
Real-Time Scheduling for Phase Change Main Memory Systems

Miao Zhou, Santiago Bock, Alexandre P. Ferreira, Bruce Childers, Rami Melhem, Daniel Mossé
Department of Computer Science, University of Pittsburgh

{miaozhou, sab104, apf75, childers, melhem, mosse}@cs.pitt.edu

Abstract—Multi-core processors are effective for reducing
energy consumption in computer systems, since modern multi-
core chips allow for power management of individual cores.
However, multiple cores impose higher demand on the memory
subsystem, which is extremely power hungry. In addition to the
small steps towards managing power in DRAMs, Phase-Change
Memory (PCM) has emerged as a low-power alternative that
is especially helpful for energy-aware embedded real-time
systems. However, there are three drawbacks to PCM: its
high latency, high energy consumption when writing, and low
endurance. In real-time systems, the impact of PCM’s high
access latency is of special interest, as it has a negative effect
on the number of deadlines that are met by the system.

In this paper, we examine the memory subsystem and add a
real-time scheduler for prioritizing requests at the bottleneck
resource, the PCM controller. Adding support for external
priorities, we use rate monotonic (RM) and earliest deadline
first (EDF) prioritization at the PCM and show that it does
reduce the number of deadline misses, but not sufficiently. We
examine two additional schemes for prioritizing PCM requests
(critical read boosting and read over write). We show that the
scheduler of the PCM controller has a significant influence on
the percentage of missed deadlines: critical read boosting and
read over write can reduce the percentage of missed deadlines
by 80% in the best case with negligible energy overhead.

I. INTRODUCTION

Modern processors have been dodging the frequency wall
by increasing the number of cores on a chip. They have
also lowered energy/power demand by implementing either
dynamic voltage and frequency scaling (DVFS) for sets of
cores or by allowing systems to turn cores on and off inde-
pendently. This capability is particularly important in real-
time systems because most real-time systems are designed
to function in the worst-case, and therefore, these systems
are typically highly overprovisioned. Research continues in
processor power management, and in the last decade, some
of the research has been incorporated into general-purpose
and real-time operating systems (OS).

Especially in multi-core systems, the memory subsystem
has become a major consumer of power, which has fueled
research in alternative memory technologies. Phase-Change
Memory (PCM) [1–3] is proposed as either a replacement
for DRAM or in addition to DRAM (using a smaller DRAM
as a cache for the larger PCM). PCM is desirable because it
is non-volatile, scales better than DRAM, has low power
for reads and very low idle power. However, PCM has
unique challenges: it is wearable [4–7], and it is slower and
consumes more energy on writes than DRAM.

The memory hierarchy in a multi-core processor typically
has on-chip L1 and L2 caches. When data is not cached,
requests go from the CPU to the main memory through
a memory controller. Traditionally, the memory controller
has a simple design, processing requests in a First-In-First-
Out (FIFO) manner. However, with the advent of modern
memory controllers, more advanced techniques, such as
prioritizing memory requests, have been suggested [8–12].
These techniques are typically for fast DRAM and have
small influence on application throughput.

The system we consider in this paper consists of a small
DRAM cache and a large PCM main memory [13–15]. This
architecture is amenable to embedded systems, as they are
becoming increasingly more power-constrained. Samsung
has already announced the integration of DRAM and PCM
devices into a multichip package (MCP) in smartphones.

Figure 1. Percentage of missed deadlines under different memory systems

The characteristics of PCM, however, make the adoption
of PCM in real-time systems challenging. In particular,
PCM’s high access latency can negatively impact the number
of deadlines that are met. Figure 1 shows the percentage of
missed deadlines for eight task sets in two different memory
systems, with a laxity factor of 1.001.1 Both memory sys-
tems apply FIFO to schedule memory requests. It is clearly
shown that a PCM-based memory system causes more tasks
to miss the deadline. For instance, task set H2 meets all
the deadlines in a DRAM-only system, while it misses all
deadlines in a PCM-based system. This means that a naive
scheduling policy is not sufficient to make PCM a feasible
choice for real-time embedded systems.

