CS 1571 Introduction to AI Lecture 1

Course overview

Milos Hauskrecht

milos@cs.pitt.edu5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

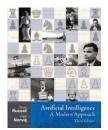
Course administrivia

Instructor: Milos Hauskrecht

5329 Sennott Square milos@cs.pitt.edu

TA: CharmGil Hong

5406 Sennott Square charmgil@cs.pitt.edu


Course web page:

http://www.cs.pitt.edu/~milos/courses/cs1571/

CS 1571 Intro to Al

Textbook

Course textbook:

Stuart Russell, Peter Norvig.

Artificial Intelligence: A modern approach.

3rd edition, Prentice Hall, 2009

Other widely used AI textbooks:

Dean, Allen, Aloimonos: Artificial Intelligence.

P. Winston: Artificial Intelligence, 3rd ed.

N. Nillson: Principles of AI.

CS 1571 Intro to Al

M. Hauskrecht

Grading

Lectures 10%
Homework assignments 45%
Midterm 20%
Final 25%

CS 1571 Intro to Al

Lectures

- 10 % of the grade
- Attendance + activity
- 3-4 short quizzes
 - 10 minutes at the beginning of the lecture
 - Random
 - Short question(s) from previous lectures

CS 1571 Intro to Al

M. Hauskrecht

Homework assignments

- Homework assignments:
 - 45 % of the grade
 - Weekly assignments
 - A mix of pencil and paper, and programming assignments
 - No extensions. Homework due dates are strict.
- Collaborations:
 - No collaborations on homework assignments
- Programming language:
 - C/C++
 - g++ compiler under UNIX

CS 1571 Intro to Al

Exams

- Midterm
 - 20 % of the grade
 - In-class
- Final
 - 25 % of the grade
 - Cumulative exam with focus on the second half of the course

CS 1571 Intro to Al

M. Hauskrecht

Academic honesty

- All the work in this course should be **done independently.**
- Collaborations on homework assignments, quizzes and exams are not permitted.
- Cheating and any other anti-intellectual behavior, including giving your work to someone else, will be dealt with severely.
- Academic Integrity Code for the Faculty and College of Arts and Sciences: http://www.as.pitt.edu/fac/policies/academic-integrity

CS 1571 Intro to Al

Artificial Intelligence

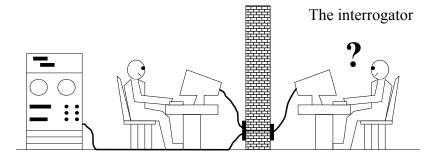
- The field of **Artificial intelligence**:
 - The design and study of computer systems that behave intelligently
- AI programs:
 - Go beyond numerical computations and manipulations
 - Focus on problems that require reasoning (intelligence)
- Why is AI research important?
 - Engineering aspect
 - solving of hard problems
 - Cognitive aspect
 - Understanding the nature of human intelligence

CS 1571 Intro to Al

M. Hauskrecht

Intelligence and machines

Can we make machines intelligent?


- Symbolic system hypothesis (Newell and Simon)
 - Intelligence is substrate neutral;
 - A physical symbol system has necessary and sufficient means for general intelligent action.
- **Biological substrate only** (John Searle, philosopher).
 - Intelligence is substrate dependent. The material humans are made of is fundamental for our intelligence. Thinking is possible only in special machines – living ones made of proteins.
- Other researchers believe that **sub-symbolic processing** (signal processing) may be needed to replicate intelligence.

CS 1571 Intro to Al

Turing test

How to test the "intelligence" of a program?

- Behavioral view of intelligence
 - A behavior capable of fooling a human interrogator

- Acting humanly is sufficient to pass the test.
- Is it necessary the AI system also thinks humanly?

CS 1571 Intro to Al

M. Hauskrecht

Eliza program

- Eliza, a computer therapist, created by Joseph Weizenbaum in 1966 at MIT, is one of the most famous early AI programs.
- Eliza functions by "twisting the statements of her 'patients' back at them in the classic manner of a non-directive psychotherapist."
- The fact that is understands the subject's statements is an illusion. Surprisingly, many users were taking its performance quite seriously.
- You can run Eliza at:
 - http://www-ai.ijs.si/eliza/eliza.html
- Info:
 - http://web.mit.edu/STS001/www/Team7/eliza.html

CS 1571 Intro to Al

Eliza program. Sample dialogue.

