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New technologies have brought about a proliferation of embedded systems, which vary from con-
trol systems to sensor networks to personal digital assistants. Many of the portable embedded
devices run several applications, which typically have three constraints that need to be addressed:
energy, deadline, and reward. However, many of these portable devices do not have powerful
enough CPUs and batteries to run all applications within their deadlines. An optimal scheme
would allow the device to run the most applications, each using the most amount of CPU cy-
cles possible, without depleting the energy source while still meeting all deadlines. In this paper
we propose a solution to this problem; to our knowledge, this is the first solution that combines
the three constraints mentioned above. We devise two algorithms, an optimal algorithm for ho-
mogeneous applications (with respect to power consumption) and a heuristic iterative algorithm
that can also accommodate heterogeneous applications (i.e., those with different power consump-
tion functions). We show by simulation that our iterative algorithm is fast and within 1% of the
optimal.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management—Schedul-
ing; D.4.7 [Operating Systems]: Organization and Design—Real-time systems and embedded
systems

General Terms: Algorithms

Additional Key Words and Phrases: Power management, reward-based, scheduling, real-time, op-
erating systems

1. INTRODUCTION

The current developments in embedded technology have been largely re-
sponsible for the promotion of mobile, wireless, systems-on-a-chip, and other
“computing-in-the-small” devices. Most of these devices have energy con-
straints, embodied by a battery that has a finite lifetime. Therefore, an es-
sential element of these embedded systems is the way in which power/energy
is managed.
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In addition to the power management needs, some of these devices exe-
cute real-time applications, in which producing timely results is typically as
important as producing logically correct outputs. In hard real-time environ-
ments, such as nuclear power plants or airborne navigation systems, missing
deadlines can be catastrophic. However, there are other application areas in
which an approximate but timely result may be acceptable. Examples of such
applications areas include multimedia [Rajkumar et al. 1997] and image and
speech processing [Chang and Zakhor 1993; Feng and Liu 1993; Turner and
Peterson 1992]. These applications typically have a reward function that as-
signs value to the application, as a function of the amount of time the application
is allotted. In other words, the more the CPU is used by a certain application,
the more value it accrues.

The three constraints mentioned above, namely energy, deadline, and reward
play important roles in the current generation of embedded devices. An opti-
mal scheme would allow the device to run the most applications, each using the
most amount of CPU cycles possible, without depleting the energy source while
still meeting all deadlines. In this paper we propose a solution to this problem,
and devise two algorithms, an optimal algorithm for homogeneous applications
(with respect to power consumption) and a heuristic algorithm that can also
accommodate heterogeneous applications (i.e., those with different power con-
sumption functions).

Note that this problem differs from minimizing power consumption due to
the extra constraints considered, namely deadlines and CPU usage. Clearly,
minimizing the energy consumption of applications is useful, but does not con-
sider the value/reward characteristics of different applications (e.g., it may be
better to run an important application that consumes more energy than two
much less important applications that consume almost no energy).

It is important to consider these three constraints simultaneously (re-
ward, energy, and deadlines) since it allows system designers to determine
the most important components of their system, or allows them to empha-
size a subset of the system over another in a dynamic fashion. An example
of such flexibility is when a system designer decides to maximize mission
lifetime (e.g., a sensor network that should last as long as possible even if
the application results are not as accurate) versus having a fixed mission
time within which performance should be maximized (e.g., in the case of a
system with a renewable power source that is able to replenish the system
batteries). The optimization considered in this paper is mainly meant to be
applied at design time. However, the proposed solution is efficient and will
cause little overhead even when applied dynamically at run time to cope with
changes in the execution environment, the task mix or the available energy
profile.

The rest of this paper is organized as follows: We first describe related work.
Section 2 explains in detail the task model and defines the problem. In Section 3
we present the properties of the optimal solution. Sections 4 and 5 describe the
optimal algorithm for specific power functions and the iterative algorithm for
the general case. Section 6 presents experimental results obtained through
simulation. In Section 7 we conclude the paper.
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1.1 Related Work

The issue of assignment of CPU cycles to different tasks has been studied
through scheduling and operations research for decades. In the mid-80s, re-
searchers started considering the trade-off between time and other metrics,
such as value/reward [Clark et al. 1992]. In the mid-90s, researchers started
considering a similar trade-off, between energy and time [Yao et al. 1995]. Below
we describe representative works in these two fields. To the best of our knowl-
edge, this is the first work that addresses a general framework for assignment
of time/cycles to tasks when taking into account three types of constraints,
namely energy, deadline, and reward/value.

The IC (imprecise computation) [Liu et al. 1991; Shih et al. 1991] and IRIS
(increased reward with increased service) [Dey et al. 1996; Krishna and Shin
1997] models were proposed to enhance the resource utilization and provide
graceful degradation in real-time systems. In the IC model every real-time
task is composed of a mandatory part and an optional part. The mandatory
part must be completed before the task’s deadline to yield an output of minimal
quality. The optional part is to be executed after the mandatory part while
still before the deadline. The longer the optional part executes, the better the
quality of the result. The algorithms proposed for IC applications concentrate
on a model that has an upper bound on the execution time that can be assigned
to the optional part, and the aim is usually to minimize the (weighted) sum
of errors. Several efficient algorithms have been proposed to solve optimally
the scheduling problem of aperiodic tasks [Liu et al. 1991; Shih et al. 1991]. A
common assumption in these studies is that the quality of the results produced
is a linear function of the precision error; more general error functions are not
usually addressed.

An alternative model is the IRIS model with no upper bounds on the execu-
tion times of the tasks and no separation between the mandatory and optional
parts (i.e., tasks may be allotted no CPU time). Typically, a nondecreasing con-
cave reward function is associated with each task’s execution time. In Dey et al.
[1993, 1996], the problem of maximizing the total reward in a system of ape-
riodic tasks was addressed and an optimal solution for static task sets was
presented, as well as two extensions that include mandatory parts and policies
for dynamic task arrivals. Note that a zero-time mandatory part in the IC model
makes it into IRIS model.

Both IC and IRIS focus on linear and concave (logarithmic, for example) func-
tions because they represent most of the real-world applications, such as image
and speech processing [Chang and Zakhor 1993; Feng and Liu 1993; Turner and
Peterson 1992], multimedia applications [Rajkumar et al. 1997], information
gathering [Grass and Zilberstein 2000], and database query processing [Vrbsky
and Liu 1993]. We note that some real applications might suggest awarding no
reward for partial executions or using step functions, but these cases have been
shown in Liu et al. [1991] to be NP-complete. Furthermore, the reward-based
scheduling problem for convex reward functions is NP-hard [Aydin et al. 2001c].
Periodic reward-based scheduling for “error-cumulative” (errors have an effect
on future instances of the same task) and “error noncumulative” applications
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was explored in Chung et al. [1993]. An optimal algorithm assuming concave re-
ward functions and “error noncumulative” applications was presented in Aydin
et al. [2001c].

