- the truth table is exponential in the number of propositional symbols (we checked all assignments)

Limitation of the truth table approach

$$
K B \mid=\alpha ?
$$

Problem with the truth table approach:

- the truth table is exponential in the number of propositional symbols (we checked all assignments)
How to make the process more efficient?
Observation: KB is true only on a small subset interpretations

Solution: inference rules approach

- start from entries for which KB is True.
- generate new (sound) sentences from the existing ones

Inference rules approach

Approach:

- start from KB
- infer new sentences that are true from existing KB sentences
- Repeat till alpha is proved (inferred true) or no more sentences can be proved

Rules:

- let us generate new (sound) sentences from the existing ones
- Equivalence rules:
- Known logical equivalences
- Inference rules:
- Represent sound "local" inference patterns repeated in inferences

Logical equivalence

- Definition: The propositions P and Q are called logically equivalent if $\mathrm{P} \leftrightarrow \mathrm{Q}$ is a tautology (alternately, if they have the same truth table). The notation $\mathbf{P}<=>\mathbf{Q}$ denotes P and Q are logically equivalent.

A	B	$\mathbf{A \rightarrow \mathbf { B }}$	$\neg \mathbf{A} \rightarrow \neg \mathbf{B}$	$(\mathbf{A} \rightarrow \mathbf{B})<->$ $(\neg \mathbf{A} \rightarrow \neg \mathbf{B})$
T	T	T	T	T
T	F	F	F	T
F	T	T	T	T
F	F	T	T	T

Important logical equivalences

- Identity
$-\mathrm{p} \wedge \mathrm{T}<\mathrm{p}$
$-p \vee F \ll p$
- Domination
$-\mathrm{p} \vee \mathrm{T} \Leftrightarrow \mathrm{T}$
$-p \wedge F \Leftrightarrow F$
- Idempotent
$-p \vee p<=>p$
- p $\wedge p<=>$

Important logical equivalences

- Double negation
- $\neg(\neg p)<=>p$
- Commutative
$-p \vee q<q \vee p$
$-\mathrm{p} \wedge \mathrm{q} \ll \mathrm{q} \wedge \mathrm{p}$
- Associative
$-(p \vee q) \vee r \ll p \vee(q \vee r)$
$-(p \wedge q) \wedge r \ll p \wedge(q \wedge r)$

Important logical equivalences

- Distributive
$-p \vee(q \wedge r) \ll(p \vee q) \wedge(p \vee r)$
$-p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)$
- De Morgan
$-\neg(p \vee q) \ll \neg p \wedge \neg q$
$-\quad(p \wedge q) \ll \neg p \vee \neg q$
- Other useful equivalences
$-\mathrm{p} \vee \neg \mathrm{p}$ < $>\mathrm{T}$
$-\mathrm{p} \wedge \neg \mathrm{p}<=>\mathrm{F}$
$-\mathbf{p} \rightarrow \mathbf{q}<=>(\neg \mathbf{p} \vee \mathbf{q})$

Inference rules

- Modus ponens

$$
\begin{array}{ccl}
\frac{A \Rightarrow B,}{} \frac{A}{B} & \rightleftarrows & \text { premise } \\
\rightleftarrows & \text { conclusion }
\end{array}
$$

- If both sentences in the premise are true then conclusion is true.
- The modus ponens inference rule is sound.
- We can prove this through the truth table.

A	B	$A \Rightarrow B$
False	False	True
False	True	True
True	False	False
True	True	True

Inference rules for logic

- And-elimination

$$
\frac{A_{1} \wedge A_{2} \wedge \quad A_{n}}{A_{i}}
$$

- And-introduction

$$
\frac{A_{1}, A_{2}, \quad A_{n}}{A_{1} \wedge A_{2} \wedge \quad A_{n}}
$$

- Or-introduction

$$
\frac{A_{i}}{A_{1} \vee A_{2} \vee \ldots A_{i} \vee A_{n}}
$$

Inference rules for logic

- Unit resolution

- All of the above inference rules are sound. We can prove this through the truth table, similarly to the modus ponens case.

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R \quad(Q \wedge R) \Rightarrow S \quad$ Theorem: S

1. $P \wedge Q$
2. $P \Rightarrow R$
3. $(Q \wedge R) \Rightarrow S$

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R(Q \wedge R) \Rightarrow S \quad$ Theorem: S

1. $P \wedge Q$
2. $P \Rightarrow R$
3. $(Q \wedge R) \Rightarrow S$
4. P

From 1 and And-elim

$$
\frac{A_{1} \wedge A_{2} \wedge \quad A_{n}}{A_{i}}
$$

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R \quad(Q \wedge R) \Rightarrow S \quad$ Theorem: S

1. $P \wedge Q$
2. $P \Rightarrow R$
3. $(Q \wedge R) \Rightarrow S$
4. P
5. R

From 2,4 and Modus ponens

$$
\frac{A \Rightarrow B, \quad A}{B}
$$

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R(Q \wedge R) \Rightarrow S \quad$ Theorem: S