This paper prioritizes the bottleneck resource–PCM
operations–in a hybrid memory subsystem. We examine the

1More experimental details are described in Section V. The architectural
details for the PCM-based system are presented in Section II-B.



influence of a typical real-time scheduler (earliest-deadline-
first, EDF, or rate monotonic, RM) when prioritizing re-
quests that arrive at the PCM controller. We note that the
prioritization based on EDF or RM is slightly more complex
than FIFO because the priority is based on the deadline
and/or period of the task. This priority cannot be derived
solely from the request type or the request arrival time. There
has to be communication between the OS and the memory
controller, to propogate the priority/deadline information
from the software to the hardware layer. This information
must be taken into account by the PCM controller.

We also adopt two ways to reorder requests at the PCM
controller, in addition to external priorities. First, critical
read boosting (CRB) gives high priority to critical requests
(i.e., a read that is stalling the processor) over non-critical
requests (i.e., a prefetching read). CRB is similar to critical
word first [16]. However, CRB also reorders requests across
tasks executing in a multi-core system. Second, read over
write reduces the amount of time that reads must wait
for high latency writes to complete. Clearly, these memory
prioritization techniques can also be applied to a DRAM-
only system. However, the special characteristics of PCM
make these techniques more valuable in a PCM-based mem-
ory system. As we show in Section V, the impact of our
techniques is considerably larger in a PCM-based system
than in a DRAM-only one.

Our results show that latency and deadline misses are
significantly reduced with three techniques: (a) external
priorities, (b) critical read boosting and (c) read over write.
In the best case, critical read boosting, combined with read
over write, reduces the percentage of missed deadlines by
up to 80% with negligible energy overhead.

In this paper, we make the following contributions:

• We study the prioritization of memory operations in the
context of multi-core real-time systems with PCM and
provide evidence that PCM request scheduling has a
significant impact on the number of missed deadlines.

• We present a successful solution to the problem of
scheduling PCM memory operations through existing
real-time scheduling policies in the memory controller.
We also provide solutions that apply architectural tech-
niques to prioritize PCM memory requests.

• We sketch the OS and hardware support required to
enable real-time scheduling.

• We provide an extensive and accurate evaluation of the
solutions and analyze their impacts on the number of
missed deadlines, energy consumption and latency.

The remainder of this paper is organized as follows.
Section II provides the background knowledge. Section III
describes our memory access scheduler. Section IV presents
the OS and hardware support required to implement priori-
ties in the memory controller. Section V gives the evaluation
of our techniques, Section VI describes related work, and
Section VII concludes the paper.

II. BACKGROUND

A. Phase Change Memory

PCM is a type of non-volatile memory that stores infor-
mation by changing the state of a chalcogenide material.
By applying electrical currents of different intensities and
durations, the physical state or phase of the material can
be changed from amorphous to crystalline and vice versa.
Since the configuration of atoms in the material is different
for each stat, the energy required to change the stored value
is much higher. This property implies that the state persists
for longer periods of time without the need of power hungry
refreshes. PCM consumes very little power when idle, which
makes it an ideal fit for embedded real-time systems.

PCM does, however, require more energy for writes. In
addition, writes to PCM are about 5-15 times slower than
to DRAM, while reads are 2-3 times slower. PCM has
the ability to write to individual memory locations, unlike
NAND Flash that must erase and write memory block.

Although these properties make PCM a good replacement
for DRAM, one of the main drawbacks of PCM is its
limited endurance such that only about 107 or 108 writes
can be performed. This problem has been addressed by many
researchers [4–7,15].

B. Architecture Overview

Our memory request scheduler is based on a hybrid
memory architecture called Phase Change Main Memory
Architecture (PMMA) [14]. PMMA (depicted in Figure 2)
is composed of three components: the Memory Manager
(MM), the Acceleration and Endurance Buffer (AEB) and
the PCM main memory. The AEB is a DRAM cache
for the larger PCM; we refer to it as DRAM or AEB
interchangeably. Since memory access latency is much larger
for PCM, having a cache that filters most of the accesses to
PCM improves performance considerably. The cache also
helps extend PCM lifetime by reducing PCM write traffic.

The MM manages the internal operation of PMMA and
handles the flow of information between the CPU, AEB and
PCM. The MM has two internal memory controllers (DRAM
controller and PCM controller), which control the operation
of the AEB and PCM. The MM also contains an In-Flight

Figure 2. PMMA architecture



Buffer (IFB), which is a high-speed memory (SRAM) that
temporarily stores data as it is transferred between the CPU,
AEB and PCM. Additionally, the MM contains a tag array
for data that is stored in the AEB and a request buffer with
the state of pending transactions to the memory subsystem.