In Rajkumar et al. [1997] a QoS-based resource allocation model (QRAM)
was proposed for periodic applications. The reward functions are in terms of
utilization of resources, and an iterative algorithm was presented for the case
of one resource and multiple QoS dimensions; the QoS dimensions may be ei-
ther dependent or independent. In Rajkumar et al. [1998], the QRAM work is
continued by the authors with the solution for a particular audio-conferencing
application with two resources (CPU utilization and network bandwidth) and
one QoS dimension (sampling rate). Several resource trade-offs (e.g., compres-
sion schemes to reduce network bandwidth while increasing the number of CPU
cycles) are also investigated, assuming linear utility and resource consumption
functions. Adapting to the QRAM model, the problem analyzed in this work
has two resources (CPU utilization and energy) and one QoS dimension (CPU
cycles). However, we are interested in the general case of concave utility func-
tions, whereas the work in Rajkumar et al. [1998] is limited to linear utility
functions.

The variable voltage-scheduling (VVS) framework, which involves dynam-
ically adjusting the voltage and frequency of the CPU, has recently become
a major research area. Cubic power savings [Hong et al. 1998c; Yao et al.
1995] can be achieved at the expense of just linear performance loss. For real-
time systems, VVS schemes focus on minimizing energy consumption in the
system while still meeting the deadlines. Yao et al. [1995] provided a static
off-line scheduling algorithm, assuming aperiodic tasks and worst-case ex-
ecution times (WCET). Our model extends Yao et al.’s model with different
power functions and task rewards at the expense of a more restrictive timing
model (only frame-based and periodic task sets are considered in this paper).
We are interested in maximizing the system utility rather than minimizing
energy.

Heuristics for on-line scheduling of aperiodic tasks while not hurting the
feasibility of periodic requests are proposed in Hong et al. [1998b]. Nonpre-
emptive power aware scheduling is investigated in Hong et al. [1998a]. For
periodic tasks with identical periods, the effects of having an upper bound on
the voltage change rate are examined in Hong et al. [1998c]. Slowing down
the CPU whenever there is a single task eligible for execution was explored
in Shin and Choi [1999]. VVS in the context of soft deadlines was investigated
in Lorch and Smith [2001]. Cyclic and EDF scheduling of periodic hard real-
time tasks on systems with two (discrete) voltage levels have been investigated
in Krishna and Lee [2000]. The static solution for the general periodic model
where tasks have potentially different power characteristics is provided in
Aydin et al. [2001a]. Because real-time applications exhibit a large variation in
actual execution times [Ernst and Ye 1997] and WCET is too pessimistic, much
research has been directed at dynamic slack-management techniques [Aydin
et al. 2001b; Gruian 2001; Mossé et al. 2000; Shin et al. 2001]. Many other
VVS papers appeared in recent conferences and workshops, such as COLP or
PACS.
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1.2 Problem Definition

It was proved in Aydin et al. [2001b] that the problem of minimizing the energy
consumption assuming WCET for tasks and convex power functions is equiva-
lent with the problem of maximizing the rewards for concave reward functions
assuming all the tasks run at the maximum speed. In this work we address
the problem of maximizing the rewards assuming the VVS framework and a
limited energy budget for frame-based and periodic task sets. Our goal is to
execute a task set and maximize the rewards (under the IC model) without
exceeding the deadline and the total energy available, which can be provided
by an exhaustible source such as a battery. A formal definition of the problem
will be presented in Section 2. The proposed algorithm determines the time and
speed each task should be allocated.

2. TASK MODEL

We present the task model and problem definition for both periodic and ape-
riodic (frame-based) task sets and conclude that the problems to be solved are
identical.

2.1 Frame-Based Task Sets

The system has to execute a task set T={T1, T2, . . . , Tn}. Each task Ti is com-
posed of a mandatory part Mi and an optional part Oi, with computational re-
quirements expressed in terms of number of CPU cycles. The number of cycles
is equal to the speed expressed in cycles per second (or the clock rate) multiplied
by the execution time, Ci = si · ti. The worst-case number of cycles needed for
the mandatory part is denoted by li, and the total worst-case number of cycles
including the optional part is denoted by ui. In other words, each task must
receive a number of cycles between the lower bound li and the upper bound ui.

There are no individual deadlines for the tasks, just a global deadline d ,
which is normally the length of a frame. The execution of a frame is to be
repeated. Each task has to be executed exactly once during a frame, and the
task can be executed without preemptions. All mandatory parts of all tasks
must be finished before time d . We say that a task set T is feasible if every
mandatory part Mi completes before the deadline.

The speed of task Ti, which is denoted by si, is physically constrained to be
within certain lower and upper bounds Smin and Smax. We assume that si can
take any value in the given range (that is, voltages and frequencies can be
changed continuously). The values of si and ti are constrained by the following:

li ≤ si · ti ≤ ui

Smin ≤ si ≤ Smax

n∑
i=1

ti ≤ d .

We assume task Ti runs at single speed si and for each task Ti there is a cor-
responding power function Pi, which depends on its speed and on the switching
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Fig. 1. Typical reward function.

activity of the task. We assume that task power functions can be derived through
an offline analysis of the switching activity of tasks. For example, SPEC bench-
marks consume between 15 and 35 W on an Alpha 21264 at 600 MHz and
between 20 and 26 W on a Pentium Pro at 200 MHz [Joseph and Martonosi
2001] (similar variations exist for embedded processors). We consider the case
of positive nondecreasing convex power functions (the second-order derivatives
of the power functions Pi are positive). All theoretical results described in the
next section are based on the fact that it is more energy efficient to run on
reduced speeds, which only holds for convex power functions. The energy con-
sumed by task Ti running for time ti at speed si is Ei = ti · Pi(si). There is a
limited energy budget in the system, equally distributed between frames. The
total energy consumed during a frame cannot exceed the frame energy budget,
denoted by Emax:

n∑
i=1

ti · Pi(si) ≤ Emax.