Eliza: Hello. I am ELIZA. How can I help you?

You: I am frustrated by the traffic I have to face every morning.

Eliza: How long have you been frustrated by the traffic you have to face every

morning?

You: For about a year now.

Eliza: Please go on.

You: Why should I go on? Give me some advice.

Eliza: Can you elaborate on that? You: Why? Give me some solution. Eliza: Can you elaborate on that?

You: It is obvious you cannot pass the Turing test

Eliza: Oh, i cant pass the turing test.

You: That is correct. Eliza: Please go on.

..

Try it yourself at: http://www-ai.ijs.si/eliza/eliza.html

CS 1571 Intro to Al

M. Hauskrecht

Passing the Turing test

Turing Test in recent news: June 6, 2014

 A computer program that pretends to be a 13-year-old Ukrainian boy called Eugene Goostman passed a Turing test at the Royal Society in London on June 6, 2014 by convincing 33 percent of the judges that it was human during a five-minute typed conversation.

http://www.princetonai.com/bot/bot.jsp

CS 1571 Intro to Al

Evaluation of an AI system

Depends on what matters more.

•Reasoning vs. Behavior

- the **computational process** or the **end-product** matters

•Human performance vs. Rationality

 Compare against human model (with its weaknesses) or a normative "ideal" model (rational system)

CS 1571 Intro to Al

M. Hauskrecht

RN textbook

- The textbook adopts the <u>rational agent perspective</u>

 Focus on Behavior and rational (normative) models
- Agent: an entity that perceives and acts
 - On abstract level the agent maps percepts to actions

 $f: Percepts \rightarrow Actions$

- **Design goal:** for any given environment find the agent that performs the best with respect to some normative model
- Caveat: The design may be limited by resources: memory, time
 - Find agents with best resource-performance trade-off

CS 1571 Intro to Al

History of AI

- **Artificial Intelligence** name adopted at Dartmouth conference in 1956
- "Contemporary" AI starts in 20th century (1940s), But the origins go back many years.

Origins of AI:

- Artificial people.
 - Beings or devices capable of substituting or replacing humans in various activities.
- Mathematical models of reasoning.
 - Formal models of thought and reasoning.

CS 1571 Intro to Al

M. Hauskrecht

Artificial people

- Beings or devices capable of substituting or replacing humans in various activities
- Legends, stories:
 - Androids (artificial people):
 - Android constructed by Albert the Great (13-th century)
 - Golem: made from clay, household chores (14-th century)
 - Homunkulus a human-like being created in other than natural way (Paracelcus, 16-th century)
- Mechanical people capable of writing, drawing, playing instruments (18-th century)
- **Kempelen's chess machine** (18-th century).
- Robots. Drama R.U.R. by K. Capek (early 20th century)

CS 1571 Intro to Al

Mathematical models of reasoning.

- Philosophers and mathematicians worked on **models of reasoning and thought**.
- Aristotle (384-322 B.C), ancient Greece, philosopher
 - Tried to explain and codify certain types of deductive reasoning he called syllogisms.
- George Boole (1854)
 - Foundations of **propositional logic**.
 - Formal language for making logical inferences.
- **Gottlieb Frege** (end of 19-th century).
 - First order logic

CS 1571 Intro to Al

M. Hauskrecht

The beginnings of AI (40s-50s).

Two streams:

- Neural network approach (McCulloch and Pitts 1943).
 - Models of a human brain.
- Computer programs capable of simple reasoning tasks:
 - chess programs (Shannon 1950, Newell, Shaw & Simon 1958)
 - checkers (Samuel 1959)
 - Theorem prover in geometry (Gelernter 1959)
 - Logic Theorist (Newell, Shaw & Simon 1957). Used propositional logic to prove theorems.
- Dartmouth meeting (1956), the name Artificial Intelligence adopted (due to John McCarthy)

CS 1571 Intro to Al

60s.