To improve locality and bandwidth utilization, the con-
trollers ensure that the size of each block of data stored in
the memory subsystem (referred to as a page) is larger than
a cache line. Requests for cache lines arriving at the MM
will be transformed into requests for pages; this prefetching
is common in memory architectures.

PMMA supports the critical word first (CWF) optimiza-
tion, which is common in many cache hierarchies. When a
request for a cache line arrives, the MM fetches the entire
page containing the cache line from PCM. Without CWF,
if the requested cache line is not the first line of the page,
the processor must wait for all previous cache lines of the
page to be transferred. With CWF, the MM first fetches the
requested cache line and then the rest of the cache lines of
the page. Thus, the requested cache line is sent back to the
processor earlier, reducing execution time.

III. SCHEDULING AT THE PCM CONTROLLER

This section discusses the enhanced memory scheduling
policies, including critical read boosting, external priorities
and read over write.

The PCM controller is responsible for interfacing with
the actual PCM device. When a page is allocated to the
AEB, the MM issues a request to the PCM controller to
read the page from the device. Rather than always servicing
a complete page from PCM, our PCM controller allows for
breaking pages into smaller units (called sub-requests), and
services these sub-requests according to their priorities [14].
The size of each sub-request is set to the largest burst size
of the PCM device to maximize bandwidth utilization.

A. External Priorities

Real-time systems often give high priority to some tasks
to avoid missing deadlines. In some architectures, however,
simply assigning a higher priority to a task might not be
enough because other resources are not prioritized. For
example, in a multi-core system with shared memory, a task
that has a core assigned exclusively to it might still miss its
deadline due to possible memory contentions.

We use external priorities to manage PCM requests of
different tasks. These priorities are assigned externally by
the user or OS and must be passed to the memory subsystem.
The PCM controller uses the priorities to schedule the
pending PCM requests so that requests from high priority
tasks are executed first. Currently, the only information used
by the controller is the type and arrival time of requests.

External priorities can be assigned in many ways. Real-
time scheduling techniques that are used for CPU scheduling
can be used to prioritize requests at the PCM controller.
For example, priorities can be set according to the earliest

deadline first (EDF) scheduling algorithm, which assigns
the highest priority to the task with the earliest deadline.
Alternatively, a rate monotonic (RM) scheduling discipline
would derive the priorities from the task periods, with the
highest priority assigned to the task with the shortest period.

B. Critical Read Boosting

In a multi-core system, memory requests from different
cores are intertwined together to form a single request
stream. Two requests from different cores can arrive ap-
proximately at the same time to the PCM controller. The
simple case is when both these requests can be satisfied
by the fast AEB. We consider below the more important
case: when data for both requests resides in the PCM. Since
PMMA brings large pages to the AEB to support prefetching
and applies CWF, it is possible that the transfer of the
critical cache line of a request is delayed by the non-critical
cache lines of other requests. This has a negative impact on
both the number of deadline misses and latency because the
core must stall waiting for the non-critical reads to finish.
The purpose of prefetching cache lines to the AEB is to
accelerate future memory requests to adjacent data locations.
However, these cache lines are not immediately needed and
should not interfere with critical memory requests. Note that
when we apply EDF and RM, this is still the case, given that
the priority of the subpages is the same for an entire request.

To avoid the impact of prefetching on the latency of other
memory requests, we adopt critical read boosting (CRB):
requests for critical cache lines are given higher priority than
requests for non-critical cache lines, even if the cache lines
belong to different pages. Figure 3 shows the scheduling
decisions for both CRB and CWF. The first core requests
cache line A2, which is part of a page containing 3 other
cache lines (A1, A3 and A4). The second core requests
the third cache line B3 of another page that also includes
cache lines B1, B2 and B4. Assuming request A arrived
first, critical cache line A2 is scheduled first. When CRB is
applied, instead of scheduling the other cache lines of A, the
priority of cache line B3 is boosted so that it is scheduled
before the non-critical cache lines of A. Finally, the non-
critical cache lines of A and B are scheduled.

In contrast to CRB, CWF only prioritizes critical cache
line within each page, and does not reorder requests across
page boundaries. In this example, CWF does not schedule

Figure 3. Comparison of critical read boosting and critical word first.
a) First request with critical cache line A2. b) Second request with critical
cache line B3. c) Queue after both requests arrive for critical read boosting.
d) Queue after both requests arrive for critical word first.



critical cache line B3 before non-critical ones A3, A4 and
A1 (see Figure 3(D)), and tasks might be delayed.

