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Abstract taking into consideration both routing options and channel
assignment options. The RCA problem can be described as
follows. Given a set of all-optical connections, the problem

. This pa%ecr:onsrgders optlmall_rourt]lng andb channel as” s to (a) find routes from the source nodes to their respec-
signment ( ) schemes to realize hypercube COMMUNICA% 0 destinations, and (b) assign channels to these routes so

t!onlon opgcal rgesh—llrlfe netwt())rks.fSEemflclally, we |(Len- that the same channel is assigned to all the links of a par-
tlfyllowEr ounbs on the nhumber ot ¢ anrfles reqw(rje_ O ticular route. The goal of RCA is to minimize the number
realize hypercube communication on top ofarray and ring ¢ assigned channels. We show in this paper that, using

t(r)]pcilog|esband ((j:ieveloE optimal RCA| sc_hemes t?at r‘?Ch'evetraditional XY shortest path routing, (nearly) optimal RCA
the lower bounds on these two topologies. We further ex- g o e for realizing hypercube communication on mesh—

tend the schemes to mesh and torus topologies and obtauqike topologies can be achieved.

RCA schemes that use at most 2 more channels than the

optimal for these topologies. Realizing hypercube communication efficiently on opti-
cal mesh-like networks is important because of the follow-
ing reasons. (1) There exist many parallel algorithms that

1. Introduction use the hypercube communication pattern [7]. (2) Realizing
a virtual hypercube topology, whose diametedigg(NV)),
where N is the network size, on top of a mesh-like topology

In an optical interconnection network, each physical link Wwith alarger diameter, reduces the average number of relays

can be multiplexed to create sevevattual channelsvia when messages are routed on the virtual hypercube rather
either Time—division multiplexindTDM) or wavelength—  than on the physical mesh-like topology. The number of
division multiplexingWDM) [3, 6, 8]. A direct optical con- relays per message transmission is particularly important in

nection, also called ightpath[3], between two nodes can  optical networks where a relay requires optical/electronic
be established using the virtual channels. To achidie and electronic/optical conversions. An extensive study of
optical communication without optical/electrical and elec- the maximum throughput and the message delay of routing
trical/optical conversions at intermediate nodes, the samedynamic traffic on the virtual hypercube described in this
channel on all links along the path must be used to estab-paper is performed in [12], where it is shown that routing
lish the lightpath. This requirement is called ttleannel- ~ messages on the logical hypercube, in general, improves
continuougequirement [2]. the communication efficiency over routing messages on the

) ) N physical mesh-like topologies.
Due to the channel-continuous requirement, traditional

embedding techniques, which typically minimize ten- In this paper, we study optimal RCA schemes for hy-
gestionfor a given communication pattern, are not suffi- percube communication on optical mesh-like networks.
cient to minimize the number of virtual channels needed to Specifically, given networks of siz&, we prove that 2X |
realize the communication in an optical netwoiRouting and| %4 + 4] channels are the minimum required to real-
and channel assignme(RCA) tries to minimize the num-  ize hypercube communication on array and ring topologies,
ber of channels to realize a communication requirement by respectively. We develop routing and channel assignment
schemes that achieve these minimum requirements, which

*This work was supported in part by NSF award MIP 9633729.



indicates that the bounds are tight and the schemes are op- A A+
timal. We further extend these schemes to mesh and torus L R IPANIPENIP!
topologies. We prove that for2 x 2"—* (k > r — k) mesh o) 1) L0 2) (3
ortorus,szgsz andL% + %J channels are the minimum NP P A
required for realizing hypercube communication, respec- L: 7;@7; i
tively. We obtain routing and channel assignment schemes ] Tl TIN—"T]
. . P N B N P

that use at most 2 more channels than the optimal to realize L ] ] i
hypercube communication on these topologies. ‘;i@Q"@_j

Many researchers have studied the RCA problem in ¥ Y ¥
the context of either WDM networks or TDM networks.

