
The Journal of Systems and Software 73 (2004) 15–29

www.elsevier.com/locate/jss
Design and analysis of a replicated elusive server scheme
for mitigating denial of service attacks q

Chatree Sangpachatanaruk a, Sherif M. Khattab b, Taieb Znati a,b,*, Rami Melhem b,
Daniel Moss�e b

a Department of Information Science and Telecommunication, University of Pittsburgh, Pittsburgh, PA 15260, USA
b Department of Computer Science and Telecommunication, University of Pittsburgh, Sennott Square, Pittsburgh, PA 15260, USA

Received 11 July 2003; received in revised form 2 September 2003; accepted 3 September 2003

Available online 25 December 2003

Abstract

The paper proposes a scheme, referred to as proactive server roaming, to mitigate the effects of denial of service (DoS) attacks.

The scheme is based on the concept of ‘‘replicated elusive service’’, which through server roaming, causes the service to physically

migrate from one physical location to another. Furthermore, the proactiveness of the scheme makes it difficult for attackers to guess

when or where servers roam. The combined effect of elusive service replication and proactive roaming makes the scheme resilient to

DoS attacks, thereby ensuring a high-level of quality of service. The paper describes the basic components of the scheme and

discusses a simulation study to assess the performance of the scheme for different types of DoS attacks. The details of the NS2-based

design and implementation of the server roaming strategy to mitigate the DoS attacks are provided, along with a thorough dis-

cussion and analysis of the simulation results.

� 2003 Published by Elsevier Inc.

Keywords: Denial of service attacks; Security; Elusive servers; Replication; Migration; Simulation; Performance analysis
1. Introduction

The widespread need and ability to connect machines

across the Internet, in a world where intelligent objects

rather than documents are exchanged, has caused the

network to be more vulnerable to intrusions and has
facilitated break-ins of a variety of types. Most of the

methods currently available to deal with network vul-

nerability to abuse and attacks are either inadequate,

inefficient or overly restrictive. Compounding the prob-
qThe authors were supported in part by NSF under grant ANI-

0087609.
*Corresponding author. Address: Department of Computer Science

and Telecommunication, University of Pittsburgh, Sennott Square,

Pittsburgh, PA 15260, USA. Tel.: +1-412-624-8417; fax: +1-412-624-

8050.

E-mail addresses: chatree@cs.pitt.edu (C. Sangpachatanaruk),

skhattab@cs.pitt.edu (S.M. Khattab), znati@cs.pitt.edu (T. Znati),

melhem@cs.pitt.edu (R. Melhem), mosse@cs.pitt.edu (D. Moss�e).

0164-1212/$ - see front matter � 2003 Published by Elsevier Inc.

doi:10.1016/j.jss.2003.09.012
lem is the need to maintain an acceptable level of quality

of service (QoS).

The proposed research assumes the existence of in-

trusion detection mechanisms and aims at developing

new and potentially revolutionary approaches for the

development of scalable and efficient tools for network
service protection. We will consider two types of faults:

benign malfunctions and malicious intrusions. The former

can be caused by a faulty, yet legitimate client that loses

control over its behavior, while the latter occurs with the

intent to cause damage, such as denial of service (DoS).

Both types of faults can severely affect the performance

of the network and compromise the integrity and secu-

rity of its services.
We consider a network where servers provide proba-

bilistic QoS guarantees to clients through a contract

protocol. These servers may be subject to two forms of

faults, namely protocol breach and contract violation.

Both types of faults can be either benign or malicious. In

order to protect the servers and the network, we propose

mail to: chatree@cs.pitt.edu

16 C. Sangpachatanaruk et al. / The Journal of Systems and Software 73 (2004) 15–29
a fault avoidance technique based on the concept of

replicated elusive servers. The concept of replicated elu-

sive service can be implemented using a roaming address

for fixed servers in a wireline network, or switching to a

different frequency for mobile servers in a wireless net-

work. Replication is coordinated through group com-
munication supported by an underlying multi-cast

mechanism.

In this paper, we show our study of the replicated

elusive servers using proactive roaming technique to

mitigate these types of faults, more specifically the faults

caused by DoS attacks. We categorize DoS attacks with

regard to the location of the resources they are targeting.