Note that a sub-request must not necessarily be the same
size as the cache line used for critical read boosting. If the
sub-request is larger than the cache line, then the entire sub-
request to which the cache line belongs is considered critical.
If the cache line is larger than the sub-request, then multiple
sub-requests would be considered critical.

C. Read over Write

Generally, writes are not in the critical path of execution
because they can be buffered and performed while a core
continues to do useful work (i.e., cores do not stall waiting
for completion of writes). However, the latency of critical
reads can be influenced by writes when reads and writes
compete for a resource, such as the PCM. If reads often
wait for writes to complete, tasks will be delayed and might
miss the deadlines. As mentioned before, PCM writes have
a much higher latency than reads. Therefore, reads are more
likely to wait for writes in PCM-based memories.

Read over write is applied to mitigate the effects of
slow writes on read latency. When using read over write,
PCM read requests are always prioritized over PCM write
requests. Note that all write requests to the PCM are due to
evictions of dirty data from the AEB. As such, write requests
do not contain a critical cache line and are scheduled always
after pending (critical and non-critical) reads.

IV. OPERATING SYSTEM AND HARDWARE SUPPORT

Unlike a FIFO scheduler that requires only local infor-
mation, and therefore, can schedule PCM operations solely
with information at the PCM controller, any scheduling
discipline based on information about the tasks (e.g., the
deadline or the period) needs a mechanism to communicate
the priority from the operating system (OS) to the memory
controller. We assume that the OS is aware of the scheduling
policy and that it has access to the information required to
calculate each task’s priority. Alternatively, the priorities can
be assigned by the user, in which case the same mechanism
for passing priorities is required.

Each core of a modern processor has a so-called program
status word (PSW), which is a register with information
about the active task. The PSW can be augmented to include
a new field with the priority of the current task. This
field is set by the OS when a task is scheduled or its
priority changes, according to the scheduling policy and
the information about the task. The OS uses a privileged
instruction to write to the PSW.

When the processor sends a request to the MM, the PSW
of the core that generated the request is looked up and the
value of the priority field is sent along with the request to the
MM, which ultimately propagates it to the PCM controller.
The PCM controller can then use this priority internally to
reorder its queue of sub-requests.

To achieve this reordering, the protocol between the
memory controller and the MM has to be changed to
accommodate the new field. This could be done by adding
a new type of control word (command) before the regular
request is issued. This new control word is sent on the
control bus and requires no response. To avoid having to
issue this command for every memory operation, the priority
itself could be embedded as part of the request. In this
case, there has to be enough available space in the original
command to accommodate the new priority field.

Alternatively, if the overhead of issuing the new command
for each memory operation is too high and there is no space
available in the original command to embed the priority, a
scheme based on memory ranges can be used instead. In
this case, the communication protocol between the memory
controller and the MM would be augmented with a new
command that defines ranges of physical memory that share
the same priority. This command would be issued by the
memory controller for each memory range that belongs to
the scheduled task. The MM can keep a list of these ranges
and their associated priority. Every time a memory request
comes, the MM can look up the corresponding entry in the
list and determine the priority of the request. The list would
have to be the same size as the number of entries in the
TLB of each core, since this would cover all memory that
is currently being used by all cores.

V. EVALUATION

A. Methodology

We use an in-house simulator to evaluate the performance
and energy impact of memory scheduling policies. The
simulator uses accurate timing and energy models. The
input to the simulator is one or more memory reference
traces, obtained by running benchmarks on Simics, which
is a well-accepted cycle-accurate simulator for multi-core
architectures [17]. The memory trace contains, for each
memory request by the CPU, the time stamp (assuming zero
memory latency, that is, counting only CPU cycles to execute
the task and L1/L2 cache latency), the type of request (read
vs. write) and the physical address of the memory reference.

Our simulator supports both DRAM-only and PCM-based
memory system (i.e., PMMA). It has a memory activity
generator that processes the memory trace and initiates
memory requests to the memory hierarchy. The simulator
models the MM, DRAM/PCM controllers and devices.

The simulator schedules all shared resources (e.g., bus
transations) and accounts for latency due to resource con-
tention. Both DRAM and PCM controllers have internal
queues of finite size (parameterizable). A queue-full signal
halts the sender until the queue can accept new requests.