Developments in the two streams:

- Neural network models for learning patterns and pattern recognition
 - Objective: replicate self-organization and subsequently phenomenon intelligence
 - Build on McCulloch and Pitts' work (1943)
 - Adaline networks (Widrow, Hoff 1960)
 - **Perceptrons** (Rosenblatt 1961)
 - Minsky and Papert (1969) strong critique of perceptrons, it killed the area for a decade
- Symbolic problem solvers:
 - General problem solver (Newell, Simon) think humanly
 - LISP AI-specific programming language
 - Micro-worlds focus on problem-solving in restricted worlds (e.g. blocks world)

CS 1571 Intro to Al

M. Hauskrecht

70s. Knowledge-based system era.

- Early AI systems did not scale-up well to large applications
- The need for background knowledge

Edward Feigenbaum: "knowledge is the power"

Power of the system derived from the knowledge it uses

 Expert systems: obtain the knowledge from experts in the field, and replicate their problem-solving

Examples of KB systems:

- **Dendral** system (Buchanan et al.). Molecular structure elicitation from mass spectrometer readings.
- Mycin. Diagnosis of bacterial infections.
- Internist (Pople, Myers, Miller). Medical diagnosis.

CS 1571 Intro to Al

80s. AI goes commercial.

AI becomes an industry

Many tools for the design of KB systems were developed

Revival of neural network (connectionist) approach.

- Multi-layer neural networks
 - Modeling and learning of non-linear functions.
 - Back-propagation algorithm (learning)

Failure of AI in 80s

- High expectations in very short time
- Computational complexity: some problems are intrinsically hard
- Modeling uncertainty
- Separation of connectionist logic approaches.

CS 1571 Intro to Al

M. Hauskrecht

90s. Moving ahead

- Modeling uncertainty (a breakthrough in late 80s)
 - Bayesian belief networks, graphical models.
 - Speech recognition.
- Machine learning and data mining
 - Analysis of large volumes of data
 - Finding patterns in data
 - Learning to predict, act
- Autonomous agents with intelligence:
 - Software agents
 - Robots

CS 1571 Intro to Al

AI today

AI is more rigorous and depends strongly on: applied math, statistics, probability, control and decision theories

Recent advances:

- Machine Learning and Data mining
- Image analysis and vision
- Natural language processing
- Optimization
- Robotics

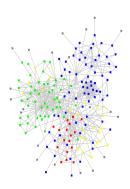
Applications:

- Achieve partial intelligence (not all human capabilities)
- Systems with components of intelligence in a specific application area;

CS 1571 Intro to Al

M. Hauskrecht

AI applications: Software systems.


- **Diagnosis of:** software, technical components
- Adaptive systems
 - Adapt systems to user needs
 - Adapt systems to specific tasks
- Examples:
 - Intelligent interfaces
 - Intelligent helper applications
 - Collaborative filtering
 - Target advertising

CS 1571 Intro to Al

Search and information retrieval

Web search engines

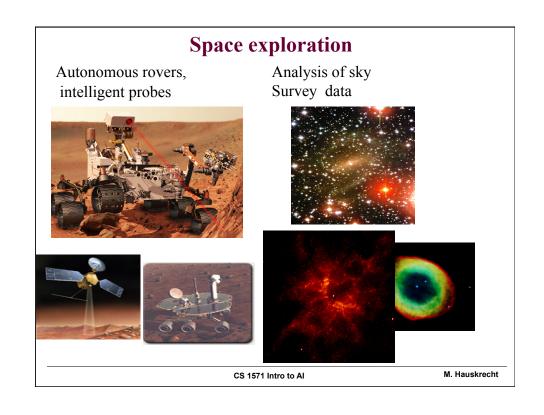
- Improve the quality of search
- Rely on methods/algorithms developed in AI
- Add inferences and knowledge to search queries

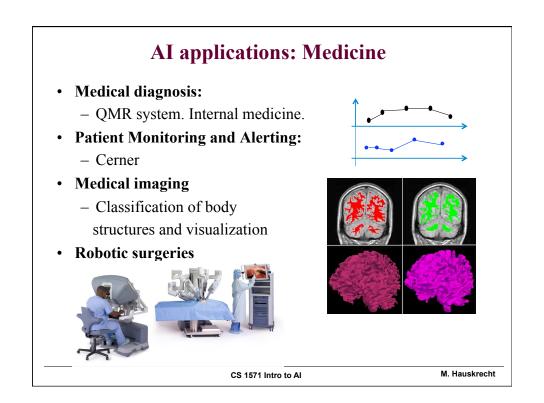
Semantic web (or web 2):