Whereas node-based DoS attacks focus on depleting the
resources at servers, the main goal of link-based DoS

attacks is to saturate critical links in the path of legiti-

mate requests. Typically, node-based attacks make use

of known vulnerabilities of operating systems and net-

work protocol implementations. Also, due to current

link speeds, the number of illegitimate packets needed to

launch a node-based attack is much less than their link-

based counterparts. If the server can distinguish between
legitimate and illegitimate packets, DoS attacks can be

stopped by simply dropping the illegitimate packets.

One can think of classifying packets based on their

source address, restricting access to the server to packets

coming from known legitimate source addresses.

Unfortunately, current Internet routing protocols en-

able IP spoofing, where the source address of a packet

can be a fake one. Another solution is to use more
complex cryptography-based authentication schemes.

The overwhelming of the authentication process caused

by many illegitimate requests, however, is a DoS attack

in itself.

Our goal is to design and implement a practical

framework to mitigate the effects of both types of DoS

attacks and not to scarify too much resources. We begin

by studying the cost and benefit of our proposed tech-
nique, the proactive server roaming, via a simulation and

a real prototype implementation. Our simulation in the

previous work (Sangpachatanaruk et al., 2003) showed

that the proactive server roaming has potential to im-

prove the DoS defensive strategy. In this paper, we ex-

tend our work to cover the scheme in a larger simulated

network, and show our design, including the algorithms

used in the main components, and analysis of the system
in more detail.

The organization of the paper is the following. First,

the related works are presented in Section 2. Second, the

system model is described in Section 3. Third, the sever

roaming background is explained in Section 4. Fourth,

the overview of our simulation model is described in

Section 5. Fifth, the experiment design and procedures

are explained in Section 6. Seventh, we show the results
and analysis in Section 7. Last, the conclusion and the

future work are presented in Section 8.
2. Related works

2.1. Denial of service attack defenses

In the following, we present some of the current de-

fenses and mitigation techniques for the two categories
of DoS attacks, namely node-based and link-based.

2.1.1. Node-based attack defenses

In node-based attacks, the imbalance between the

amount of resources needed to make a request and the

amount of resources needed to satisfy this request

creates a cost-effective DoS attack opportunity. By

sending a cheap illegitimate request, an attacker can
hold a quantifiable amount of resources. Launching a

large amount of such requests can exhaust the finite

server resources. Some mechanisms were developed to

defend against such attacks. Resource pricing (Mankins

et al., 2001) assigns a dynamic cost to each resource

based on the system load. This cost has to be dispensed

from the requesting client before the resource is allo-

cated. Client puzzles (Juels and Brainard, 1999) is a
special case of such a pricing mechanism, where the

client has to solve a cryptographic problem with vary-

ing complexity before the server allocates resources to

the request and starts servicing it. Both of these tech-

niques can be implemented transparently to the server

application, either as a gateway or as a middleware

layer. The main disadvantage is the requirement of

special client software.
The lack of resource management facilities in current

widely-deployed operating systems is another cause of

the node-based DoS attacks. The ability to account for

resources allocated to each client according to negoti-

ated contracts, detect contract violations and recover

misused resources is a design target of the Scout oper-

ating system (Spatscheck and Petersen, 1999). Using the

techniques employed in quality of service regulation

(Garg and Reddy, 2002), such as rate-based and win-

dow-based regulation, can provide a means for resource

management, leading to a graceful performance degra-

dation under DoS attacks. In the latter mechanism, a

bastion host is used to keep track of server resource us-

ages at the network level and regulate all traffic passing

through it. All the above techniques fall into the DoS

mitigation track.

2.1.2. Link-based attack defenses

While defenses against node-based DoS attacks can

create a shielded boundary protecting resources behind

it, a link-based attack can target the uplink connecting

this boundary to the high-bandwidth network back-

bone. Once under attack, two reactions need to be done.

A system may deploy either appropriate packet filters at
the network egress points with the minimum false pos-

itives and false negatives, or identify attack sources in

Table 1

DoS defense classification

Attack type Defense technique

Mitigation Classification-

based

Attack-tracking

Node-based Resource

pricing

None Hash-based

Client puzzles IP traceback

QoS

regulation

Resource

management

Link-based IP hopping DPF Packet marking

SOS Hash-based

Mutable

services

IP traceback

VIPnet

C. Sangpachatanaruk et al. / The Journal of Systems and Software 73 (2004) 15–29 17
order to stop them. Two dangerous link-based attacks:

spoofed source address and reflector attacks (Paxson,

2001), however, are very difficult to be filtered and

identified. Although reflector attack packets have valid

source addresses, the huge amount of participating re-

flectors create the difficulty of tracing back to the
sources of the original attack packets which are being

reflected, and the fact that most attack packets are tar-

geted to vital network services make this attack type one

of the most challenging DoS attacks.