B. Experimental Setup

The Simics configuration used to generate the traces has
four 3GHz x86 processors, each with a L1 and a L2 cache.
The L1 I-cache and D-cache are 4-way, 32 KBytes with 64



Parameter PCM DRAM
Bus Size (Bits) 8 8
Bus Cycle Time (ns) 16.7 3
Read Latency (ns) 40 15
Write Latency (ns) 160 15
Read Bus Speed (MHz) 66 333
Write Bus Speed (MHz) 33 333
Idle Current (mA) 1 7
Read Current (mA) 10 160
Write Current (mA) 70 160
Vdd (V) 1.8 1.8

Table I
PARAMETERS USED IN THE SIMULATION

Benchmark Request AEB PCM Type
rate miss rate request rate

susan.smoothing 432 13.08 56 Low
dijkstra 716 9.13 65 Low
gsm.encode 657 10.29 68 Low
gsm.decode 841 13.64 115 Low
fft 1804 7.36 133 Low
fft.inverse 2645 6.84 181 Medium
patricia 1573 18.11 285 Medium
crc32 790 42.53 336 Medium
susan.edges 1816 19.12 347 Medium
jpeg.encode 2258 16.64 376 Medium
sha 1056 50.7 535 Medium
jpeg.decode 2494 25.91 646 High
pgp.verify 3607 18.41 664 High
adpcm.decode 1634 49.83 814 High
adpcm.encode 2380 34.97 832 High
susan.corners 2869 33.29 955 High
pgp.sign 4771 22.95 1095 High
stringsearch 3762 35.77 1346 High

Table II
MEMORY REQUEST RATE (IN REQUESTS PER MILLION CYCLES), AEB
MISS RATE (%) AND PCM REQUEST RATE (IN REQUESTS PER MILLION

CYCLES) OF SEVERAL MIBENCH BENCHMARKS

bytes cache lines and 1 cycle hit latency. The L2 is an 8-
way, 128 KBytes unified instruction and data cache with 64
bytes cache lines and 6 cycles hit latency. The traces were
collected until the benchmarks finish execution.

The simulation parameters are shown in Table I. The
DRAM-only memory system is configured with a 333MHZ
64bit DDR2 bus with 16 DIMMs. A PCM-based memory
system consists of the PCM memory which is arranged as

a 16GBytes logical space, and a DRAM cache of 4MBytes.
We evaluated PCM-based memory system with different
DRAM cache sizes (4, 8 and 16MBytes), and the results
are similar. For the rest of the paper, we only show results
for PCM-based system with a 4MBytes DRAM cache. PCM
devices are interconnected to the MM via a single 66MHz
128-bit DDR2 bus. We configured the PCM controller to use
a queue size of 1024 requests. The PCM timing and power
model come from a Samsung prototype [2].

To evaluate our techniques, we use a set of tasks with
different memory request rates and different AEB miss rates
derived from the MiBench benchmark suite [18]. Table II
shows the detailed information of several benchmarks.

We categorized the benchmarks into three types, accord-
ing to their PCM request rate (high, medium and low). We
use this metric because it provides a good estimate of the
pressure on the memory subsystem and how much a task’s
execution time is influenced by the performance of PCM.
Based on these properties, we created eight different task
sets, which are sets of four tasks to be run at the same
time in different cores. Task sets are classified according to
the PCM request rate of their tasks, as shown in Table III.
While high (low) rate task sets contain only high (low) rate
benchmarks, medium rate task sets can contain medium rate
benchmarks, a combination of high and low rate benchmarks
or a combination of the three types.

Our simulator is configured to run all four tasks of a set
concurrently. Each core repeats the execution of one of the
tasks until the task with the longest period has been executed
for 10 times. The period (deadline) of each task is computed
as the execution time of the task when it is run alone in one
core multiplied by a laxity factor. We ran our experiments
with laxity factors between 1 and 1.5 and steps of 0.001.