The optional part of a task can execute only after its corresponding manda-
tory part completes. There is a reward function associated with each task; the
reward function increases with the number of cycles that were allocated to the
optional part. This reward is zero when the service time of the optional part is
zero and is increasing with the amount of service time. There is no extra reward
if the optional part receives more cycles than required. We consider the case of
positive nondecreasing concave reward functions (the second-order derivatives
of the reward functions Ri are negative). Note that for convex or partially con-
vex reward functions, even assuming an infinite energy budget, determining
the optimal solution that maximizes the total reward is NP-hard [Aydin et al.
2001c]. Our optimal solutions for homogeneous power functions (Section 4) and
the iterative algorithm for general power functions (Section 5) are based on the
concavity of the reward functions. Figure 1 shows a typical reward function,
which is described by

Ri(Ci) =


0 if 0 ≤ Ci ≤ li

fi(Ci) if li ≤ Ci ≤ ui

fi(ui) if Ci ≥ ui.
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The total reward is defined as the sum of all individual rewards. Our goal is
to maximize the total reward. Mathematically, for unknowns ti and si we solve
the following:

maximize
n∑

i=1

Ri(si · ti) (1)

subject to li ≤ si · ti ≤ ui (2)
Smin ≤ si ≤ Smax (3)

n∑
i=1

ti ≤ d (4)

n∑
i=1

ti · Pi(si) ≤ Emax. (5)

2.2 Periodic Task Sets

Let T = {T1, T2, . . . , Tn} be a periodic task set. Similarly to aperiodic tasks in
Section 2.1, each task Ti is specified by its lower and upper bounds li and ui,
the power function Pi and the reward function Ri. In addition, each task has a
deadline (or period, or arrival rate) di, whereas in the frame-based model there
was only a global period or deadline d . Let LCM be the least common multiple
of all tasks’ periods. If the energy budget Emax cannot be exceeded in time LCM,
the problem is similar to Section 2.1: maximize the reward of the task set T
without exceeding the available energy Emax in LCM time units.

Every LCM time units, each task Ti needs to execute Ni = LCM
di

instances.
We denote the j th instance of task Ti by Tij. Similarly, we denote the speed
and execution time of Tij by sij and tij, respectively. The total reward ac-
quired by the task set is

∑n
i=1
∑Ni

j=1 Ri(tij · sij), and the total energy consumed
is
∑n

i=1
∑Ni

j=1 tij · Pi(sij) (where Pi is defined as in the previous section).
We prove in the Appendix that in the optimal solution all instances of a task

run at the same speed and for the same amount of time, that is, sij = si and
tij = ti for all i = 1, 2, . . . , n and j = 1, 2, . . . , Ni. Using this result, we present
next the problem definition for periodic task sets.

Let t ′i = ti · Ni, that is, t ′i is the total execution time allocated to all the
instances of task Ti each LCM time units. Define also l ′i = li · Ni and u′i =
ui · Ni. The total reward acquired by task Ti in LCM time units is R ′i(si · t ′i ) =
Ni · Ri(si · ti).

We define the utilization of a periodic task Ti as Ui = ti
di

, where ti is the
execution time of task Ti and di is the task period. Assuming EDF scheduling
or any preemptive scheduling technique that can fully utilize the CPU, the
schedulability condition for periodic task sets is

∑n
i=1 Ui ≤ 1, as proved in Liu

and Layland [1973], if context switch overhead is assumed to be insignificant.
Note that this holds true for frame-based task sets as well, the utilization of a
task in this case being defined as Ui = ti

d , where d is the frame size. Equations
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(1)–(5) for the periodic case become:

maximize
n∑

i=1

R ′i(si · t ′i ) (6)

subject to l ′i ≤ si · t ′i ≤ u′i (7)
Smin ≤ si ≤ Smax (8)

n∑
i=1

t ′i ≤ LCM (9)

n∑
i=1

t ′i · Pi(si) ≤ Emax. (10)

Note that Equation (9) implies that
∑n

i=1 Ui ≤ 1 (as shown in the Appendix).
Clearly, this is the same problem definition as for the frame-based task set.
Observe that, due to the property that all instances run at the same speed and
for the same amount of time, the number of task instances actually occurring
in LCM time units does not increase the complexity of the problem, which is
controlled only by the number of tasks.

Solving the above problem described by Equations (6)–(10) gives the speed
si and the total execution time t ′i each task Ti receives during LCM time units.
The execution time of each instance of Ti is given by ti = t ′i

Ni
.

Note that our goal is to maximize the reward without exceeding an energy
budget. The problem of minimizing the energy without taking the reward into
account is solved in Aydin et al. [2001a]. Moreover, if minimizing the energy
is also considered as a reward, then it is possible to formulate the objective
function to be maximized in Equation (6) to depend on both R ′i(si ·t ′i ) and t ′i ·Pi(si).
That is, the function R ′i in Equation (6) will be replaced by another function R

′′
i

that depends on si and t ′i , while the constraints (7)–(10) remain unchanged.
In the rest of the paper we present the solution for frame-based task sets as

described by Equations (1)–(5). Clearly, all results apply to periodic task sets
as well.

3. PROPERTIES OF THE OPTIMAL SOLUTION

Before we start presenting the theoretical results, we introduce the nomen-
clature used in this paper. We define a solution of (1)–(5) to be a set of values
S={(s1, t1), (s2, t2), . . . , (sn, tn)}, that satisfy the constraints (2)–(5) and also max-
imize the reward as described by (1). We denote the value of this maximum
reward by “optimal reward.” Because there may be more than one solution that
maximizes the reward, we define the minimum-energy solution to be a solution
consuming the least amount of energy. Further, we denote by Rub the maxi-
mum achievable reward (i.e., Rub =

∑n
i=1 Ri(ui)), which may be different from

the optimal reward.

LEMMA 3.1. If the optimal reward is less than Rub, then in any solution of
(1)–(5), either the entire available slack is used (i.e., the processor is fully utilized)
or all the tasks run at the minimum speed.
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PROOF. By available slack we mean the CPU idle time. Using all the avail-
able slack in a schedule is equivalent to not having the CPU idle, that is, at any
instance of time the processor is executing some task.

Assume that there exists a solution S in which a task Ta runs on some speed
sa > Smin and the entire available slack is not used. Since the optimal reward
is less than Rub, there also exists a task Tb that does not receive ub cycles. We
will show that a higher reward can be achieved for the same amount of energy,
thus contradicting the fact that S is a solution of (1)–(5).

Using the available slack, the speed of a task Tk running at sk > Smin can
be reduced to some s′k < sk while still providing the same number of cycles to
the task. If sb > Smin, we pick task k = b to reduce the speed. If sb = Smin,
we pick task k = a. If the slack allows it, then we can reduce sk to s′k = Smin,
otherwise Smin < s′k < sk and the processor is fully utilized. Either way, the
total reward is not changed as we keep the number of cycles given to task Tk
constant. However, due to the convex nature of the power functions, the total
energy is reduced.