Ingress packet filtering (Ferguson and Senie, 2001) is

proposed to defend against some DoS attacks. The filter

is required to placed on the boundary of every single sub-

network. Route-based distributed packet filtering (DPF)
(Park and Lee, 2001) requires the cooperation of a small

subset of intermediate routers strategically placed within

the network (one possibility is placing the filtering rou-

ters on the vertex cover of the network graph). A router R
drops a packet if there is no path in the graph from the

packet’s source to the packet’s destination. This mech-

anism does not block all spoofed packets. However,

upon receiving an attacking spoofed packet, the attacked
host can limit the attack source within a small number of

sub-networks. The main difficulty is how to collect and

maintain this kind of routing information within the

participating routers. In the secure overlay services (SOS)

architecture (Keromytis et al., 2002), only packets com-

ing from a small number of nodes, called servlets, are

assumed to be legitimate. These servlets act as proxies for

legitimate client traffic which can reach the servlets
through secure hash-based routing inside an overlay

network. This helps keeping the address of these servlets

secret. In order to gain access to the overlay network, a

client has to authenticate itself with one of the replicated

access points (SOAPs). In VIPnets (Brustoloni, 2002),

legitimate traffic is assumed to be the traffic coming from

networks implementing the VIPnet service. All other

traffics are considered as low-priority and can be drop-
ped in the case of an attack. The architecture relies on the

provision of QoS mechanisms, such as diffserv (Blake

et al., 1998), in intermediate routers.Mutable services is a

framework to allow for relocating service front-ends and

informing legitimate clients of the new location (Ivan

et al., 2002). All these techniques are examples of clas-

sification-based DoS defenses.

Fast and accurate tracing of an attack to its sources
can help in both deterring attackers and identifying

attacking nodes to be able to stop them from sending

illegitimate packets. IP traceback (Savage et al., 2000)

utilizes path information injected by intermediate rou-

ters as either separate packets or as fields inside packets.

Deterministic packet marking requires each router to

contribute into the packet path information field, while

in non-deterministic packet marking (Park and Lee,
2000; Song and Perrig, 2001) a router makes this con-

tribution with a probability p. An attacked host can
reconstruct the attack path from the large number of

received attacking packets. In hash-based IP traceback

(Snoeren, 2001), even a single packet can be traced to its

actual source allowing for the tracing back of node-

based and original reflector attack packets as well.

These mechanisms are instances of the attack tracking
DoS defenses.

IP hopping (Jones, 2000) is the technique that a server

changes its IP address after detecting it is under attack.

In order for the clients to reach the server, DNS servers

have to be updated with the new IP address. In this

mechanism, the server does not change its location. All

packets destined to the old IP address can be filtered at

the network perimeter by a firewall. To avoid continu-
ous server reconfiguration, a NAT (Network Address

Translation) gateway can be inserted at the network

entry point. IP hopping can be used both reactively and

proactively. One disadvantage of this mechanism is that

during the period of time in which the DNS servers are

reflecting the change in the IP address, all legitimate

client requests are also filtered out. IP hopping is an

example of DoS mitigation defenses. Table 1 summa-
rizes the previous classification.
2.2. TCP-Migration

Two well-known TCP-connection migration mecha-

nisms are the TCP-Migrate (Snoeren et al., 2001b), de-

veloped at MIT, and the Migratory-TCP (Sultan et al.,

2002), developed at Rutgers University. Both attempts
provide the framework for moving one end point of a

live TCP connection from one location and reincarnat-

ing it at another location having a different IP address

and/or a different port number. Both mechanisms deal

with four issues in a slightly different way: (1) how the

TCP connection is continued between the new end

points; (2) impact on the network stack and application

layer in both the server and the client sides; (3) how to

Server

Firewall

Overlay
network

Fig. 1. Server pool and firewalls.

18 C. Sangpachatanaruk et al. / The Journal of Systems and Software 73 (2004) 15–29
recover both TCP and application states; and (4) when

to trigger the migration mechanism. The last two issues

are considered independent of the actual migration

framework and are presented as examples of possible

usage of the mechanism.