C. Missed Deadlines

This section evaluates how different real-time schedul-
ing policies influence the fraction of deadline misses. We
show results for six policies: First-In-First-Out (FIFO), Rate
Monotonic (RM), Earliest Deadline First (EDF), Critical
Read Boosting (CRB), Read over Write (RoW), and a
combination of Critical Read Boosting and Read over Write
(CRB+RoW). Our evaluation shows that different combina-
tions of real-time scheduling policies (e.g., RM+CRB+RoW)

Task set name Type Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4
H1 High stringsearch pgp.sign pgp.verify susan.corners
H2 High susan.corners jpeg.decode adpcm.encode adpcm.decode
H3 High pgp.sign pgp.verify susan.corners jpeg.decode
M1 Medium susan.corners jpeg.decode dijkstra susan.smoothing
M2 Medium susan.corners susan.edges fft.inverse susan.smoothing
M3 Medium fft.inverse susan.edges jpeg.encode sha
L1 Low dijkstra susan.smoothing gsm.decode gsm.encode
L2 Low dijkstra fft susan.smoothing gsm.decode

Table III
LIST OF TASK SETS AND THEIR CORRESPONDING BENCHMARKS.



Figure 4. Percentage of missed deadlines of a PCM-based memory system

Figure 5. Percentage of missed deadlines of task set H2 in a PCM-based
memory system with different laxity factors

Figure 6. Percentage of missed deadlines of task set L2 in a PCM-based
memory system with different laxity factors

produce similar results. Thus, we present results for only one
combination of policies (CRB+RoW).

Figure 4 shows the effect of the real-time scheduling
policies on the percentage of deadline misses for the PCM-
based system. For each task set, the fraction of missed
deadlines for FIFO is greater than any of the other policies
(RM, EDF, CRB and RoW), as expected. Note that the
laxity factor used to obtain the values shown in this figure
is different for each of the eight task sets.

RM, EDF, CRB and RoW reduce the number of missed
deadlines considerably for task sets with high and medium
PCM request rates. For example, for task set H2 and a laxity
factor of 1.140, FIFO causes 80% of the tasks to miss their
deadlines. In contrast, RM and EDF miss only 20% of the
deadlines and CRB+RoW finishes all tasks on time.

For task sets with low PCM request rates (e.g., L1 and
L2), RM/EDF can only improve the fraction of missed
deadlines slightly. On the other hand, CRB/RoW can reduce

Figure 7. Percentage of missed deadlines of a DRAM-only system (laxity
factor of 1.001)

the deadline miss percentage of these task sets significantly.
In other words, CRB/RoW is able to benefit a broader range
of task sets than RM/EDF. This happens because CRB and
RoW improve performance of all tasks, not just those with
higher priorities. CRB prioritizes critical read requests of all
tasks and RoW prioritizes read requests (including critical
and prefetching read requests) of all tasks. This effect is
more pronounced in task sets with high and medium rate
benchmarks, because the fraction of time spent waiting for
PCM memory operations is higher, which provides more
opportunities for improvement.

Figures 5 and 6 show the percentage of missed deadlines
as a function of laxity factor for H2 and L2, respectively.
CRB and RoW scheduling policies have impact over a wider
range of laxity factors for H2 than for L2. This is also due
to the larger amount of time that the processor must wait
for PCM operations when executing high request rate tasks.

As mentioned before, we expect the impact of our tech-
niques to be very small for DRAM-only systems. This
assumption is well supported by the results in Figure 7,
which shows the effect of different real-time scheduling
policies in a DRAM-only system. CRB is not included in
these results because there is no prefetching from a lower
level of the memory hierarchy in a DRAM-only system and
CRB requires the distinction between critical and prefetching
requests. For all but two task sets, the difference between
policies is negligible. In addition, the impact on the other
two task sets is also relatively small. Although the graph
only shows the percentage of missed deadlines for a laxity
factor of 1.001, we note that choosing a smaller laxity factor
(1, for example), causes the system to miss all deadlines
irrespective of the scheduling policy. This helps further
demonstrate our assumption about DRAM-only systems.

D. Energy

Figure 8 shows the energy consumption of different
scheduling policies in a PCM-based memory system nor-
malized to that of FIFO in a DRAM-only system. In a
PCM-based memory system, the energy overhead of our
scheduling policies is within 5% of the energy consumption
of the FIFO policy. The energy overhead of RM, EDF,
CRB and RoW are higher for task sets with high and



Figure 8. Energy consumption of different scheduling policies in a PCM-
based memory system normalized to that of FIFO in a DRAM-only system

Figure 9. Normalized average latency of eight task sets in a PCM-based
memory system with laxity factor of 1.5

medium PCM request rates. This happens because these
policies cause more tasks to complete, consuming more
energy. More importantly, the energy consumption of a
PCM-based system is only 20% to 48% of that of a DRAM-
only system. As shown above, for a PCM-based system, our
scheduling policies can significantly reduce the number of
missed deadlines, similar to that of a DRAM-only system.
However, our approach achieves this with up 80% energy
reduction, compared to a DRAM-only system.