Heuristic RCA algorithms for arbitrary networks have been
developed [2, 4, 10, 13] for WDM networks. In [2, 10], the
optimal RCA problem is formulated as timeulticommod-

ity 0-1 flowproblem which is NP-hard. Realizing hyper-
cube communication is a subproblem of the general optimal
RCA problem in [2, 10]. However, our algorithms provide
exact solutions to the problem without the need to exploit
exponential search domains. Heuristic algorithms for chan- that the number of nodes in a networks = 2". For a

nel assignments on mesh topologies are studied in [11]. Inmesh or a torus to contai?f nodes, each row and column
[9], RCA for permutation communication patterns in mesh— must contain a power of two number of nodes. Hence, we
like networks is considered. In [8], optimal schemes for re- will denote sizes of meshes and torisis= 2% x 2" ~*. We
alizing all-to—all patterns in multi-stage networks are pre- will use the notationstRRAY (N) andRING(N) to rep-
sented. In [5], message scheduling for all-to—all communi- resent arrays and rings of size N respectively. The notations
cation in mesh-like topologies is described. A large body M ESH (2F x 27=%) andTTORU S(2* x 27~*) are used to

of related embedding techniques are surveyed in [7]. How- represent meshes and tori of sZex 2"~*. Without losing
ever, as discussed earlier, the objective and the techniquegenerality, we always assume> r — k.

of RCA are different from that of embedding. To the best
of our knowledge, optimal routing and channel assignment
for hypercube communication in mesh-like topologies has
not been studied previously.

(d) a4x4 torus

Figure 1. Node numbering in a torus topology

We denote bysre, dst) the connection from node-c to
nodedst. A communication patteris a collection of con-
nections. Thehypercubecommunication pattern contains
a connectior(src, dst) if and only if the binary represen-

The rest of the paper is organized as follows. In section 2 tations ofsrc anddst differ in precisely one bit. A con-
defines the problem. Section 3 considers the array topology.nection in the hypercube communication pattern is called a
Section 4 discusses the ring topology. Section 5 presentsdimension | connectioif it connects two nodes that differ
the scheme for meshes and section 6 considers the torugn thelth bit position. In a network of siz& = 2", the set,
topology. Section 7 concludes the paper. DIM;, where0 <[ <r — 1, is defined as the set of all di-
mension/ connections and{,. is defined as the hypercube
communication pattern. That is

{(i,i — 2" | i mod 2!1 > 21}

We model a network as a directed graph G(V, E), where H, = U—DIM,
nodes in V are switches and edges in E are links. Each node -
in a network is assigned a node number starting from 0. We It can be easily proven that removing aby M;, for any
assume that, in arrays and rings, the nodes are numbered < r — 1, from H, leaves two disjoint sets of connections,
from left to right in ascending order, and that the nodes are €ach of which being a hypercube patternmodes. For

numbered in row major order for meshes and tori of size €xample, removin@ 1M, from H, results in ant,_; on
n x m. Thatis, the node in théh column and thgith the even—numbered nodes and anottgr; on the odd-

row is numbered ag x m + i. Fig. 1 shows a x 4 torus numbered nodes when the nodes are properly renumbered.
topology. This paper focuses on studying the optimal RCA Next, we introduce some definitions and summarize the re-
schemes for these traditional numbering schemes. Optimaisults of this paper.

node numbering (and its RCA) is a much more complex
problem and is beyond the score of this paper. We assume Definition : P(xz,y) is a directed path in G from node x



to node y. It consists of a set of consecutive edges w(ARRAY (N),H,) = n(ARRAY (

beginning at x and ending at y.

Definition : Given a network G and a communication pat-
tern I, A routing R(l) of I is a set of directed path

R(I) = {P(z,y)|(z,y) € I}.

Definition : Given a network G, a communication pat-
tern | and a routing R(l) for the communication pat-
tern, the congestion of an edge € E, denoted
asw(G,I,R(I),a), is the number of paths in R(l)
containinga. The congestionof G in the rout-
ing R(l), denoted as(G, I, R(I)), is the maximum
congestion of any edge of G in the routing R(l),
that isw(G,I,R(I)) = maz.{m(G,I,R(I),a)}.
The congestionof G for a communication pattern
I, denoted asr(G, I), is the minimum congestion
of G in any routing R(l) for I, that isr(G,I) =
ming{n(G,I,R(I))}.