Next, the saved energy can be used to increase the speed of Tb while keeping
tb constant. Note that it is always possible to increase sb, as sb is known to be less
than Smax by the way we picked Tk in the previous step. By keeping tb constant
and increasing sb, the number of cycles allocated to task Tb will increase. Thus,
the total reward increases, contradicting the maximum-reward condition.

LEMMA 3.2. If the optimal reward is less than Rub, then in any solution of
(1)–(5), either the entire energy is used or all the tasks run at the maximum
speed.

PROOF. Assume that there exists a solution S in which a task Ta runs on
some speed sa < Smax and the entire available energy is not used. Also, since
the optimal reward is less than Rub, there exists a task Tb that does not receive
ub cycles. We will show how the extra energy can be used to increase the total
reward, thus contradicting the fact that S is a solution of (1)–(5).

If sb< Smax, we can use the extra energy to increase the speed sb while keep-
ing tb unchanged and thus the total reward is increased. If sb= Smax, we will
improve the total reward as follows: first, using the available energy, the speed
of Ta can be increased to some s′a > sa while still providing the same number of
cycles Ca to the task. If the available energy allows it we can have s′a = Smax,
otherwise Smax > s′a > sa and the entire energy is used. This will create some
slack that can be used to slow down Tb while keeping Cb constant. Next, the
energy saved by slowing down Tb can be used to increase the speed sb and thus
the total reward. Either way, the total reward is improved, contradicting the
maximum-reward condition.

Theorem 3.3 combines the results of the above two lemmas, showing that if
the reward is less than Rub, which is to be expected for most task sets, a solution
must use the most amount of slack possible (unless all tasks are already running
at Smin) and the most amount of energy possible (unless all tasks are running
at Smax), as shown in Figure 2.
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Fig. 2. Solutions of Theorem 3.3 are on the boundary of the design space.©1 All tasks run at Smin;
all energy is used, some slack may exist.©2 All tasks run at Smax; there is no slack and some energy
may be wasted.©3 ∃Ti , Smin < si < Smax; all slack and energy are used.

Theorem 3.4 extends Theorem 3.3, removing the restriction on the reward,
and showing that there always exists at least one solution that uses the most
amount of slack and energy possible. We will use this property in finding the
optimal solution to (1)–(5) for specific power functions and also in the iterative
algorithm for general power functions.

THEOREM 3.3. If the optimal reward is less than Rub then all solutions have
one of the following properties: either (a) all the available slack and energy are
used or (b) all the tasks are running at the same speed Smin or (c) all the tasks
are running at the same speed Smax.

PROOF. If the optimal reward is less than Rub, it follows from the above
lemmas that there are only three possible types of solutions:

(1) All tasks run at the minimum speed, in which case the entire available
energy is used and there may be some slack in the final schedule.

(2) All tasks run at the maximum speed, in which case the entire available
slack is used but some energy may be wasted in the final schedule.

(3) There is at least one task Ti running at speed Smin < si < Smax. In this
case, it follows from Lemmas 3.1 and 3.2 that the entire slack and all the
available energy are used.

THEOREM 3.4. If the optimal reward is equal to Rub, there exists a solution
with one of the following properties: either (a) all the available slack and energy
are used or (b) all the tasks are running at the same speed Smin or (c) all tasks
are running at the same speed Smax.

PROOF. If the optimal reward is exactly Rub, any solution can be transformed
into a solution in which either all the available slack and energy are used or all
the tasks run at the same speed Smin or Smax, as described next.

If there is some available slack and a task Ti such that si > Smin, we trans-
form the solution by slowing down Ti to use as much as possible of the avail-
able slack while keeping Ci constant. The transformation is applied repeatedly
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until either all tasks run at the minimum speed or all the available slack is
used.

Next, if there is some unused energy and a task Tj such that sj < Smax, we
transform the solution by speeding up Tj to use as much as possible of the extra
energy while keeping t j constant. The transformation is applied repeatedly
until either all tasks run at maximum speed or all the available energy is
used.

The next theorem and corollaries present properties of the minimum-energy
solutions that are used in Section 4 to identify the minimum-energy solution
for specific power functions. Note that an implication of Theorem 3.3 is that
if the optimal reward is less than Rub then all solutions of (1)–(5) are also
minimum-energy solutions. Theorem 3.5 shows how to compute the speed of all
tasks if one task’s speed (different from Smin and Smax) is known. Knowing si,
where Smin < si < Smax, the speed of all tasks Tj , j 6= i can be determined by
solving the equation Pi(si) − si · P ′i (si) = Pj (sj ) − sj · P ′j (sj ), where P ′i and P ′j
denote the first-order derivatives of the power functions Pi and Pj , respectively.
If the computed speed is less than Smin, the solution is sj = Smin. Similarly, if
sj > Smax, the solution is sj = Smax.

THEOREM 3.5. All minimum-energy solutions of (1)–(5) have the following
properties:

(1) If Ti and Tj are two tasks in the minimum-energy solution such that Smin <

si < Smax and Smin < sj < Smax, then Pi(si)− si · P ′i (si) = Pj (sj )− sj · P ′j (sj ).
(2) If si = Smin and Smin < sj < Smax, then Pi(si)−si ·P ′i (si) ≤ Pj (sj )−sj ·P ′j (sj ).
(3) If si = Smax and Smin < sj < Smax, then Pi(si)−si · P ′i (si) ≥ Pj (sj )−sj ·P ′j (sj ).

where P ′i and P ′j denote the first-order derivatives of the power functions Pi and
Pj , respectively.

PROOF. Let S be a minimum-energy solution of (1)–(5) in which each task
Ti receives Ci cycles. Since S is a minimum-energy solution, there is no other
solution in which each task Ti receives exactly Ci cycles for less energy. Thus,
S has to also be a solution of the following optimization problem:

minimize
n∑

i=1

ti · Pi(si) (11)

subject to
n∑

i=n

ti = d (12)

ti · si = Ci (13)
Smin ≤ si ≤ Smax. (14)

Using Lagrangian multipliers method and Kuhn–Tucker conditions
[Luenberger 1984], any solution of (11)–(14) must satisfy the following:

Pi(si)+ λ0 + λi · si = 0 (15)
ti · P ′i (si)+ λi · ti − µ1

i + µ2
i = 0 (16)

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



548 • C. Rusu et al.