In MIT’s TCP-Migrate, during connection estab-
lishment, the migration feature is requested through a

TCP option (Migrate-Enabled). By the means of a

handshaking protocol, a shared key is established be-

tween the two connection end points. As per a migration

request from one end point, represented by another TCP

option (Migrate), the TCP control block at the fixed end

point is updated to reflect the new location of its peer.

To protect against connection hijacking, the secret key
agreed upon during the connection establishment should

accompany the migration request. As an application of

the TCP-Migrate mechanism in a fine-grained fail-over

scheme (Snoeren et al., 2001a), state recovery in the new

server is achieved via periodic state updates from the old

server to the server pool. A widget implementation is

responsible for extracting HTTP state from TCP pack-

ets. The migration request is issued by a new server and
triggered by an overload at the old server, detected by a

health monitor. Implementations at both the transport

and session layers are available. The TCP-layer in both

the server and the client needs to be changed. However,

no application layer updates are necessary, though the

widget implementation is already application-depen-

dent.

During connection establishment between two Mi-
gratory-TCP-enabled peers, a list of available servers,

along with a certificate for each server, is passed from

the server to the client. A migration request, also

implemented as a TCP option, consists of both the

certificate of the new server and the connection id

(client IP address, client port, old server IP address,

old server port) of the migrating connection. However,

no security measures are implemented to protect the
migration process. State recovery at the new server is

achieved either on-demand, that is, when the client

sends the migration request to the new server, or

through periodic state updates. Triggered by an

internal QoS monitor in its kernel, a client can issue a

migration request to any server in the server list which

the client receives in the connection establishment

phase. Both the server and the client TCP layers
should be changed and the server application layer

should also be modified to allow for application-layer

state snapshots and state recovery at the new server. It

should be noted that (Sultan et al., 2001) mentions

briefly the limitation of the on-demand state update in

the case of old server’s crash or failure due to an

attack. As an alternative, they propose to send

state check-points to the client and use this client-
stored state to recover the connection at the new

server.
3. System model

3.1. System components

Our system consists of the following components:

Server pool and firewalls: A pool of N homogeneous
servers physically deployed as in Fig. 1. In this config-

uration, each server is connected to the outside network

through a firewall. Geographically dispersing the servers

and/or deploying them over a resilient overlay network

(RON) (Andersen et al., 2001) provide for better path

independence among the servers. Servers in the server

pool, together with the firewalls, employ techniques of

threshold cryptography (Desmedt, 1994), proactive secret
sharing (Herzberg et al., 1995), and secure group com-

munication (Wong et al., 1998). In order to achieve se-

cure group communication among them, servers in the

server pool share a secret group key. This key is shared

among all the servers without any single server being

able to recover the whole key. We assume loose clock

synchronization among servers (i.e., the clock shift is

bounded by a constant, d) and tight clock synchroni-
zation between each server and its firewall.

Clients: Two classes of clients are assumed: (1) legiti-

mate clients, which subscribe to the service and can es-

tablish secure channels with any servers. By the term

‘‘secure channel’’, we mean the provision of confidenti-

ality, authentication, integrity, and message freshness

(immunity to message replay attacks) (Perrig et al.,

2001). For each legitimate client we assume a QoS
contract with the service. According to this contract, the

current server allocates a certain amount of resources to

each legitimate client request; (2) illegitimate clients

represent malicious attackers trying to degrade the ser-

vice responsiveness.

The service: Our service is a generic TCP-based ser-

vice. The service can be replicated. Only one server is

active and providing the service at any point of time.
Depending on the granularity of clock synchronization,

the active interval of one server can be interleaved with

the active interval of another one while the service is

being roamed. It should be noted that it is easy to extend

this to a scheme in which k servers are active to achieve

load balancing for example.

C. Sangpachatanaruk et al. / The Journal of Systems and Software 73 (2004) 15–29 19
3.2. Threat model

The malicious adversary we are defending against is

interested in launching a denial of service attack against

our services. The adversary can be passive, active, or

both. A passive adversary can eavesdrop on server-to-
server and/or client-to-server communication and apply

cryptanalysis techniques. An active adversary can im-

personate as a legitimate client, obtain access to a le-

gitimate client, and inject malicious messages to servers

and/or to legitimate clients or tamper the messages. The

result of some or all of these actions is a denial of service

attack, node-based or link-based, deployed from the

outside network or from inside a network on which a
server resides. Our adversary can launch attack packets

at a very high but finite rate.
4. Server roaming

We define the server roaming as a framework to

mitigate the effects of DoS attacks. The active server
changes its location among a pool of servers to defend

against unpredictable and likely undetectable attacks.