Definition : Given a network G and a routing(I) for
communication pattern |, amssignment functiod :
R — INT,is a mapping from the set of paths to the
set of integed N'T', where an integer corresponds to a
channel. Achannel assignmeffior a routingR(I) is
an assignment functioA that satisfies the following
conditions:

1. A(P(z1,11)) # A(P(22,y2)) it P(21,91),
P(z4,y-) are different paths that share a com-
mon edge.

2. A(P(z,y1)) # A(P(z,y2))
A(P(x1,y)) # A(P(22,y))-

and

; N),H,) = |5
w(RING(N),H,) = n(RING(N), H,) = | § + ¥

We further give a lower bound for(MESH (2% x
27=F), H,) andr(TORU S (2% x 27~*), H,.) and show that

w(MESH (2" x 277%), H,) < |22 | +2
< m(MESH(2" x 2""%) H,) + 2

w(TORUS(2* x 27 %), H,) < | & + 4| +2
< n(TORUS(2* x 27=%), H,) + 2

3 Hypercube connections on linear arrays

Since routing in a linear array is fixed, the RCA prob-
lem is reduced to a channel assignment problem. Given a
linear array of sizeV = 2", we prove tha{%] channels
is the lower bound to realize the hypercube communication
by showing thatr(ARRAY (N), H,) > |2&]. We then
develop a channel assignment scheme that p%\’ﬁj; chan-
nels for the hypercube communication. This proves that the
bound is a tight lower bound and that the channel assign-
ment scheme is optimal.

3.1 Alower bound

Using Lemma 1, we will obtain a lower bound by prov-
ing that there exists a link in the linear array that is used
L%J times when realizind?,.. The following lemmas es-
tablish the bound.

lemmal:w(G,I) > n(G,I).

In the following sections, we will show that

The condition (1) ensures that each channel on one _ )
link can only be assigned to one connection. The Leémma 2 In alinear array of siz&v = 2", wherer > 2,
condition (2) ensures that each node can only use there are’— connections i)/ M, _, UDIM,_ thatuse
one channel to send to or receive from one other the link(n,n+1) for any specifio; satisfying2"* < n <

node. A channel assignment that violates condi- 2t - 1.

tion (1) is said to haveink conflicts and a chan-  proof. The connections ilDIM, , and DIM, , can be
nel assignment thgt violates condition (2) is said represented by

to havenode conflicts We denote byA(R) the

set of channels assigned to the paths in R and by
|A(R)| the size ofA(R). We denote byw(G, I, R)

the minimum number of channels for the routing

R, thusw(G, I, R) = mina{]A(R)|}. We denote

DIM, ={(i,i+ )0 <i
u{(i,i — &

o[22
vl
IN

by w(G, ) the smallestw(G, I, R) over all R, i.e. DIM,—» = {(i,i + %)K])VS i < %NOF %NS i<
w(G,I) =ming{w(G,I,R)} U {(i,i— )7 i< ForsfF<i<N}

Consider the connections iBIM,_;. All connections
(i,i + &) with 0 < i < n use link(n,n + 1), where
22 < n < 2771 — 1. Hence, as shown in Fig. 2 (a), there
are n+1 connections iDI M, _, that use link(n,n + 1).
Similarly, in DIM,_,, all connectiongi,i + &), where

Proof: Straight forward from the definitions



n < i+4 < &, uselink(n,n+1). As shownin Fig. 2 (b),
there ar2"! — n — 1 such connections. Hence, there are
atotal ofn + 1+ 2" —n — 1 = 27! connections in
DIM,_, andDIM,_, thatuse linkn,n + 1). O

Lemma 3. In a linear array of sizéV = 2", there exists a
link (n,n + 1) such that at leagt2¥ | connections inf,.
use that link.

Proof: Let T;(2") be the number of connections H, that
use link (i, + 1) and letT'(2") = maxz;(T;(2")). Thus
T(2° =0, T(2') = 1. From Lemma 2, we know that for
2r=2 <n <271 —1,link (n,n+1) is used”~! times by
connections inDIM,_, andDIM,_». That is, the links

in the second quarter of the array (from n@de? to node
2r—1 — 1) are use®" ! times by dimensiom — 1 and di-
mension- — 2 connections. By the definition of hypercube
communication, we known that dimension 0 to dimension
r — 3 connections form a hypercube on this quarter of the
array. Thus, Lemma 2 can be recursively applied and the
following inequality is obtained.