E. Latency

We showed that our scheduling policies reduce the num-
ber of missed deadlines significantly for overloaded systems.
Our techniques are also beneficial even when the system
is underutilized. Figure 9 shows the average latency of all
tasks normalized to FIFO. We choose a laxity factor of 1.5
to make sure all tasks meet their deadlines. While task sets
with low PCM request rates are not helped by CRB and
RoW, CRB+RoW reduces the average latency by up to 7%
for task sets with high/medium PCM request rates.

VI. RELATED WORK

Memory access scheduling has been extensively studied
in stream processors [8,19–21], general-purpose single-core
processors [22–24] and general-purpose multi-core proces-
sors [9–11,25–29]. In this paper, we focus on reducing the
number of deadline misses in real-time systems.

Ipek et al. propose a self-optimizing memory controller
based on the principles of reinforcement learning [11]. Kim

et al. propose a new technique for memory access schedul-
ing in multi-core systems with several memory controllers
[12]. Our work differs from these studies in the memory
architecture we are targeting. Whereas they focus only on
common DRAM architectures, our work centers on a hybrid
DRAM-PCM system.

Nesbit et al. propose a fair memory scheduler for high-
performance chip multiprocessors, based on scheduling al-
gorithms for network fair queuing [9]. Mutlu et al. pro-
vide a fair memory scheduler that attempts to equalize the
slowdown experienced by each thread due to interference
caused by other threads when accessing memory [26]. In
[10], they present another memory controller that divides
requests in several batches, each of which can be opti-
mized independently, hence improving fairness. All these
approaches provide fairness and can be used to provide
quality of service. However, none of these studies consider
the effects of the scheduling decisions on real-time systems.

Burchard et al. designed a real-time streaming memory
controller for shared memory interconnect-centric systems
[21]. This study considers quality of service guarantees for
accessing memory. However, this controller was specifically
designed for streaming applications. The study did not eval-
uate the performance of general-purpose multi-core systems.

Rosen et al. study several optimizations for predictable
memory controllers in chip multiprocessors [27]. They try
to optimize access to the bus, which connects several cores
with several private memories. The work focuses mainly on
predictable memory controllers for real time systems, not
the reduction of missed deadlines or latency.

Hennessy and Patterson develope critical word first to
reduce the cache miss penalty [16]. The cache requests the
missed word first from the memory and sends it to the CPU
as soon as it arrives. The CPU continues execution while
filling the rest of the words in the cache line. However, this
scheme does not take into account multi-core systems where
a non-critical cache line requested by one core might delay
a critical line requested by another core. In such case, tasks
might miss the deadline due to the delayed critical requests.

Qureshi et al. try to allow reads to proceed without wait-
ing for writes to finish by enforcing write cancellation and
write pausing [30]. This work focuses on reducing latency
by preempting the PCM writes that are already in execution
when another PCM read request arrives. However, it does
not study real-time systems or the impact of these techniques
on missed deadlines. Moreover, we showed that prioritizing
reads over writes is enough to achieve low miss deadlines
for PCM-based memory systems, and cancelling or pausing
the on-going PCM write operations is not necessary.

VII. CONCLUSION

Due to the active researches on processor power man-
agement, DRAM has become a major power consumer
for embedded and real-time systems. To combat power
consumption, PCM has emerged as an alternative main



memory architecture; however, PCM is slow, and thus ar-
chitects use it together with a small DRAM cache. Given
the effort to increase application throughput by increasing
the number of cores, the memory subsystem has become a
major performance bottleneck.

We showed in this paper that prioritizing requests at the
bottleneck resource, namely PCM, using task information,
increases the chance that tasks meet their deadlines. We
discussed how to carry out the communication between the
OS and the hardware to make priority information feasible
at the memory controller. We also suggest reordering PCM
requests based on criticality of the requests to reduce latency
and the number of missed deadlines. This is, to the best of
our knowledge, the first attempt to insert real-time priorities
in the memory controller. Perhaps this is because DRAM-
only memory systems do not profit from these prioritization
techniques, as DRAM is fast enough not to be a bottleneck
in embedded real-time systems.