Only legitimate clients will be able to follow the server as

it roams.

The motivation behind our scheme of server roaming

is three-fold. First, it defends against unpredictable and

undetectable attacks. We assume that attacks and in-

trusions occur and it is not always possible to detect
such malicious activities. The proactive nature allows

our scheme to tolerate undetected attacks, while the

reactive component allows the scheme to benefit from

current advances in intrusion detection techniques

(Axelsson, 2000).

Second, server roaming helps to define accurate and

efficient packet filters to be deployed at the network

boundaries. Except for a small transitional interval, all
packets except those destined for the IP address of the

current active server can be safely considered illegitimate

and can thus be dropped. This adaptive filtering is done

at the firewall box installed at the entry point of each

server.

Third, roaming allows for the detection of misbe-

having legitimate clients. A legitimate client violating its

QoS contract with the service is provided a second
chance after the service roams to the next server. If this

client keeps violating its contract, all its further traffic is

dropped (and service re-negotiation needed to resume

service). A client persisting on violating its contract is

faulty, doing that on purpose, or has already been in-

filtrated by a malicious attacker. In any of these cases,

the client loses its status as a legitimate client. It should

be noted that detecting misbehaving legitimate clients is
only a side advantage of server roaming.
By physically moving the service from one server to

another and cleaning the state of the old server, our

scheme avoids the limitations of logical roaming

schemes, such as IP hopping (Jones, 2000). Only

changing the IP address of the server without physically

moving the service retains the server vulnerable to ma-
licious state entries possibly implanted during the at-

tack. Also, because IP hopping allows for filtering at the

boundary of the network, the server will be still vul-

nerable to the attacks launched from inside the network.

Moreover, illegitimate packets will still go to the same

network after the address is changed, potentially causing

resource depletion at intermediate nodes on the path.

Vulnerability to node-based attacks comes from the
fact that the server is opening its ports and accepting

connections. Replication by itself, while being able to

reduce the effect of link-based DoS attacks, fails to

provide for protection against node-based attacks. This

is because all the replicas are active and accepting con-

nections at the same time. Our server roaming scheme

decreases the amount of time a server is accepting con-

nections and the number of open ports. It also proac-
tively flushes the service state each time the server

roams. This allows for better resilience to node-based

attacks.

Each client is required to establish a trust with the

system before perceiving a knowledge of the secret lo-

cation of the active server. Once a client has this

knowledge, it will be able to track down the active ser-

ver. Our server roaming framework also deals with the
in-process connections. All connections will be migrated

to the new server as the active server moves. The effec-

tiveness of our framework relies on how the legitimate

clients know where the active server is and how we mi-

grate the in-process connections.

4.1. Secure proactive roaming

To be able to know the active server location, a client

need to know at least the server address and the server

active time. These information can be simply obtained

by using a series of communication. To avoid the DoS

attacks on the Internet, however, clients and servers

need a secure communication that provides privacy and

integrity to protect the information.

We propose a secure, proactive and time-triggered
roaming scheme. This scheme defines an upper bound

on the time interval between consecutive server roaming

instances. This upper bound is adaptively changed to

reflect the current threat level. For instance, in a high

threat period this upper bound is set to be small, while it

is set to a larger value in normal conditions. More in-

vestigation on the effect of this bound is left for future

work.
Our scheme utilizes the idea of one-way hash func-

tions, such as SHA-1 and MD5 (Goldreich et al., 1995,

20 C. Sangpachatanaruk et al. / The Journal of Systems and Software 73 (2004) 15–29
1986; Rivest, 1992). For this class of functions, it is

computationally infeasible to reverse the direction of the

function application; that is, given the output of such a

function, it is computationally infeasible for an adver-

sary to know the input. The light-weight computational

overhead of hash functions allows for a simple and ef-
ficient implementation, and is suitable even for the

mobile clients that have computational and power

constraints.

