
Abstract

Low power consumption is one of the most important
design constraints for modern computer systems. One
promising technique to lowering power consumption of
microprocessors is to reduce supply voltage and clock
speed. By running at lower voltages and clock speeds, a
quadratic savings in power can be achieved. This paper
describes a technique for adjusting supply voltage and
frequency at run-time to save energy. Our technique
monitors a program’s instruction-level parallelism
(ILP) and adjusts processor voltage and speed in
response to the amount of observed ILP. The technique
lets the user specify goal performance, which the hard-
ware maintains while running at the lowest energy set-
tings. In comparison to a processor running at a fixed
voltage and speed, our approach improves energy con-
sumption by an average of 47%.

1. Introduction
In recent years, power consumption has become a major
concern for system designers. For battery-operated sys-
tems, the focus on reduced power comes from a desire
for greater device capability and longer missions with
smaller form factors, less weight, and reduced cost. In
these systems, the size of the battery is one of the most
important concerns. However, a fast processor that is
capable of handling a variety of tasks has considerable
power demands, and devices using such processors need
large and expensive batteries. For servers, reducing
power has the effect of increasing server density and
improving reliability, both important for large data cen-
ters. For example, an Internet service provider with
8,000 servers needs 2 megawatts of power [2]. It is clear
that both personal electronics and servers can benefit
greatly from processors that consume less energy. 

In this paper, we study how changing processor sup-
ply voltage can conserve energy. In particular, we
explore whether changing supply voltage in response to
changes in instruction-level parallelism (ILP) can
improve the energy consumption of out-of-order super-
scalar processors. Our initial scheme relies on the user
(or operating system) expressing a preference about a
desired level of performance. This preference represents
a quality of service (QoS) metric, where the user
expresses that he is willing to execute a program at a
particular rate. For example, an e-mail client does not

need a 1 GHz processor to run effectively. Our goal is to
give the user the ability to tell the system that it may
operate at lower performance levels to save energy. 

Because modern systems run varying workloads,
there may be applications which require high perfor-
mance at any cost. Our approach lets the user express
QoS concerns to the underlying hardware, so the hard-
ware can adjust performance to meet QoS goals while
running at the lowest energy settings. This gives the user
direct control over how fast to run a program and to
make trade-offs with performance and energy. Such an
ability benefits both battery-powered systems and serv-
ers. For personal electronics, the battery life will be
increased, and for servers, reliability will be increased
(by reducing heat dissipation). We have implemented a
technique for adjusting supply voltage in a microarchi-
tecture simulator. We found that dynamically changing
supply voltage improves processor energy consumption
by an average of 47%.

2. Energy Consumption
The amount of power consumed by a portable system is
useful for determining the maximum current that a bat-
tery must supply. It is also important for servers in
determining the type of cooling features needed to han-
dle a system’s expected total heat dissipation. Along
with power consumption, an electronic system’s energy
should be considered because it measures power con-
sumption over time: . 

We need to be careful that implementing architec-
tural features which reduce power consumption do not
increase execution latency so much that there is no net
decrease in energy consumption. E.g., a 50% reduction
in power consumption that comes at the cost of a 200%
increase in execution latency results in no net gain in
battery life. In CMOS circuits, the power consumption
due to dynamic switching dominates the power lost to
static leakage [4]. For CMOS, the dynamic portion of
power consumption, called Pavg, is approximated by: 

,

where αT is the activity factor (amount of switching),
fCLK is the clock frequency, Cload is the capacitance
load, and Vdd is the supply voltage. Processor power can
be decreased by tackling any one of these terms. Indeed,
several studies have looked at reducing the activity fac-
tor [9], especially for memory [1,5,8]. Reducing the
clock speed is also an important way to save energy.
However, lowering clock speed without changing sup-Supported under DARPA contract No. F336–15–00–C–1736.

energy power time×=

Pavg αT fCLK Cload V2
DD⋅ ⋅ ⋅=

Adapting Processor Supply Voltage to Instruction-Level Parallelism
Bruce R. Childers, Hongliang Tang, Rami Melhem

Department of Computer Science
University of Pittsburgh, Pittsburgh, PA 15260

{childers, tanghl, melhem}@cs.pitt.edu

Bruce R Childers
Appeared in Koolchips Workshop, during MICRO-33, Monterey, California, December 2001



2

ply voltage will not necessarily result in any energy sav-
ings. When clock speed and supply voltage are reduced
together, there is a quadratic reduction in power con-
sumption. In this paper, we take advantage of this prop-
erty by dynamically scaling Vdd in response to ILP and
user preferences for performance.