µ1
i · (Smin − si) = 0 (17)

µ2
i · (si − Smax) = 0 (18)

where λ0, λi, µ1
i ≥ 0, µ2

i ≥ 0, i = 1, 2, . . . , n are constants.
The three properties in the theorem are proved next.

(1) Assume that Ti and Tj are two tasks in S such that Smin < si < Smax
and Smin < sj < Smax. Then, from (17) and (18) it follows that µ1

i = µ2
i =

µ1
j = µ2

j = 0. From (16) it results that λi = −P ′i (si) and λ j = −P ′j (sj ). By
substitution in (15), Pi(si)− si · P ′i (si) = Pj (sj )− sj · P ′j (sj ).

(2) Assume now that si = Smin and Smin < sj < Smax. Then, µ2
i = µ1

j = µ2
j = 0.

Since µ1
i ≥ 0, it results from (16) that λi ≥ −P ′i (si) and λ j = −P ′j (sj ). By

substitution in (15), Pi(si)− si · P ′i (si) ≤ Pj (sj )− sj · P ′j (sj ).

(3) Similarly, if si = Smax and Smin < sj < Smax, then µ1
i = µ1

j = µ2
j = 0 and

since µ2
i ≥ 0 it follows that Pi(si)− si · P ′i (si) ≥ Pj (sj )− sj · P ′j (sj ).

COROLLARY 3.6. If all tasks have identical power functions, then all tasks
run at the same speed in the minimum-energy solution.

PROOF. Let P (s) be the convex power function of all tasks. We first show that
the function P (s)− s · P ′(s) is strictly decreasing. Using this fact, we will prove
by contradiction that all tasks must run at the same speed.

By derivation, we obtain (P (s) − s · P ′(s))′ = −s · P ′′(s), where P ′′(s) is the
second-order derivative of the power function P (s). By the convexity of P (s),
P ′′(s) > 0 and it follows that (P (s)− s · P ′(s))′ is negative. Thus, P (s)− s · P ′(s)
is strictly decreasing.

Assume now that in the minimum-energy solution there are two tasks Ti and
Tj such that Smin ≤ si < sj ≤ Smax. Then, P (si)− si · P ′(si) > P (sj )− sj · P ′(sj ).
By Theorem 3.5, this can be true only if si = Smax or sj = Smin, contradicting
the assumption that si < sj .

Corollary 3.7 shows that for power functions of the type Pi = αi · sq , all tasks
run at the same power in the minimum-energy solution. The exceptions are
the tasks running at Smin, which have high-power coefficients αi and the tasks
running at Smax, which have low-power coefficients αi.

COROLLARY 3.7. For power functions of the type Pi = αi · sq, where q is con-
stant for all tasks, the minimum-energy solutions have the following properties:

(1) All tasks that do not run at minimum or maximum speed consume the same
amount of power P.

(2) All tasks running at Smin have a power consumption higher than P.
(3) All tasks running at Smax have a power consumption less than P.

PROOF. The proof follows directly by substituting Pi = αi ·sq in Theorem 3.5.
Pi(si)−si · P ′i (si) = Pj (sj )−sj · P ′j (sj ) becomes αi ·sq

i −q ·αi ·sq
i = α j ·sq

j −q ·α j ·sq
j

and from here Pi(si) = Pj (sj ).
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It can be proved in a similar way that if q can take n distinct values
q1, q2, . . . , qn, then in the minimum-energy solutions all tasks not running at
Smin or Smax can only run at one of the n power levels P1, P2, . . . , Pn (depending
on the power exponent), all tasks running at Smin have a power consumption
higher than max(P1, P2, . . . , Pn), and all tasks running at Smax consume less
than min(P1, P2, . . . , Pn).

4. OPTIMAL SOLUTIONS FOR SPECIFIC POWER FUNCTIONS

In Aydin et al. [2001c] a polynomial time algorithm for optimally solving the
following problem was given

maximize
n∑

i=1

fi(ti)

subject to li ≤ ti ≤ ui
n∑

i=1

ti = d .

Also, the algorithm that solves this problem, called OPT-LU, assumes that
functions fi are concave (or linear). The complexity of OPT-LU is O(n2 · log n).
We will use the OPT-LU technique as part of our solution, as follows: we replace
the variables si with constants and eliminate Equation (5) from our model. This
will reduce the problem to a form that the OPT-LU algorithm can solve. We
always look for solutions that consume all the available energy and slack, as
seen in Theorem 3.4. The cases when all tasks run at the same speed Smin or
Smax are treated as special cases.

4.1 Optimal Solution for Identical Power Functions

Assuming identical power functions Pi = P , by virtue of Corollary 3.6 the total
energy is minimized when all tasks run at the same speed s. In order to find the
speed s that consumes all the energy in the given deadline we solve P (s) = Emax

d .
Because of the speed bounds there are three possible cases:

(1) Smin ≤ s ≤ Smax. In this case s is the optimal speed.
(2) s > Smax. In this case there is plenty of energy to run all the tasks at the

maximum speed. s is set to Smax and some of the energy has to be wasted.
(3) s < Smin. The speed s is set to Smin. Observe that the entire slack cannot

be used as the available energy would be exceeded even if all tasks run at
Smin. Thus, the deadline is artificially reduced: d ′ = Emax

P (Smin) .

After determining the speeds si = s (and possibly adjusting the deadline),
Equation (5) can safely be eliminated from the model, as the energy budget
cannot be exceeded. Next, OPT-LU gives a solution if there is one.

Note that if the optimal reward is exactly Rub the solution returned by OPT-
LU is not necessarily the minimum-energy solution if

∑n
i=1 ti < d . To compute

the minimum-energy solution in this case, proceed as follows: let s be the com-
mon speed of all tasks and d be the deadline (both computed as described
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above before solving OPT-LU). Also, let ti be the execution time of task Ti as
computed by OPT-LU. Then, in the minimum-energy solution each task runs
at speed s′ = max(s ·∑n

i=1 ti/d , Smin) for t ′i = s·ti
s′ units of time.

4.2 Optimal Solution for Power Functions of the
Type Pi = αi · sq

i with No Speed Bounds

Since there are no speed bounds (Smin = 0, Smax = ∞), it follows from Corol-
lary 3.7 that in the minimum-energy solution all tasks run at the same power
P . Thus, the CPU power that fully utilizes the available energy in the given
deadline is P = Emax

d .
Next, the speeds si of all tasks Ti are determined from the equations Pi(si) =

P . Having determined all speeds, Equation (5) is eliminated from the model,
and the problem is transformed into an OPT-LU problem that returns a solution
if there is one.