Our scheme involves an initialization phase. When a

legitimate client subscribes to the service, it receives

some information that allows it to create a secure

channel with the service. Before it starts using the ser-

vice, a client waits until it receives a message from the
service carrying the necessary information for calculat-

ing roaming times and roaming target addresses. This

information includes a sequence of keys such that each

key is used to generate the roaming time and the address

of the next roaming target for the roaming instance.

More information of the computation and algorithm is

described in Khattab et al. (2003).
1 NS-2: http://www.isi.edu/nsnam/ns/.
5. Overview of the simulation model

The main purpose for our simulation is to study the

cost and benefit of the server roaming. The cost of server

roaming is measured in term of the increased response

time and the total number of connection migrations

caused by the server roaming; while the benefit of the
server roaming is measured in term of the improved

response time while the server is being attacked.

We use a simple FTP client–server as the model for

the simulated application. To start a FTP session, a

client first sends a request for a file to the server. The

server, then, sends the file back to the requesting client.

To enable our roaming scheme, we add an authenticator

to receive the initial client requests and to distribute
roaming information to the legitimate clients. With the

knowledge of the roaming algorithm, any client can

follow the active server by its own computation.

The migration model is simplified by deploying a fix

migration interval for a simulation. The active server is

scheduled to roam among the servers in the pool in a

certain time interval. We call this interval the roaming

interval. It is one of the variable that we are interested to
study. Once a client contacts the authenticator, it will

receive the addresses of the servers, the pointer to the

active server and the roaming interval. The client, then,

uses this information to migrate from one server to

another throughout the session.

We have built two types of the attacks. The first type

of the attack deploys constant bit rate (CBR) traffic

generators as the attackers, while the second one utilizes
a group of normal FTP clients to attack. Both of them

are the link-based attacks. The protocols used in trans-
port layers and the attacked resources, however, are

different. The CBR generator uses UDP, while the

normal FTP client deploys TCP. In addition, the UDP

generator generates only one way traffic; therefore, the

UDP attackers deplete only the bandwidth of the paths

from the source to the destination. In contrast, the TCP
generator generates two-way traffic; thus, the TCP at-

tackers target the bandwidth in both directions. The

path that is for the acknowledgment, however, has a

much lighter attacking traffic than the path used to carry

the data.

We split the experiment into four cases: (1) no at-

tackers and no migration, (2) migration without being

attacked, (3) being attacked without migration, and (4)
being attacked with migration. The first case will give us

the cost of a FTP transfer, while the second cases will

give us the cost of the roaming. The cost incurred by the

attacks will be shown in the third case. Lastly, the fourth

case will draw the benefit of deploying roaming to mit-

igate the attack. The procedure how we build our sim-

ulation to support the roaming model and how we

simulate these four cases will be described in the next
section.
6. Experiment design and procedure

We use Network Simulator version 2 (NS-2 1) for our

simulation. We modified the TCP agent module and

added the socket layer to support the TCP migration. In
addition, we created the multi-threaded FTP server and

client modules to be used as our testbed application for

the simulation. They works on top of the socket layer,

where the migration and TCP agent management take

place. All of these components are combined to simulate

a practical client and server model. A client is required

to initiate communication with a server and then the

server creates a thread to serve the request. The thread
remains alive until the request is fulfilled completely. A

simple scenario of a server serving four clients by using

four threads can be viewed in Fig. 2.

According to the migration model mentioned in the

previous section, each client needs to connect to the

authenticator to get information about the servers in

the pool and the roaming interval before starting a FTP

session. We achieve this by deploying a module in the
FTP client. Each FTP client is required to setup a TCP

connection to the authenticator before receiving the

servers’ addresses and the roaming interval. Then, the

client initiates another TCP connection with the active

server and starts a transfer session. Later, if the migra-

tion schedule is reached before finishing the session, the

client will use the socket to manage the migration. A

http://www.isi.edu/nsnam/ns/

Socket

TCP

Socket

TCP

Socket

TCP

Socket

TCP

FTP Server

Socket

TCP

FTP Client

Socket

TCP

FTP Client

Socket

TCP

FTP Client

Socket

TCP

FTP Client

Fig. 2. Logical connections of the FTP multi-thread server.