3. Adaptive Voltage Scaling
Adaptive voltage scaling adjusts supply voltage (and
clock speed) in response to some dynamic measure. In
this paper, we focus on adjusting supply voltage in
response to changes in ILP over time. The essential idea
is that an application typically does not need all of the
performance offered by a very fast wide-issue proces-
sor. Yet modern electronic systems run workloads
whose performance demands typically vary and can not
be predicted in advance. In this way, systems are over-
specified with high performance architectures to handle
those applications which require fast execution rates. In
terms of energy, overspecifying processor performance
comes at a large cost. By running at fast clock rates and
correspondingly high supply voltages, an out-of-order
architecture wastes energy, especially given the energy
costs of architectural features such as branch prediction,
large instruction windows, and multiple functional
units. For applications that do not need high perfor-
mance, we want to run slower with smaller voltages to
save energy. 

Changing processor speed has been studied in the
context of real-time systems, where the goal is to run the
processor at the slowest speed that ensures that a task’s
deadline is met [6,7,11]. The control of processor speed
is usually made by the operating system since the OS
has knowledge of tasks and their deadlines. However,
even within a single application, we can adjust speed
and supply voltage to save energy. The amount of ILP
exhibited by an application changes over time depend-
ing on the impact of branch predictions, cache misses,
resource contention, etc. To maintain goal performance
we want to adjust supply voltage in response to the ILP
of an application. For example, if there are many branch
mispredictions over a period of time, then the amount of
ILP may be reduced. In this case, the processor should
run fast to make up for limited ILP. In other code frag-
ments there may be much more ILP, so the processor
can run slower to achieve its goal performance.

Adapting speed in response to ILP to maintain goal
performance has two benefits. The first benefit is we can
smooth application performance by changing processor
speed dynamically. Smoothing performance can help
applications whose performance varies dramatically
over time. For these applications, such as video play-
back, peaks and valleys in performance can cause “jerk-

iness” in their QoS. Adapting processor speed on-the-fly
helps to smooth out these peaks and valleys.

The second advantage to voltage adaptation is energy
savings. By trading parallelism for clock speed, we can
save energy quadratically. One way to achieve similar
savings without adaptation is to use a lower perfor-
mance processor with a lower fixed voltage. However,
for a system that has a mixed workload, its speed is typ-
ically determined by the application that needs the fast-
est performance. Another approach is to use a processor
that allows changing speed on application boundaries.
The trouble with this technique is the performance
demands of an application may not be known in
advance. For some applications, it may be possible to
use profiling techniques to get an estimate of perfor-
mance and change the processor speed in accordance
with that estimate before running the program. Even in
this case, it’s likely that the processor speed is overspec-
ified. Indeed, the performance of an application can be
dependent on the input data set, which makes profiling
more difficult. Furthermore, in response to a user’s will-
ingness to accept lower levels of performance, we
would like to provide a mechanism for the user to say
that they want some desired QoS. Dynamically chang-
ing supply voltage achieves this by adapting on-the-fly
to the user’s performance goals and to the parallelism
exhibited by an application.

4. Voltage Adjustment
Some current processors support dynamic voltage scal-
ing, including Transmeta’s TM 5400, Intel’s XScale (a
StrongARM derivative), and AMD’s K6-IIIE+. AMD’s
processor demonstrates the typical way voltage is
changed dynamically. The K6-IIIE+ uses a technology
called “PowerNow!” that defines an architectural inter-
face for changing voltage and clock speed (see
www.amd.com). This technology permits dynamically
changing processor speed and voltage to a number of
different settings. Current systems however suffer from
a high latency penalty for changing supply voltage.
PowerNow! uses an external DC-DC regulator to
change voltage. Essentially, to change voltage in the
K6-IIIE+, a program writes a “voltage value” to a con-
trol register and asserts a bit in the processor control
register to signal a “change voltage” request. The pro-
cessor drains the instruction pipeline and sends the
value of the control register to an external DC-DC regu-
lator to change supply voltage. During the period when
the voltage is changing and stabilizing, the processor
“sleeps”. For PowerNow!, this sleep period is 75–150
µs, depending on the regulator used. With such high
latencies it is difficult to change voltage frequently. In
the past, this has been one reason for letting the OS
manage processor speed. 



3

Although current mainstream architectures use an
external regulator to change voltage, we expect in the
near future that processors will have multiple input sup-
ply voltages from which they can pick and choose. Mul-
tiple voltages already exist on many CPUs: I/O typically
uses one voltage (e.g., 3.3 volts), while the processor
core uses another (e.g., 1.9 volts). There has also been
work in circuit-level voltage scaling, where voltage is
matched to the latency of a circuit path [10]. This scal-
ing uses several voltages on chip to run different circuit
paths at varying speeds. By bringing multiple voltages
on chip, we expect that a processor will be able to
quickly change its voltage level. 