The solution returned is also minimum energy if the total reward is less
than Rub. If the reward is exactly Rub, then, analogous to Section 4.1, the
minimum-energy speed and execution time for task Ti are s′i = si ·

∑n
i=1 ti/d

and t ′i = ti · d/
∑n

i=1 ti, respectively.

5. ITERATIVE ALGORITHM FOR GENERAL POWER FUNCTIONS

The algorithm in Section 4 cannot be easily extended for the case of general
power functions because it is not possible to determine the speeds of tasks
in polynomial time. The algorithm we propose in this section starts by solv-
ing the problem without energy constraints. Obviously, the optimal reward
assuming limited energy Emax is bounded by the OPT-LU solution assum-
ing all the tasks are running at speed Smax. Having determined the execu-
tion times ti for all tasks, we compute the total energy consumed by the for-
mula E = ∑n

i=1 ti · Pi(Smax). If E ≤ Emax is true, the problem is solved. If
not, we iteratively modify the unlimited-energy solution to satisfy the energy
constraint.

Based on Theorems 3.3 and 3.4 we look for solutions that use all the available
energy and slack. Thus, if the entire slack available is not used in the OPT-LU
solution (i.e.,

∑n
i=1 ti < d ), we artificially extend one task so that the entire

slack available is used (for algorithm purposes).
Then, we iteratively transfer 1t units of time from one task Ti to another

task Tj , i 6= j , by keeping the speed of Ti the same and reducing the speed
of Tj so as to preserve the same number of cycles Cj . We refer to this type of
transfer as intertask transfer. Specifically, by reducing ti by 1t and keeping
si unchanged, the number of cycles executed in Ti is reduced and thus the
reward is reduced by 1Ri = Ri(si · ti)− Ri(si · (ti −1t)). By increasing t j by 1t
and keeping Cj constant, the speed sj becomes sj · t j

t j+1t and the total energy
is reduced by 1Eij = 11 Ei + 12 E j , where 11 Ei = 1t · Pi(si) and 12 E j =
t j · Pj (sj )− (t j +1t) · Pj (

sj ·t j

t j+1t ).
We need to determine the tasks Ti and Tj to carry out the intertask transfer of

1t units of time. Since we want to maximize the energy saved while minimizing
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Fig. 3. (a) Intertask transfer, (b) intratask transfer and (c) reduction.

the loss in reward, we choose 11 Ei+12 E j

1Ri
as our metric for deciding the best

transfer. Observe that the best intertask transfer from Ti to Tj , i 6= j can be
computed in linear time by first determining the task Tj that maximizes12 E j .
Task Tj is the task that exhibits the highest energy reduction when increasing
its execution time by 1t and reducing its speed from sj to sj · t j

t j+1t . Thus,
intertask transfers from task Ti to task Tk , where k 6= j and i 6= j need not be
analyzed.

Intertask transfers are illustrated in Figure 3(a). The rectangles represent
tasks expressed by speed (the height of the rectangle) and execution time (the
width). The bold rectangles show the tasks before the transfer, and the shad-
owed rectangles show the tasks after the transfer.

Similarly, we introduce the intratask transfer, in which a task Ti can transfer
1t time units to itself by reducing its speed to si · ti−1t

ti
, as shown in Figure 3(b).

The reward is thus reduced by the same amount 1Ri = Ri(si · ti) − Ri(si · (ti −
1t)), and the energy is reduced by 1Eii = ti · [Pi(si) − Pi(si · ti−1t

ti
)]. (Note that

one cannot substitute j = i in the formula for 1Eij, i 6= j to get the formula for
1Eii.) The intratask transfer does not change the execution time of task Ti or
any other task. Specifically, the amount of computation (the number of cycles)
in task Ti is reduced, which lowers the reward, in order to allow the task to
execute at a lower speed without increasing the time allocated to task Ti. The
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1 while E( S) > Emax do
1.1 determine transferring task Ti and receiving task Tj
1.2 if Ti and Tj exist, update S, E( S) and go to step 1
1.3 while E( S) > Emax do

1.3.1 determine task Ti from which to take 1t time units
1.3.2 if such task exists, update S, E( S) and go to step 1.3
1.3.3 return failure

2 return S={(s1, t1), (s2, t2), . . . , (sn, tn)}

Fig. 4. SOLVE(1t, S) algorithm.

result is a decrease in the energy consumption at the expense of a decrease in
the reward.

Among all possible combinations of Ti and Tj , the transfer (either intertask
or intratask) with the highest ratio 1Eij/1Ri is chosen. The transfers stop
when the total energy E of the current schedule satisfies E ≤ Emax.

If no transfer is possible and E > Emax, it is the case that all tasks run on the
minimum speed and the entire available slack is not used. For this situation a
reduction is introduced: find the task Ti for which to reduce the execution time
by 1t so that 1Ei

1Ri
is maximized. Reductions are illustrated in Figure 3(c). If no

reduction is possible (i.e., all tasks are already allotted their minimum number
of cycles) and E > Emax the algorithm returns failure.

The algorithm that carries out the transfers and reductions is presented in
Figure 4. The input parameters are the value of the interval 1t and the un-
limited energy solution S = {(Smax, t1), (Smax, t2), . . . , (Smax, tn)} (S is obtained
by substituting si = Smax in (1)–(4) and solving the resulting OPT-LU prob-
lem). The algorithm computes the speed and execution time (si, ti) for each task
and returns the solution in the same form {(s1, t1), (s2, t2), . . . , (sn, tn)}. E( S)
denotes the total energy of an intermediate solution S and is computed by
the formula E( S) = ∑n

i=1 ti · Pi(si). Intertask and intratask transfers are in
lines 1.1–1.2, reductions are in lines 1.3.1–1.3.2. Note that most tasks will al-
ready be running at Smin when we get to 1.3.2, therefore we choose to go to 1.3
instead of 1.1.

Clearly, the value of 1t will directly influence the quality and the running
time of the solution. When 1t tends to zero, the solution tends to the optimum
and the running time increases. However, as the experiments will show, the
error obtained depends on other factors such as the amount of energy available.
The 1t size that gives an acceptable solution cannot be determined a priori.
Therefore, we propose an algorithm that starts with an initial1t and iteratively
refines the solution by halving 1t until a stopping criterion suggests that the
quality of the solution is acceptable.