T(2r) Z 2r—1 + T(2r—2)

It can be proven by induction that the above inequality and
the boundary conditioni§(2°) = 0, 7'(2%) = 1, imply that
T(N)=T(2") > |2¥]. Hence, there exists a link which
is used at least2X | times by connections iff,.. O

The proof of Lemma 3 is constructive in the sense that
the link that is used at least? | times can be found.
By recursively considering the second quarter of the lin-
ear array, we conclude that the source nodg,of the
link (n,n + 1) that is used at Ieas[t%] times in H,. is
n="=0+ 84+ X4 = &) Hence, the link that is used
atleast| 2N | times inH, is (|5 ], [51).

Corollary 3.1 Give an array of sizé&V = 2", if the nodes in
the array are partitioned into 2 sets = {i|0 < i < n} and
Sy = {iln+1 <i < N}, wheren = | £ ], then there are
at least| 2X | connections inH, from S; to S, and | %X |
connections fron®, to .S;. O

Theorem 1 7(ARRAY (N),H,) > |2X|.

Proof: Directly from Lemma 30
3.2 An optimal channel assignment scheme

By the definition of hypercube communication, con-
nections inH, can be partitioned into three set®l M,
EVEN, andODD,. DIM, contains the dimension 0
connectionsE'V EN,. contains connections between nodes
with even node numbers, agtlD D,. contains connections

CCO OO0 CCO CCOo

@DIM
(B> (EB>
(b) DIM ;

Channel 1

CLO0T0 CLO U0

Channel 2

RN TN
CCO 0.0 Q0 0.0
(c) realizing DIM g and DIM ; using 2 channels

Figure 3. Realizing DIMy U DIM, of Hs

between nodes with odd node numbers. EacRBE N,
andODD, forms ar— 1 dimensional hypercube communi-
cation,H,. 1, ifonly the nodes involved in communications
are considered and that the nodes are renumbered accord-
ingly. Thus, channel assignment schemesHer ; can be
extended to realizél,. as shown in the following lemma.

Lemma 4: Assuming tha#/,_; can be realized on an array
of size2"~! using K channels, thet,. can be realized on
an array of siz&" using2K + 1 channels.

Proof: H, = EVEN, UODD, U DIM,. From the above
discussion and the assumptialy EN,. andODD,. are
H,_; (when nodes are properly renumbered)channels
can be used to realiz8V EN,. or ODD,.. Since it can eas-
ily be proven thatDI M, can be realized with one channel,
a total of2K + 1 channels can be used to realide. O

Let D(N) be the number of channels needed fjron
an array of sizeV = 2". If we use a channel assignment
scheme thatis in accordance with the proof of Lemma 4, we
can obtain the equatio® (N) = 2D(N/2) + 1. Given that
no channel is needed to realize hypercube communication
on a 1-node array, D(1) = 0. Solving fér(V) results in
D(N) = N—1,whichis notoptimal. The following lemma
improves this simple channel assignment scheme.

Lemma 5. Assuming thaf, _, can be realized on an array
of size2"—? using K channels, thet,. can be realized on
an array of siz&" using4K + 2 channels.

Proof: ConsiderH, without dimension 0 and dimension 1
connections. By the definition df,.,

H, — (DIMyUDIM,)=DIM,U..UDIM,_, forms
four hypercube patterns, each being Hn , pattern on
nodes{n | n mod 4 = i} (with proper node renumber-
ing), denoted bysubarray;, fori = 0, 1, 2 or 3. From
the hypothesisH,._» can be realized on an array of size



r-2 r-1
n+1 source nodes whose 2 <=n<=2 -1
connections use link (n, n+1)

(a) connectionsin dimension r-1 are between and

TN

@

g:\)O XX 3

N/2 -n-1 destination nodes whose
connections use link (n, n+1)

(b) connectionsin dimension r-2 are either between O and Q nodes or between and nodes.