In this initial study, we assume an architectural inter-
face for changing voltage that is similar to AMD’s inter-
face. In our system, the processor measures ILP over
some specified interval of time in terms of a MIPS rate.
If the MIPS rate changes appreciably either up or down,
the processor adjusts its supply voltage accordingly.
Before adjusting the supply voltage, the instruction
pipeline is drained. After draining the pipeline, the volt-
age is set to the desired level.

For the experiments in this paper, we measured ILP
over a 2 µs interval to decide whether to change speed.
Our processor model measures ILP by setting a watch-
dog timer that interrupts the processor’s execution every
2 µs. The watchdog interrupt handler is shown in Table
1. When the watchdog timer expires, the processor cal-
culates the observed ILP over the previous interval as a
MIPS rate. Using this MIPS rate, a new frequency (and,
hence, voltage level) is calculated. We calculate the new
frequency using:

If fnew is high or low enough, the processor selects a new
voltage level that achieves the desired frequency. For
our model, we assume discrete voltage levels from
which the processor can choose. There are 16 levels
ranging from 1.65 V at 700 MHz to 1.1 V at 200 MHz in
steps of 33 MHz. These levels correspond to those pub-
lished by Transmeta at the launch of their TM 5400 pro-
cessor. In this preliminary study, we do not consider the
overhead of computing fnew and changing the voltage. 

There is an important consideration when changing
processor speed. Because the speed of external memory
is not changed when the processor’s speed is changed,
the relative difference in latency between the processor
and the memory changes. For example, if clock fre-
quency goes from 250 MHz to 500 MHz, the effective
memory latency (in CPU clock cycles) doubles. This
change in relative memory latency may impact proces-
sor design. We want the architecture to scale its central
reservation window and instruction fetch logic with a

change in processor speed. When running at high
speeds, more hardware resources are needed to cover
the large CPU-memory latency gap. When running at
low speeds, the architecture does not need as large and
aggressive structures to mask the CPU-memory latency
gap. Indeed, it is particularly desirable to scale the
instruction fetch and issue logic since fetch and issue
use considerable energy. 

In this study, we do not adjust the hardware when
changing processor speed. However, we do model the
difference in latency. In our simulations, we scale the
number of processor cycles required to make an access
to main memory while also scaling processor voltage.
We model the difference in latency for all external
memory accesses, including TLB misses. 

5. Experimental Results
To study the impact of run-time adjustment of supply
voltage on processor energy, we added dynamic voltage
scaling to the Wattch processor simulator [3]. For this
study, we used benchmarks from SPEC95 and Media-
Bench. We simulated a four-way out-of-order supersca-
lar processor with 64K L1 I and D caches, a 256K L2
unified cache, and a 16 entry instruction window.

Using our simulator, we evaluated whether scaling
voltage in response to ILP improves energy consump-
tion. Figure 1 shows energy improvement for the bench-
marks. To determine energy improvement, we
compared the energy consumption of a processor with
voltage scaling (called a “VS processor”) against one
that ran at a fixed clock speed and voltage. In Figure 1,
each set of bars is labelled with goal performance and
the clock speed of the baseline. For example, “800
MIPS/700 MHz” means the VS processor tries to
achieve 800 MIPS and the baseline runs at 700 MHz,
1.65 V. For “700 MIPS/600 MHz”, the baseline runs at
600 MHz, 1.6 V, and for “600 MIPS/500 MHz”, the
baseline runs at 500 MHz, 1.5 V. In all cases, the VS
processor runs at 200–700 MHz and 1.1–1.65 V. 

For most benchmarks, dynamically scaling voltage
reduces energy consumption. From Figure 1, energy

fnew fold
MIPSgoal

MIPSobserved
----------------------------------×=

when watchdog_interval expires {
observed ← committed_instrs / 2 µs;
new_freq ← ceil(freq * goal / observed);
if (new_freq < freq - 33 MHz ||

 new_freq > freq + 33 MHz) {
stop_instruction_fetch();
wait_for_pipeline_to_drain();
level ← get_discrete_setting(new_freq);
voltage ← voltage_table[level]; 
freq ← frequency_table[level];
resume_instruction_fetch(); }

committed_instrs ← 0;
watchdog_interval ← 2 µs; }

Table 1: Watchdog Timer Handler



4

improves from 0.76 to 2.27 times, with an average of
1.47. The benchmarks that do the best have enough ILP
to trade speed for parallelism. For the benchmarks that
have an energy degradation, there is less ILP. For go
and adpcmenc, goal performance of 600 or 700 MIPS
causes the VS processor to run at clock rates higher than
the fixed frequency baselines. These benchmarks spend
57–61% of their cycles at a clock rate that is higher than
the baselines’ clock rate. Another reason for possible
energy degradation is we use performance over a previ-
ous time interval to predict performance of the next
interval. For applications that have varying patterns of
ILP, using an earlier interval to predict a future one is
likely to be ineffective. 