The stopping criterion we use for the quality of the solution is R(S1t )−R(S2·1t )
R(S) ≤

ε, where S1t is the solution obtained for the current 1t value, S2·1t is the
solution obtained in the previous iteration, R(S) denotes the reward of solution
S, and ε is a given threshold. Another stopping criterion,1tmin, is also used as a
threshold for1t, to prevent searching indefinitely for a solution. The algorithm
is presented in Figure 5. In the next section we evaluate the algorithm through
simulations.
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1 assuming Si = Smax for all i = 1, 2, . . . , n, transform the problem into an OPT-LU problem.
OPT-LU returns the execution times ti for all tasks. If OPT-LU gives no solution, return failure

2 let S={(Smax, t1), (Smax, t2), . . . , (Smax, tn)}, where ti is the execution time of task Ti as returned
by OPT-LU. Compute the total energy of the solution S by E( S) =∑n

i=1 ti · Pi(Smax). If E( S) ≤
Emax return solution S

3 if
∑n

i=1 ti < d , extend one task so that the entire slack is used: t1 = d −
∑n

i=2 ti , update S and
E( S)

4 initialize 1t = 1tinitial and R(S1t ) = 0
5 R(S2·1t ) = R(S1t )
6 if 1t < 1tmin return failure
7 S1t = SOLVE(1t, S) (Figure 4)
8 if SOLVE(1t, S) returned failure, R(S1t ) = 0, else R(S1t ) =

∑n
i=1 Ri(ti · si)

9 if R(S1t ) = 0 or R(S1t )−R(S2·1t )
R(S1t ) > ε then 1t = 1t

2 , go to step 5

10 return S1t={(s1, t1), (s2, t2), . . . , (sn, tn)}

Fig. 5. Variable 1t algorithm.

6. EXPERIMENTAL RESULTS AND VALIDATION

We simulated task sets with n = 20 tasks and identical power functions using
the simpler version of our algorithm that uses a fixed 1t. The common power
function we use for this experiment is P = sq

i , where for each simulation run
q was set to 2 or 3 (square and cubic power functions). We use linear reward
functions of the type Ri(ti · si) = βi · ti · si, where the coefficients βi were ran-
domly chosen such that βi ∈ [0, n]. The lower computation bounds li and ui
were randomly generated so that li ∈ [1, n] and ui ∈ [li, li + n]. The deadline
d was generated in the range [

∑n
i=1

li
Smax

,
∑n

i=1
ui

Smax
]. After solving the energy

unrestricted OPT-LU, Emax was chosen so that it does not exceed the energy of
the OPT-LU solution: Emax ∈ [ 1

5 EOPT-LU, EOPT-LU]. For the speed limits we used
the normalized speeds Smax = 1 and Smin = 0.5. Similar results were obtained
with narrower ranges for βi, li, and ui, as well as Smin < 0.5. We simulated
1000 task sets for each point in the graphs.

The error of a solution S is defined as e = Ropt−R( S)
Ropt

, where Ropt is the total
reward of the optimal solution and R( S) is the total reward of solution S. Note
that Ropt can always be computed for identical power functions, as shown in
Section 4.1.

Figure 6 shows on a logarithmic scale the effect of the size of 1t and of
the amount of available energy on the error of the solution and the number of
steps (transfers) required to reach the solution, for a fixed 1t. We considered
the following values for the size of 1t: 1t = d

n·log n , 1t = d
n2 , 1t = d

n2·log n , and
1t = d

n3 . The available energy is expressed as a percentage of EOPT-LU, the
energy consumed in the OPT-LU solution assuming si = Smax.

Across all simulations, 1t = d
n2·log n gives less than 1% absolute error and

a relatively small number of transfers for identical power functions. However,
if a better accuracy is desired or if the energy available is relatively small,
1t = d

n2·log n might not be enough. On the other hand, for most task sets a higher
1t (fewer transfers) can achieve a satisfactory solution. The second algorithm
(variable 1t size) was proposed to handle these problems.
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Fig. 6. Fixed 1t, identical power functions P = α · sq
i : (a) average error and (b) average number

of transfers, as a function of available energy.

We used the variable 1t version of our algorithm and compared the solu-
tion we obtained with the optimal solution. For this experiment we use differ-
ent power functions of the type Pi = αi · sq

i , where q is constant for all tasks
(for identical power functions we obtained quite similar results). As shown
in Section 4.2, the optimal solution can always be computed for power func-
tions of the type Pi = αi · sq

i if there are no speed bounds. Thus, the power
coefficients were generated so that in the optimal solution no task runs on
the minimum or maximum speed. We ensured this by first generating the
speeds si in the range [Smin, Smax] = [0.5, 1] and the CPU power P at which
all tasks run in the optimal solution. Only after that the coefficients αi were
generated such that αi · sq

i = P . We use concave reward functions of the type
Ri(Ci) = ln(βi ·Ci + 1) with random coefficients βi ∈ [0, n], where n is the num-
ber of tasks. As before, for each simulation Emax was randomly generated in
the range [ 1

5 EOPT-LU, EOPT-LU]. A large variation in power and reward coeffi-
cients was preferred in order to enforce a large variation in task speeds and
execution times in the optimal solution. Even with such variation, simulations
show that the algorithm converges to the optimal solution. Very similar results
are obtained for narrower ranges for the coefficients (such as αi ∈ [1, 2] and
βi ∈ [1, 5]).

Figure 7 shows the average and maximum error, as well as the average
number of transfers for task sets of 20, 30, 40, and 50 tasks. For each result
1000 task sets were generated. For illustration purposes, the initial value for
1t was set to 1t = d

n2 and for the stopping criterion we used ε = 0.005.
Clearly, the quality of the solution is satisfactory. For 95% of the tasks the

number of transfers was less than the average. For some tasks however tens
of thousands of transfers were required. We noticed that this only happened
for extremely disproportionate task sets, that is, those with large differences
among power coefficients and reward coefficients.

Observe that for the first two experiments it was possible to compare the
algorithm with the optimal solution. Since we did not prove that the algorithm
converges to the optimal, we consider these experiments necessary to evaluate
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Fig. 7. Variable 1t, ε = 0.005, different power functions Pi = αi · sq
i , available energy Emax ∈

[ 1
5 · EOPT-LU, EOPT-LU]: (a) average and maximum error and (b) average number of transfers.

the performance of the algorithm. A third experiment is intended to be more
realistic and assumes power functions extracted from real processor models.
However, we have no way of computing the optimal solution in this case, and
hence, we approximate the optimal with the solution obtained for a very small
1t (we used 1t = d

106 ) and report average and maximum errors relative to this
solution. For comparison, we also used 1t = d

106 in the previous experiment for
different power functions of the type Pi = αi · sq and the maximum absolute
error (exactly computed) across all simulations was less than 0.0001.