Figure 2. Dimension r — 1 and r — 2 connections

Channels

Algorithm 1: Assignarray(N = 2") subarray, < (1)

(1) If (r = 0) then returnp R

(2) If(ris odd) then subarray,

(3) /*applying Lemma 4 */ 4

(4)  recursively apply Assigarray(N/2 = 2" ~1) for EVEN,. subarray, < 5

(5) recursively apply Assigarray(N/2 = 27 ~1) for ODD,.. 6

(6) assign connections i1 My to one channel. subarray, < 7

(7) Else /*ris even, apply Lemma 5 */ L] L

(8) Fori=0,1,2,3 DIM g+ DIMy < | L RiRRN
9) apply Assignarray(N/4 = 27~2) for subarray;. BinN il
(10) assign connections NI Mo U DI M to 2 channels. g uuuuuu

Node# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4. The channel assignment algorithm Figure 5. Optimal channel assignment for  H,

272 using K channels. The four sub—cube patterns can
be realized it K channels. The remaining connections to
.be considered are those I.NMO andDIM,. It can eas- applied to us@ K + 1 channels to realize the hypercube pat-
lly b_e proven that connections DIMO a_ndDIMl can be tern, wherek is the number of channels needed to realize
assigned to 2 channels as shown in Fig. 3. Hence, the hy-a hypercube pattern in an array of s?e! = N/2. The
percube communicatioH,. can be realized using a total of example of using this algorithm to schedilg in an array

4K + 2 channels of size 16 is shown in Fig. 5.

number of channels needed to realize a hypercube pattern
on an array of siz&"~2 = N/4. If r is odd, Lemma 4 is

The channel assignment algorith&lgorithm 1, is de- Theorem 2  Algorithm 1 uses [2Y] channels for
picted in Fig. 4. For the base case, whgn= 2° = 1, the H, on a linear array withN = 3 2" nodes. thus

hypercube pattern contains no connection. To assign Chan'w(ARRAY( ), H,) < L%J-

nels to connections in an array of sixe= 2", r > 0, there

are two cases. If is even, then Lemma 5 is applied to use Proof: Let D,44(2") andD.,.,,(2") denote the number of
4K + 2 channels for the hypercube pattern, wh&rés the channels needed wheris odd and even, respectively. The



number of channels for the hypercube pattern ugityp-
rithm 1 can be formulated as follows,

Dqa(27) = 2Deyen(2771) + 1, whenr is odd.
Deven(27) = 4Deyen(272) + 2, whenr is even.
Using the boundary conditioR .., (1) = Deyen (2°) = 0,

it can be proven by induction th#,;4(N) = % - % and
Deyen(N) = % — % Hence,D,qq(IN) andD.ye, (V) are
equal to| ¥ |. w(ARRAY (N), H,) < |&¥]. O

Theorem 3
w(ARRAY (N),H,) = n#(ARRAY (N), H,)
and Algorithm 1 is optimal.

I
_
no
5
| I—

Proof: Straight forward from Theorem 1, Theorem 2 and
Lemma 10

Figure 6. Hypercube on a ring

4 Hypercube connections on rings
to Ss Nsubarrays in DIMyU...DIM, _». Thus, there are
2 x | & | connections i1 My U ..U DIM,_; originating
By having links between node 0 and notYe— 1, two at nodes inS; and terminating at nodes . Fig. 6 shows
paths can be established from any node to any other nodethe cuts on a 16—node ring. The remaining connections of
on aring. It has been shown [1] that even for a fixed rout- H, are inDIM,_,. By partitioning the ring intaS; and
ing, general optimal channel assignment problem is NP S,, each nodes i§; has a dimension — 1 connection to a
complete. In this section, we focus on the specific problem node inS,. Hence, there ar&//2 connections inD I M,_,
of optimal RCA for H,. on ring topologies. We obtain a betweenS; andS,. Therefore, a total c x L%J +N/2=
lower téo(ljmd (l)n the nurr|1ber of chandnelﬁ nee(iled to realizeg « L% + &) connections irf,. are froms; to S,. Thus,
H, and develop optimal routing and channel assignment N_ N
that achieves this lower bound and is, thus optimal. m(RINGN), Hr) 2 5+ %) 0
_ NN Our RCA scheme uses an odd—even shortest path rout-
Lemma 6 m(RING(N), H,) > |5 + 7. ing. Given a ring of sizeV = 27, an odd—even shortest
path routing works as follows. A connection between two
nodes is established using a shortest path. Connections that
have two shortest paths are of the forfag + 2" 1) and
(i,7 — 2"~1). For these connections, the clockwise path is
used ifi is even and the counter—clockwise pathig odd.