1. $P \wedge Q$
2. $P \Rightarrow R$
3. $(Q \wedge R) \Rightarrow S$
4. P
5. R
6. Q

From 1 and And-elim

$$
\frac{A_{1} \wedge A_{2} \wedge \quad A_{n}}{A_{i}}
$$

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R \quad(Q \wedge R) \Rightarrow S \quad$ Theorem: S

1. $P \wedge Q$
2. $P \Rightarrow R$
3. $(Q \wedge R) \Rightarrow S$
4. P
5. R
6. Q
7. $(Q \wedge R)$

From 5,6 and And-introduction

$$
\frac{A_{1}, A_{2}, \quad A_{n}}{\substack{A_{1} \wedge A_{2} \wedge \quad A_{n}}}
$$

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R(Q \wedge R) \Rightarrow S \quad$ Theorem: S

1. $P \wedge Q$
2. $P \Rightarrow R$
3. $(Q \wedge R) \Rightarrow S$
4. P
5. R
6. Q
7. $(Q \wedge R)$

$$
\frac{A \Rightarrow B, \quad A}{B}
$$

8. S From 7,3 and Modus ponens

Proved: S

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R \quad(Q \wedge R) \Rightarrow S \quad$ Theorem: S

1. $P \wedge Q$
2. $P \Rightarrow R$
3. $(Q \wedge R) \Rightarrow S$
4. P
5. R
6. Q
7. $(Q \wedge R)$
8. S

From 1 and And-elim
From 2,4 and Modus ponens
From 1 and And-elim
From 5,6 and And-introduction
From 7,3 and Modus ponens

Proved: S

Logic inferences and search

- To show that theorem α holds for a KB
- we may need to apply a number of sound inference rules

Problem: many possible rules to can be applied next
Looks familiar?

This is an instance of a search problem:
Truth table method (from the search perspective):

- blind enumeration and checking

Logic inferences and search

Inference rule method as a search problem:

- State: a set of sentences that are known to be true
- Initial state: a set of sentences in the KB
- Operators: applications of inference rules
- Allow us to add new sound sentences to old ones
- Goal state: a theorem α is derived from KB

Logic inference:

- Proof: A sequence of sentences that are immediate consequences of applied inference rules
- Theorem proving: process of finding a proof of theorem

Normal forms

Problems:

- Too many different rules one can apply
- Many new sentence are just equivalent sentences

Question:

- Can we simplify inferences using one of the normal forms?

Normal forms

Conjunctive normal form (CNF)

- conjunction of clauses (clauses include disjunctions of literals)

$$
(A \vee B) \wedge(\neg A \vee \neg C \vee D)
$$

Disjunctive normal form (DNF)

- Disjunction of terms (terms include conjunction of literals)

$$
(A \wedge \neg B) \vee(\neg A \wedge C) \vee(C \wedge \neg D)
$$

Conversion to a CNF

Assume: $\quad \neg(A \Rightarrow B) \vee(C \Rightarrow A)$

1. Eliminate $\Rightarrow, \Leftrightarrow$

$$
\neg(\neg A \vee B) \vee(\neg C \vee A)
$$

2. Reduce the scope of signs through DeMorgan Laws and double negation

$$
(A \wedge \neg B) \vee(\neg C \vee A)
$$

3. Convert to CNF using the associative and distributive laws

$$
(A \vee \neg C \vee A) \wedge(\neg B \vee \neg C \vee A)
$$

and

$$
(A \vee \neg C) \wedge(\neg B \vee \neg C \vee A)
$$

Inferences in CNF

Assume: $\quad \neg(A \Rightarrow B) \vee(C \Rightarrow A)$

1. Eliminate $\Rightarrow, \Leftrightarrow$

$$
\neg(\neg A \vee B) \vee(\neg C \vee A)
$$

2. Reduce the scope of signs through DeMorgan Laws and double negation

$$
(A \wedge \neg B) \vee(\neg C \vee A)
$$

3. Convert to CNF using the associative and distributive laws

$$
(A \vee \neg C \vee A) \wedge(\neg B \vee \neg C \vee A)
$$

and

$$
(A \vee \neg C) \wedge(\neg B \vee \neg C \vee A)
$$

Resolution rule

Resolution rule

- sound inference rule that fits the CNF

$$
\frac{A \vee B, \quad \neg B \vee C}{A \vee C}
$$

A	B	C	$\boldsymbol{A} \vee \boldsymbol{B}$	$\neg \boldsymbol{B} \vee \boldsymbol{C}$	$\boldsymbol{A} \vee \boldsymbol{C}$
False	False	False	False	True	False
False	False	True	False	True	True
False	True	False	True	False	False
False	True	True	$\frac{\text { True }}{\text { True }}$	True	True
True	$\underline{\text { False }}$	False	True	True	True
True	Trulse	True	True	True	$\frac{\text { True }}{\text { True }}$
True	True	True	True	False	True
True	True	True			

Resolution rule

Resolution rule:

- Sound inference rule for the KB expressed in the CNF form
- But unfortunately not complete
- Repeated application of the resolution rule to a KB in CNF may fail to derive new valid sentences
- Example:

We know: $(A \wedge B)$
We want to show: $(A \vee B)$

Resolution rule fails to derive it (incomplete ??)

Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (I.e. can evaluate to true)
$(P \vee Q \vee \neg R) \wedge(\neg P \vee \neg R \vee S) \wedge(\neg P \vee Q \vee \neg T) \ldots$
It is an instance of a constraint satisfaction problem:

- Variables:
- Propositional symbols (P, R, T, S)
- Values: True, False
- Constraints:
- Every conjunct must evaluate to true, at least one of the literals must evaluate to true

Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (I.e. can evaluate to true)
$(P \vee Q \vee \neg R) \wedge(\neg P \vee \neg R \vee S) \wedge(\neg P \vee Q \vee \neg T) \ldots$
It is an instance of a constraint satisfaction problem:

- Variables:
- Propositional symbols (P, R, T, S)
- Values: True, False
- Constraints:
- Every conjunct must evaluate to true, at least one of the literals must evaluate to true
- A logical inference problem can be solved as a CSP problem. Why?

Inference problem and satisfiability

Inference problem:

- we want to show that the sentence α is entailed by KB

Satisfiability:

- The sentence is satisfiable if there is some assignment (interpretation) under which the sentence evaluates to true

Connection: \quad| | $K B \mid=\alpha$ |
| :---: | :--- |
| $(K B \wedge \neg \alpha)$ | if and only if unsatisfiable |

Consequences:

- inference problem is NP-complete
- programs for solving the SAT problem can be used to solve the inference problem

Resolution rule

When applied directly to KB in CNF to infer α :

- Incomplete: repated application of the resolution rule to a KB in CNF may fail to derive new valid sentences

Example:

We know: $(A \wedge B) \quad$ We want to show: $(A \vee B)$

Resolution rule is incomplete

A trick to make things work:

- proof by contradiction
- Disproving: $K B \wedge \neg \alpha$
- Proves the entailment $\quad K B \mid=\alpha$

Resolution rule is refutation complete

Resolution algorithm

Algorithm:

- Convert KB to the CNF form;
- Apply iteratively the resolution rule starting from $K B, \neg \alpha \quad$ (in CNF form)
- Stop when:
- Contradiction (empty clause) is reached:
- $A, \neg A \rightarrow Q$
- proves entailment.
- No more new sentences can be derived
- disproves it.

Example. Resolution.

KB: $(P \wedge Q) \wedge(P \Rightarrow R) \wedge[(Q \wedge R) \Rightarrow S] \quad$ Theorem: S

Step 1. convert KB to CNF:

- $P \wedge Q \longrightarrow P \wedge Q$
- $P \Rightarrow R \longrightarrow(\neg P \vee R)$
- $(Q \wedge R) \Rightarrow S \longrightarrow(\neg Q \vee \neg R \vee S)$

KB: $P Q(\neg P \vee R) \quad(\neg Q \vee \neg R \vee S)$
Step 2. Negate the theorem to prove it via refutation

$$
S \longrightarrow \neg S
$$

Step 3. Run resolution on the set of clauses

$$
P Q(\neg P \vee R) \quad(\neg Q \vee \neg R \vee S) \quad \neg S
$$

Example. Resolution.

KB: $(P \wedge Q) \wedge(P \Rightarrow R) \wedge[(Q \wedge R) \Rightarrow S] \quad$ Theorem: S

$$
P Q(\neg P \vee R) \quad(\neg Q \vee \neg R \vee S) \quad \neg S
$$

Example. Resolution.

KB: $(P \wedge Q) \wedge(P \Rightarrow R) \wedge[(Q \wedge R) \Rightarrow S] \quad$ Theorem: S

Example. Resolution.

KB: $(P \wedge Q) \wedge(P \Rightarrow R) \wedge[(Q \wedge R) \Rightarrow S] \quad$ Theorem: S

Example. Resolution.

KB: $(P \wedge Q) \wedge(P \Rightarrow R) \wedge[(Q \wedge R) \Rightarrow S] \quad$ Theorem: S

Example. Resolution.

KB: $(P \wedge Q) \wedge(P \Rightarrow R) \wedge[(Q \wedge R) \Rightarrow S] \quad$ Theorem: S

Properties of inference solutions

- Truth-table approach
- Blind
- Exponential in the number of variables
- Inference rules
- More efficient
- Many inference rules to cover logic
- Conversion to SAT - Resolution refutation
- More efficient
- Sentences must be converted into CNF
- One rule - the resolution rule - is sufficient to perform all inferences