The metric energy×delay (E•D) gives an idea of how
both execution latency and energy are affected by
dynamic voltage scaling. Figure 2 shows that the
improvement in E•D varies from 0.83–1.37 (average is
1.11). From Figures 1 and 2, the improvement in energy
did not adversely hurt execution latency for li, com-
press, adpcmdec, g721dec, and g721enc. These bench-
marks have enough parallelism that goal performance

can be achieved while running at slow clock rates. For
perl, go, and adpcmenc, the low E•D is due to a lack of
an energy improvement. Indeed, these benchmarks have
similar or better execution latencies than the fixed fre-
quency baselines. From Figures 1 and 2, we conclude
that dynamically adjusting processor supply voltage and
clock rate in response to ILP is an effective way to
reduce processor energy. This technique is particularly
well suited to applications that have much ILP.

6. Summary
This paper describes a technique for dynamically adjust-
ing processor supply voltage and clock speed in
response to changes in ILP. By changing supply voltage
and clock speed, an aggressive superscalar processor
can maintain a goal level of performance while consum-
ing less energy. Our technique reduces energy by up to
47% for a quad-issue superscalar processor.

References
[1] Bahar R. I., Albera G. and Manne S., “Power and perfor-
mance trade-offs using various Caching Strategies”, Int’l.
Symp. on Low-Power Electronics and Design, 1998.
[2] Benini L. and De Micheli G., “System-level power opti-
mization: Techniques and tools”, ACM Trans. on Design Auto-
mation of Electronic Systems, 2000.
[3] Brooks D., Tiwari V., and Martonosi M., “Wattch: A
framework for architectural-level power analysis and power
optimization”, Int’l. Symp. on Computer Architecture, 2000.
[4] Chandrakasan A. and Brodersen R., Low Power Digital
CMOS Design, Kluwer Academic Publishers, 1995.
[5] Childers B. and Nakra T., “Reordering memory bus
transactions for reduced power consumption”, ACM SIGPLAN
Workshop on Languages, Compilers, and Tools for Embedded
Systems, 2000.
[6] Hong I., Potkonjak M., and Srivastava M.B., “On-line
scheduling of hard real-time tasks on variable voltage proces-
sors”, Int’l. Conf. on Computer-Aided Design, 1998.
[7] Hong I., Qu G., Potkonjak M., and Srivastava M., “Syn-
thesis techniques for low-power hard real-time systems on
variable voltage processors”, Proc. of the 19th IEEE Real-
Time Systems Symposium, 1998.
[8] Kin J., Gupta M., and Mangione-Smith W. H., “The filter
cache: A energy efficient memory structure”, IEEE/ACM 30th
Int’l. Symp. on Microarchitecture, 1997.
[9] Manne S., Klauser A., and Grunwald D., “Pipeline gat-
ing: Speculation control for energy reduction”, Int’l. Symp. on
Computer Architecture, 1998.
[10] Marculescu D., “Power efficient processors using multi-
ple supply voltages”, Workshop on Compilers and Operating
Systems for Low Power, during PACT’2000, 2000. 
[11] Daniel Mossé, Hakan Aydin, Bruce Childers, and Rami
Melhem, “Compiler-assisted dynamic power-aware schedul-
ing for real-time applications”, Workshop on Compilers and
Operating Systems for Low Power, during PACT’2000, 2000.

Figure 1: Energy Improvement

Figure 2:  Energy×Delay Improvement

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

li

co
mpre

ss pe
rl go

ad
pc

mde
c

ad
pc

men
c

g7
21

de
c

g7
21

en
c

Benchmarks

Im
pr

ov
em

en
t

800 MIPS/700 MHz
700 MIPS/600 MHz
600 MIPS/500 MHz

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

li

co
mpre

ss pe
rl go

ad
pc

mde
c

ad
pc

men
c

g7
21

de
c

g7
21

en
c

Benchmarks

Im
pr

ov
em

en
t

800 MIPS/700 MHz
700 MIPS/600 MHz
600 MIPS/500 MHz