Proof: This lemma is proven by showing that there exist
two cuts on a ring that partition the ring into two sefs,
andS,, suchtha® x | & + & | connections i, originate

at nodes inS; and terminate at nodes B}. Since there are
only 2 links connecting; to S,, one of the 2 links must be

used at I_eas[% + 7] times, regardless of which routing The channel assignment algorithm is derived from
scheme is used. Considéf, on a ring of sizeN = 2. Lemma 6. There are two parts in the algorithm, channel
The connections i1 Mo U ... DIM,_» form twor — 1 assignment for connections iRIM,_, and channel as-
dimensional hypercube patterns in tawaysof size2" L. signment for connections iR Mo U .. U DIM,_». Chan-
The first array , denoted byubarray,, contains nodes 0, g assignment for connections I/ My U .. U DIM,_»

., 27" — 1 and the second array, denoted fyparrays, is equivalent to channel assignment for tkig_; in two

i —1 L . .
contains node™,..,2" 1. From Corollary 3.1, we know - gjisjoint arrays, thus, using the channel assignment scheme
thj\?t there exists a link in eacli™" node array such that (for array) described in the previous sectiod; | channels
[3-] connections in the hypercube pattern use that link in can pe used to realize these connections.” For the connec-
each direction. From the discussion in previous section, thetions in D1, _, using odd—even shortest path routing
link is _(L%J, [&7) in subarray, Qnd(L%J_{r 2r 1, [%1 + four connections i1 M,_y, (i,i +2"1), (i + 2771, 4),
27=1) in subarray,. These two links partition the ring into (i+1,i+21+1), (i+2 ' +1,i+1), can be re-

) 1 b ’

_ . . N . — N . N
two setsSy = {il0 <i < [FJFU{il2" + 5]+ 1< alized using one channel. We denote®@ N FIG; these

i<2r—1}andS, = {i||F]+1<i<2 '+ [} four connections. Since the union of &ION FIG;, where
Hence, there argX | connections frons; N subarray, to i=0,2,4,..,N/2—2is equal toDIM,_;, N/4 channels
SeNsubarray; andL%J connections frond; Nsubarrays are sufficient to realiz& 1 M, _, . Fig. 7 shows the channel



Algorithm 2: Assignring(lV = 2")

@)
@

Apply Assignarray(N/2 = 2"~1) on subarray .
Apply Assignarray(N/2 = 2" ~1) on subarrays.
Sincesubarray; andsubarrays are disjoint,
channels can be reused in steps (1) and (2).
fori=0, N/2-2, step 2
Assign a channel to connectiotg + 2" ~1), (i + 271, 4),
(i+1,i+2 "+ 1)and(i +2""1 + 1,i + 1)

©)

Figure 7. The channel assignment for rings

assignment algorithm for ring topologies.

Theorem 4 Algorithm 2usesL% + %J channels to realize
H, in aring of sizeN = 2".

Proof: Straight forward from above discussidn.

Theorem 5 w(RING(N),H,) = n(RING(N),H,) =

L% + Z&], and the odd—even shortest path routing with Al-
gorithm 2 is an optimal RCA scheme for hypercube con-
nection on rings.

Proof:  Straight forward from Lemma 1, Lemma 6 and
Theorem 41

5 Hypercube connections on meshes

Given a2* x 2" ~* mesh, realizing the hypercube connec-
tions on the mesh is equivalent to realiziflg in each row
andH,_; in each column. The following lemma gives the

E configuration m O
O configuration O @@

Figure 8. a Mesh configuration

Since we already know the optimal channel assignment for
Hrew and He?,, the challenge here is to reuse channels
on connections in two dimensions efficiently. Let us de-

fine anarray configurationas the set of connections in a

lower bound on the number of channels required to realize linear array that are assigned to the same chanRéig,

hypercube communication patterns on meshes.

Lemma 7: m(MESH(2F x 2" — k), H,) > |22, as-
sumingk > r — k.