- From information to knowledge sharing
- Ontology languages

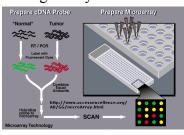
CS 1571 Intro to Al

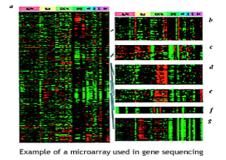
M. Hauskrecht


Speech recognition


- Speech recognition systems:
 - Systems based on statistical models,
 - Hidden Markov models

- Multi-user speech recognition
- Voice command/voice activated devices
 - No training works for many users
- Adaptive speech systems
 - Adapt to the user (training)
 - continuous speech
 - commercially available software (Nuance, IBM)
 - http://www.nuance.com/


CS 1571 Intro to Al

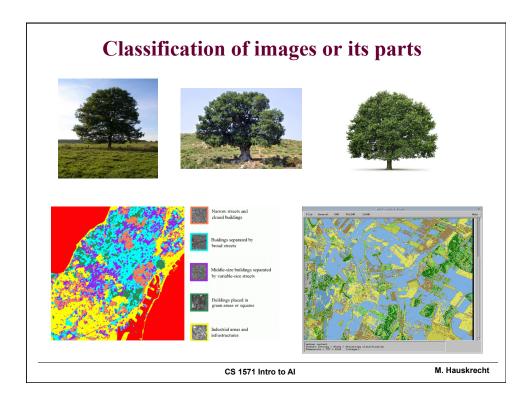


AI applications: Bioinformatics

- Genomics and Proteomics
 - Sequence analysis
 - Prediction of gene regions on DNA
 - Analysis of DNA micro-array and proteomic MS profiles: find genes, proteins (peptides) that characterize a specific disease
 - Regulatory networks

CS 1571 Intro to Al

M. Hauskrecht


AI applications: Transportation

Autonomous vehicle control:

- ALVINN (CMU, Pomerleau 1993)
- Series of DARPA challenges (http://www.grandchallenge/)
 - 2004, 2005 Drive across Mojave
 - 2007 DARPA Urban Challenge
- Google autonomous vehicles
- Pedestrian detection
- · Traffic monitoring
- Navigation/route optimizations

CS 1571 Intro to Al

Game playing

- Backgammon
 - TD-backgammon
 - a program that learned to play at the championship level (from scratch).
 - reinforcement learning
- Chess
 - Deep blue (IBM) program(defeated Kasparov in 1997)
- Bridge, Poker

CS 1571 Intro to Al

Natural language processing

$understanding/annotation\ of\ free\ text$

- •Document analysis:
 - Automatic classification of articles
 - Content extraction/inference
 - Email SPAM detection

•IBM's Watson project

- www.ibm.com/watson
- Successfully competed against
 the top human players in Jeopardy

CS 1571 Intro to Al

M. Hauskrecht

Robots

- · Robotic toys
 - Sony's Aibo
- · Vacuum cleaners
- · Humanoid robot
 - Honda's ASIMO(http://world.honda.com/robot/)

• Military robots

CS 1571 Intro to Al

Other application areas

- · Handwriting analysis/ detection
- · Human face detection
- · Video stream annotation
- Object tracking
- · Music composition, picture drawing
- ...

CS 1571 Intro to Al

M. Hauskrecht

Topics

- · Problem solving and search.
 - Formulating a search problem, Search methods,
 Combinatorial and Parametric Optimization.
- · Logic and knowledge representations.
 - Logic, Inference
- · Planning.
 - Situation calculus, STRIPS, Partial-order planners,
- Uncertainty.
 - Modeling uncertainty, Bayesian belief networks, Inference in BBNs, Decision making in the presence of uncertainty.
- Machine Learning
 - Supervised learning, unsupervised learning, Basic learning models

CS 1571 Intro to Al