REFERENCES

[1] Kwang-Jin Lee et al., “A 90 nm 1.8 v 512 mb diode-switch
pram with 266 mb/s read throughput,” Solid-State Circuits,
IEEE Journal of, vol. 43, 2008.

[2] Kang et al, “A 0.1 µm 1.8V 256Mb 66MHz Synchronous
Burst PRAM,” in ISSCC ’06, 2006.

[3] F. Pellizzer et al., “A 90nm phase change memory technology
for stand-alone non-volatile memory applications,” in Symp.
on VLSI Technology, 2006.

[4] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and
energy efficient main memory using phase change memory
technology,” in ISCA ’09, 2009.

[5] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abali, “Enhancing lifetime and security
of pcm-based main memory with start-gap wear leveling,” in
MICRO 42, 2009.

[6] S. Cho and H. Lee, “Flip-n-write: a simple deterministic
technique to improve pram write performance, energy and
endurance,” in MICRO 42, 2009.

[7] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem,
and D. Mosse, “Increasing pcm main memory lifetime,” in
DATE ’10, 2010.

[8] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens, “Memory access scheduling,” in ISCA ’00, 2000.

[9] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair
queuing memory systems,” in MICRO 39, 2006.

[10] O. Mutlu and T. Moscibroda, “Parallelism-aware batch
scheduling: Enhancing both performance and fairness of
shared dram systems,” in ISCA ’08, 2008.

[11] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana, “Self-
optimizing memory controllers: A reinforcement learning
approach,” in ISCA ’08, 2008.

[12] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas:
A scalable and high-performance scheduling algorithm for
multiple memory controllers,” in HPCA ’10, 2010.

[13] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting
phase change memory as a scalable dram alternative,” in ISCA
’09, 2009.

[14] A. P. Ferreira, B. Childers, R. Melhem, D. Mosse, and
M. Yousif, “Using pcm in next-generation embedded space
applications,” in RTAS ’10, 2010.

[15] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable
high performance main memory system using phase-change
memory technology,” in ISCA ’09, 2009.

[16] J. L. Hennessy and D. A. Patterson, Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 1996.

[17] Magnusson, Peter S. et al., “Simics: A full system simulation
platform,” Computer, vol. 35, 2002.

[18] Guthaus, M. R. et al., “Mibench: A free, commercially rep-
resentative embedded benchmark suite,” in WWC ’01, 2001.

[19] McKee, Sally A. et al., “Dynamic access ordering for
streamed computations,” IEEE Trans. Comput., vol. 49, 2000.

[20] T.-C. Lin, K.-B. Lee, and C.-W. Jen, “Quality-aware memory
controller for multimedia platform soc,” in SIPS ’03, 2003.

[21] A. Burchard, E. Hekstra-Nowacka, and A. Chauhan, “A real-
time streaming memory controller,” in DATE ’05, 2005.

[22] S. Rixner, “Memory controller optimizations for web servers,”
in MICRO 37, 2004.

[23] I. Hur and C. Lin, “Adaptive history-based memory sched-
ulers,” in MICRO 37, 2004.

[24] J. Shao and B. T. Davis, “A burst scheduling access reordering
mechanism,” in HPCA ’07, 2007.

[25] C. Macian, S. Dharmapurikar, and J. Lockwood, “Beyond per-
formance: secure and fair memory management for multiple
systems on a chip,” in FPT ’03, 2003.

[26] O. Mutlu and T. Moscibroda, “Stall-time fair memory access
scheduling for chip multiprocessors,” in MICRO 40, 2007.

[27] Rosen, Jakob et al., “Bus access optimization for predictable
implementation of real-time applications on multiprocessor
systems-on-chip,” in RTSS ’07, 2007.

[28] T. Moscibroda and O. Mutlu, “Distributed order scheduling
and its application to multi-core dram controllers,” in PODC
’08, 2008.

[29] C. J. Lee, O. Mutlu, V. Narasiman, and Y. Patt, “Prefetch-
aware dram controllers,” in MICRO 41, 2008.

[30] M. Qureshi, M. Franceschini, and L. Lastras-Montano, “Im-
proving read performance of phase change memories via write
cancellation and write pausing,” in HPCA ’10, 2010.