Proof: The hypercube pattern on the mesh contaiits®
k—dimensional hypercube patternsZnarrays in the2”—*
rows. Consider a cut in edgé@%], [%1) in every row,
which partitions the mesh into two parts. From Corollary
3.1, we know that for each row there a{r%S&kJ connec-
tions from the left of the cut to the right of the cut, hence,
there are a total af” —* x L%J connections crossing the
cut. Since there arg"—* edges in the cut, there exists at

least one edge that is used at Ie@@%kj times. Thus,
T(MESH(2* x 2" — k), H,) > 22 ]. O

Given a mesh of siz8* x 2"—*, we will denote the hy-
percube communication pattern in each rowg* and

meshandtorus configurationsire defined similarly. Using
the definition of configurations, a mesh configuration can
be obtained by combining array configurations in the rows
and the columns. For example, if an array configurations in
x dimension and an array configuration in y dimension can
be combined into a mesh configuration, the two array con-
figurations can be realized in the mesh topology using one
channel. Notice that, while there is no link conflict when
assigning channels to row and column connections, node
conflicts may occur and must be avoided.

Let us first take a deeper look at the array configurations
for arrays of sizeV = 2*. Following the channel assign-
ment algorithm Algorithm 1, array configurations can be
classified into three categorie’; configurations that con-
tain only connections between even—numbered no@es,
configurations that contain only connections between odd—
numbered nodes, anllO configurations that contain di-

the hypercube communication pattern in each column by mension O (and/or) dimension 1 connections As discussed

Heol . Our RCA scheme uses X-Y shortest path routing.

in Section 3, ifk is odd, there is only one EO configuration



for connections inD1 Mo, (| 2¥ | — 1)/2 E configurations
for connections inEV ENy, and(LZéVJ 1)/2 O config-
urations for connections i@ D D;,. Similarly, if k is even,
there are twaEO configurations(| 2X | — 2)/2 E configu-
rations and | 2 | — 2) /2 O configurations. The following
lemma shows thak’ andO configurations in the rows and
columns of the mesh can be combined.

Lemma 8 Given an E configuratiorf/,, and an O config-
uration,O,, in the x direction and an E configuratiof,,
and an O configuratiort),, in the y direction £, andO,

in all rows andk, andQ, in all columns can be realized in
two mesh configurations.

Proof: The proof is by constructing the two mesh configu-

rations. Inthe first mesh configuration, let all odd numbered .

rows realizeO, and all even numbered row realizg,.
this case, no connection starts or terminates at an odd nums<

bered node in an even column or at an even numbered noder(ITORUS(2F x 2" — k), H,) > |

in an odd column. Thus, in the same mesh configuration,
E, can be realized in odd columns afg can be realized

in even columns. The second mesh configuration realizes
E, on odd numbered rows), on even numbered rows,
E, on even numbered columns aty on odd numbered
columns. These two mesh configurations realizeand

O, in all rows andE, andO,, in all columns. Fig. 8 shows
the construction of a mesh configuratian.

Lemma 8 lays the foundation for the channel assignment
algorithm. Leta be the number of E and O configurations
in H;°", b be the number of EO configurationsHy,°*, ¢
be the number of E and O configurationgfii®, , d be the
number of EO configurations iH¢%, . By assumptions, we

havek >r—k,a > c,a+b= Lz“ J andd < 2. By com-
bining E and O, row and cqumn configurations into mesh
configurations, all the E and O configurations in each row
and all the E and O configurations in each column can be
realized using: mesh configurations. Using an individual
mesh configuration for each EO conflgurat|on in the rows
and the columns, a total @f+ b + d < L2X2 | + 2 config-
urations are sufficient to realize the hypercube connections

Theorem 4 H, can be realized on2f x 27—k mesh, where
k > r — k, using| 2% | + 2 channels

Corollary 4.1: w(MESH (2% x 2"=%), H,.) < L2X32kJ "
2<7m(MESH(2F x2=%) H,)+2.0

6 Hypercube connections on tori

As in the case of realizing,, on a meshH, can be
realized on & x 27~* torus by realizingd;°¥ in each
row andH¢%, in each column. The following lemma gives

a lower bound on the number of channels required to realize
H, on atorus.

