

Announcements	
Homework assignment 4 due today	
Homework assignment 5 is out	
 Programming and experiments 	
 Tic-tac-toe player 	
– Competition	
Course web page:	
http://www.cs.pitt.edu/~milos/courses/cs1571/	
CS 1571 Intro to Al	M. Hauskrecht

		Trutl				
two st	eps pro	ocedure	:			
Gene	rate tab	ole for al	l possible	interpretatior	IS	
	ever <i>K</i>	B evalu	ates to tru	α evaluate ie $\vee \neg C) \alpha$		
Α	В	С	$A \lor C$	$(B \lor \neg C)$	KB	α
A True	B True	C True	A∨C True	$(B \lor \neg C)$ <i>True</i>	KB True	α True
		0				
True True	True	True	True	True	True	True
True True	True True	True False	True True	True True	True True	True True
True True True	True True False	True False True	True True True	True True False	True True False	True True True
True True True True False	True True False False	True False True False	True True True True	True True False True	True True False True	True True True True
True True True True False False	True True False False True	True False True False True	True True True True True True	True True False True True	True True False True True	True True True True True True

two st	eps pro	ocedure	:			
Gene	rate tab	ole for al	l possible	interpretation	IS	
Chec	k whet	ther the	sentence	α evaluate	s to true	•
			ates to tru			-
						D)
xample		$\mathbf{A}\mathbf{D} = (\mathbf{A}$	(VC)∧(B	$\vee \neg C) \alpha$	$=(A \lor I)$	5)
Α	В	С	$A \lor C$	$(B \lor \neg C)$	KB	α
A True	B True	C True	A∨C True	$(B \lor \neg C)$ <i>True</i>	KB True	α True
		0	_	· · · ·		
True	True	True	True	True	True	True
True True	True True	True False	True True	True True	True True	True True
True True True	True True False False	True False True	True True True	True True False	True True False	True True True
True True True True True	True True False False	True False True False	True True True True	True True False True	True True False True	True True True True True
True True True True False False	True True False False True	True False True False True	True True True True True	True True False True True	True True False True True	True True True True True True

A	В	С	$A \lor C$	$(B \lor \neg C)$	KB	α
True	True	True	True	True	True	True
True	True	False	True	True	True	True
True	False	True	True	False	False	True
True	False	False	True	True	True	True
False	True	True	True	True	True	True
False	True	False	False	True	False	True
False	False	True	True	False	False	False
False	False	False	False	True	False	False
	Γ	KB er	ntails $lpha$]		

Inference rules approach

Approach:

- start from KB
- infer new sentences that are true from existing KB sentences
- Repeat till alpha is proved (inferred true) or no more sentences can be proved

Rules:

- let us generate new (sound) sentences from the existing ones
- Equivalence rules:
 - Known logical equivalences
- Inference rules:
 - Represent sound "local" inference patterns repeated in inferences

CS 1571 Intro to Al

M. Hauskrecht

Logical equivalence										
equivalent in the same true	 <u>Definition</u>: The propositions P and Q are called logically equivalent if P ↔ Q is a tautology (alternately, if they have the same truth table). The notation P <=> Q denotes P and Q are logically equivalent. 									
A	$ \begin{array}{ c c c c c c } A & B & A \rightarrow B & \neg A \rightarrow \neg B & (A \rightarrow B) <-> \\ (\neg A \rightarrow \neg B) & ((\neg A \rightarrow \neg B) & (\neg A \rightarrow \neg B) & ((\neg A \rightarrow \neg B) & (((\neg A \rightarrow ((\neg A \rightarrow ((\neg A \rightarrow (((\neg A \rightarrow (((((((((($									
Т										
Т	T F F F T									
F	F T T T T									
F	F F T T T									
	(CS 1571 Intro to Al		M. Hauskrecht						

Example. Inference rules approach.

KB: $P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S$ Theorem: S 1. $P \land Q$ 2. $P \Rightarrow R$ 3. $(Q \land R) \Rightarrow S$ 4. P5. R From 2,4 and Modus ponens $\frac{A \Rightarrow B, A}{B}$ CS 1571 Intro to Al M. Hauskrecht

Logic inferences and search

Inference rule method as a search problem:

- State: a set of sentences that are known to be true
- Initial state: a set of sentences in the KB
- **Operators**: applications of inference rules
 - Allow us to add new sound sentences to old ones
- Goal state: a theorem α is derived from KB

Logic inference:

- **Proof:** A sequence of sentences that are immediate consequences of applied inference rules
- Theorem proving: process of finding a proof of theorem

CS 1571 Intro to Al

M. Hauskrecht

Normal forms	
Problems:	
• Too many different rules one can apply	
• Many new sentence are just equivalent sentences	
Question:	
• Can we simplify inferences using one of the normal forms?	
Normal forms	
Conjunctive normal form (CNF)	
• conjunction of clauses (clauses include disjunctions of literals)	
$(A \lor B) \land (\neg A \lor \neg C \lor D)$	
Disjunctive normal form (DNF)	
• Disjunction of terms (terms include conjunction of literals)	
$(A \land \neg B) \lor (\neg A \land C) \lor (C \land \neg D)$	
CS 1571 Intro to AI M. Hauskre	cht

Resolution rule									
Resolution rulesound inference rule that <u>fits the CNF</u>									
$\frac{A \lor B, \neg B \lor C}{A \lor C}$									
Α	В	С	$A \lor B$	$\neg B \lor C$	$A \lor C$				
ABC $A \lor B$ $\neg B \lor C$ $A \lor C$ FalseFalseFalseFalseFalseTrueFalseFalseFalseTrueFalseTrueFalseFalseTrueFalseTrueFalseFalseFalseTrueFalseTrueFalseFalseFalseTrueTrueTrueTrueTrueTrueFalseFalseTrueTrueTrueTrueFalseTrueTrueTrueTrueTrueTrueFalseTrueFalseTrueTrueTrueFalseTrue									
		CS 1571 I	ntro to Al		M. Hauskrecht				