This third experiment shows the effect of the stopping criterion ε on the
error of the solution, the number of transfers, and the number of 1t halv-
ings required. We used a complex power function and limited the range of
the power and reward coefficients in order to make the experiment more
realistic. The different power functions are Pi = αi · [0.248s3 + 0.225s2 +√

(311s2 + 282s) · (0.014s2 + 0.0064s)] [Kumar and Srivastava 2001] with ran-
dom coefficients αi ∈ [0.5, 1.5]. We used linear reward functions of the type
Ri(ti · si) = βi · ti · si with random coefficients βi ∈ [1, 5]. For each result, 1000
task sets of 50 tasks were simulated using the variable 1t version of our al-
gorithm. 1tinitial was set to d

n·log n . We also experimented with 1t = d
n2 and

higher for the same values of ε. The first stopping test succeeded for most
simulations, leading to a very small average and maximum error and a num-
ber of 1t halvings very close to 1; similar results were obtained for smaller
values of ε.

Results are presented in Figure 8, where the x-axis is in log scale. The run-
ning time of the algorithm is roughly proportional to the number of transfers.
Transfer time is linear in the number of tasks and depends on other factors
like the complexity of the power and reward functions involved. For ε = 0.01
in Figure 8, the average running time of a transfer is 90 µs corresponding to
an average total running time of 38 ms on a 400 MHz Pentium II. Decreasing
the number of tasks to 20, the total running time is reduced to 1.5 ms. Further,
if the power function in Figure 8 is replaced with the simpler Pi = αi · s2

i , the
average running time of the algorithm is just half a millisecond.
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Fig. 8. Variable 1t, different power functions Pi = αi · [0.248 · s3 + 0.225 · s2 +√
(311.16 · s2 + 282.24 · s) · (0.014112 · s2 + 0.0064 · s)]. Effect of stopping criterion ε on (a) aver-

age and maximum error, (b) average number of transfers, and (c) number of 1t halvings.

Observe that the absolute error is not necessarily less than ε, which is just the
relative error between two consecutive solutions. Figure 8(c) shows the average
and maximum number of1t halvings required until the stopping criterion was
met. As expected, as the value of ε increases, the average number of1t halvings
tends to 1. However, note that the number of halvings (maximum or average)
is not large, even for small values of ε.

7. CONCLUSIONS AND FUTURE WORK

We presented an algorithm for maximizing the rewards under a limited en-
ergy budget, for both frame-based or periodic tasks. Our goal is to maximize
the reward of the task set without exceeding the deadlines nor the available
energy, and assuming different power functions and reward functions for each
task. This work is the first that combines all three constraints, namely energy,
deadlines, and rewards.

We devised an optimal algorithm for homogeneous power functions. Since all
power functions are the same (or have the same form and different coefficients),
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we are able to determine the power that each task consumes. From this, we
are able to determine all task speeds, which are the same in case all func-
tions are identical. However, the case of heterogeneous power functions (i.e.,
the general case) required an iterative heuristic solution. This solution starts
off with an unlimited-energy solution, which is refined by changing time al-
locations and speed of tasks, until the energy and deadline constraints are
met. Simulation results show that our iterative algorithm is fast and extremely
accurate.

Subsequent to this work we analyzed the case of discrete speed levels and
step reward functions (no reward for partial execution) in Rusu et al. [2002]. The
problem was proven in Aydin et al. [2001c] to be NP-complete for step reward
functions even assuming continuous speed range. Heuristics were proposed
in Rusu et al. [2002] that render close to optimal solutions for only a fraction of
the running time of an optimal algorithm. In the future, we plan to consider the
overhead of changing the speed, which can be an important factor for relatively
short tasks.

APPENDIX

In Section 2.2 we claimed that for periodic task sets, in the optimal solution that
maximizes the total reward without exceeding an energy budget, the speed and
execution times of a periodic task Ti are constant at every instance. We present
the proof here.

It has been shown in Aydin et al. [2001a] that, assuming different power
functions for each task, in order to minimize the energy consumption of a peri-
odic task set, all instances Tij of a task Ti should run at the same speed sij = si.
However, the task model presented in Aydin et al. [2001a] assumes that each
instance Tij should receive exactly Ci cycles and the only goal was to minimize
energy. Since Ci and sij = si are the same for all instances, it also followed that
all task instances should run for the same amount of time tij = ti = Ci

si
.

Similarly, it has been shown in Aydin et al. [2001c] that, assuming concave
reward functions for each task, in order to maximize the total reward of a
periodic task set, all task instances of a periodic task should run for the same
amount of time. The task model in Aydin et al. [2001c] assumes that all tasks
run at the same speed and the only goal was maximizing the rewards.

We extend the proofs in Aydin et al. [2001a, 2001c] and show that the reward
is maximized and the energy is minimized when the speed and execution time
are constant at every task instance. Given any feasible schedule in which there
exists i, j , k such that tij 6= tik or sij 6= sik, we show that it is always possible
to construct a better schedule (higher reward and less energy) in which all
instances of a task run at the same speed and for the same amount of time.
The common speed and execution time of all instances of a task Ti are si =∑Ni

j=1(sij · tij)/
∑Ni

j=1 tij and ti =
∑Ni

j=1 tij/Ni, where Ni is the number of instances

within the LCM, Ni = LCM
di

.
Observe that in the new schedule the total number of cycles allocated to

all instances of each task is the same as in the original schedule. Also, the
total execution time of all instances of each task is unchanged. Due to the

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



558 • C. Rusu et al.

convex nature of the power functions Pi and since the total execution time and
number of cycles is preserved, it follows that in the new schedule each task Ti
consumes less energy (or the same amount if sij = si for all i = 1, 2, . . . , n and
j = 1, 2, . . . , Ni). Similarly, due to the concave nature of the reward function
Ri the total reward of each task Ti is higher in the new schedule (or the same
reward if sij · tij = si · ti for all i = 1, 2, . . . , n and j = 1, 2, . . . , Ni).

However, we also need to show that the new schedule is feasible (i.e., no task
misses its deadline). Since all instances of a task run for the same amount of
time, the periodic task set is EDF schedulable if

∑n
i=1 Ui ≤ 1. We know that∑n

i=1
∑Ni

j=1 tij ≤ LCM since we assumed the original schedule was feasible. Since
ti =

∑Ni
j=1 tij/Ni it follows that

∑n
i=1 Ni · ti ≤ LCM or equivalently

∑n
i=1 Ui ≤ 1

and thus the new schedule is EDF schedulable.
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