Lemma 9 7(TORUS(2* x 2" —
assuminge > r — k.

k), Hy) > |

Proof: The hypercube pattern on the torus contaifis”
k—dimensional hypercube patterns h rings in the2k

rows. Considered 2 cuts in edge§2—J Zk “1) and

(1E2] + 2671, [22] 4+ 26=1) in every rowwh|ch parti-
tion the torus |nt0 two parts. Following the same reasoning
as in the proof of lemma 6, we know that for each row there
are2 x L2k 2kJ connections from one part to the other

part, hence, there are a totalsf* x 2 x LZ +2 2° | connec-
tions crossing the two parts. Since there2se2”—* edges

in the cut, regardless of the routing scheme used, there exist
at least one edge that is used at Id_&§t+ | times. Thus,
24 %J. O

3

We use X-Y routing between dimensions and odd—even
shortest path routing within each dimension to develop the
RCA scheme. Here, we need to consider how to com-
bine ring configurations into torus configurations. As in
the case of rings, given 2% x 27— torus, we partition
the connections id,. into two sets. The first set includes
all connections inDIMy U .. U DIM,;._» in each row and
all connections inDIMy U ..U DIM,_;_» in each col-
umn. The second set includes the connection3id/;,_;
in each row and the connectionsii M,._;_; in each col-
umn. The connections iDIMy U .. U DIM;_> in each
row and the connections iDIMy U .. U DIM,_;_» in
each column form four hypercube patterns on four disjoint
2k=1 » 2r—k=1 syb—meshes in the torus. A straight forward
extension of the channel assignment scheme in the previous
section can be used to assign channels to these connections

with at most| 2- J + 2 channels.

To realize the connections i1 M;,_; in each row and
the connections iDIM,_j;_, in each column, we follow
the same partitioning for the ring topology discussed in sec-

tion 4. Specifically, we construct the following configura-

tions in rows and columns respectively

row; = {(i,i + 28N, (i +2*10), 6+ 1,i + 1 +
2=y (i 4+ 1+ 281 i+ 1)}

columnj = {(j,j+2"*1), (G+2"7*1,5), G+1,j+
L+2r 50, G +1+2 1 i+ 1)}

DIMy_, is composed of the configurationsw;, fori =
0,2,...,2k1 —2andDIM,_;_, is composed of the con-
figurationscolurnn; for j = 0,2, ...,2" %=1 — 2,

Lemma 10For anyiy, i», whereiy # iz, row;, androw;,
in each row and:olumn;, andcolumn;, in each column



can be realized in two torus configurations.

Proof: Similar to the proof of Lemma 8, omittedl

Theorem 5. H, can be realized on2 x 2"—* torus, where

k>r—k, usingL% + %J + 2 channels.

Proof: As discussed abon,%J + 2 channels are suffi-
cient to realize all connections if,., except the connec-

tions in DIM;_; in each row andDIM,_;_; in each

column, by realizing four hypercube communication pat-
terns on the four disjoint sub—meshes. From Lemma 10,

configurations-ow;, i = 0,2,...,2" %=1 — 2 and config-

urationscolumn;, j = 0,2,...,2"¥=1 — 2 can be real-

ized in2"~*=2 torus configurations. Sin@—2 — 27—k—2
torus configurations can be used to realizev;, i =
2r—k=1 gr—=k=1 4 9 2k=1 _ 2 all the dimensiork — 1
connections in each row and dimension- k¥ — 1 con-
nections in each column can be realized2fir? torus

configurations. HenceH, can be realized by a total of

|2 ] +2+ 282 = |2 4 20| 1 2 configurationsD]

Corollary 5.1: w(TORUS(2F x 27=%) H,) < L% +
2| +2 < n(TORUS(2" x 27%), H,) +2. O

7 Conclusion

In this paper, we studied optimal schemes to realize hy-
percube connections on mesh-like optical networks. We
prove that| 21’ | and| & + & | are tight lower bounds of the

(3]

[4]

[5]

[6]

[7]

(8]

[9]

number of channels needed to realize hypercube connec-

tions on linear arrays and rings of si2g respectively. We
develop optimal RCA algorithms that achieve these lower
bounds. Also, we study the mesh and torus topologies and

develop RCA algorithms that use at most 2 more channels[10]

than the optimal. Our results can be used to efficiently es-
tablish virtual hypercube topologies on optical mesh—like
physical networks. They can also be used to realize hyper-
cube communications efficiently for parallel algorithms that

involve such communication.
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