Legit Client

BW:1Mb/s

Delay: 2 ms
BW:1Mb/s

Delay: 2 ms
BW:1Mb/s

Delay: 2 ms
BW:1Mb/s

Attacker

Server

Server

Server
Delay: 1 ms
BW: 10Mb/s

Attacker

Attacker

Attacker

Delay: 2 ms
BW:1Mb/s

Delay: 2 ms
BW:1Mb/s

Delay: 2 ms
BW:1Mb/s

Delay: 2 ms
BW:1Mb/s

Delay: 2 ms
BW:1Mb/s

Router Router

Authenticator

Delay: 2 ms

Fig. 3. Topology of the simulated network.

C. Sangpachatanaruk et al. / The Journal of Systems and Software 73 (2004) 15–29 21
socket manages a migration by first recording the cur-

rent state (e.g. number of remaining bytes) of the con-

nection and then simply dropping the current TCP
agent, and starting a fresh TCP agent to connect to the

current active server. The client will deploy the old

connection state, such as the number of byte left, to

control this TCP agent. The state of the previous TCP,

however, is simply dropped, since the state along the

path to the new server is likely to be different. The al-

gorithms we use are described in the procedures below.

FtpClient::procedure FTP_Request(Auth, File_Size)

1: auth_socket¼ get_connection(Auth)

2: secret¼ auth_socketfi get_secret_tracking()

3: a_server¼ secretfi get-active-server()

4: auth_socketfi close()

5: m_socket¼ get_connection(a-server)

6: m_socketfi request-file(File_Size)

7: set_migrate_timer¼ get_next_migrate(secretfi
migrate_interval)

FtpClient::procedure Download_complete()

cancel_migrate_timer()

collect_statistics()

FtpClient::procedure Timeout()

if Download_File_Not_Done then

m_socketfimigrate(secretfi get_next_server)

end if

MSocket::procedure Migrate(new_server)

1: byte_remain¼ byte_requested) byte_received

2: byte_requested¼ byte_remain

3: byte_received¼ 0

4: old_tcp_agent¼ current_tcp_agent
5: old_tcp_agentfi close()

6: current_tcp_agent¼ new TCP_Agent(new_server)

7: current_tcp_agentfi connect()

8: current_tcp_agentfi request(byte_remain)

We experiment the simulation on two topologies,

namely 10- and 40-node networks. We start the simu-

lation from the first topology to study the behaviors of
all players, i.e. clients, attackers, servers, TCP agents,
and etc., in detail; while the second topology allows us

to study all players in a more practical environment. The

parameter settings and the main simulation procedures
for these two schemes are described in the next subsec-

tions.

6.1. Simulation design for a small network

First, a 10-node network, as shown in the Fig. 3, is

composed of three servers, one client, four attackers and

two router nodes. All FTP clients are originated from
the same client node. Some configuration parameters,

including the link rate and propagation delay for each

link are also shown in the figure. For each simulation

with the 10-node network, we take 20 runs with the total

number of 100 independent FTP client requests for each

run. The file size of each transfer is fixed to 1 Mbps. The

total load of the clients in the system is varied from 0.1

to 0.9. To control the load of each run, we use the
poison process to model the arrival of the FTP requests.

The inter-arrival time of the FTP-client (ITCarr) is

computed by

ITCarr ¼ expðAtftp=TotloadÞ;
where Atftp is the average total time for a file transfer,

Totload is the given client total load, and exp(x) is the

exponential distribution with mean x.
We carefully consider the roaming intervals to

study according to the setup that we have. The small

interval will cause unnecessary migration, while the

22 C. Sangpachatanaruk et al. / The Journal of Systems and Software 73 (2004) 15–29
large interval will gain higher chance for being attacked.

We select the roaming intervals that are big enough to

allow at least one client to finish a transfer within at

most one migration in the lightly load environment.

According to this simulation setups, a client takes about

1.1 s in average to finish a transfer. Therefore, the
roaming intervals are varied among 2, 4, 6, 8 and 10 s.

We simplify the attack model by assuming that the

attackers would attack only one active server. They do

not know where the other servers are. The attack load is

distributed uniformly to all four attack nodes. For the

10-node network we experiment two types of attacks,

UDP and TCP attacks. In the case of UDP attack, we

setup one CBR traffic generator on each attacker node.
The fixed size 1000 bit for a packet is used. The rate of

attack depends on the given total attack load (Totatt) for

each run. We calculate the rate Ratt of each CBR traffic

generator from the formula

Ratt ¼ ðTotatt � BWblinkÞ=ð1000 � NattÞ;
where BWblink is the bandwidth of the bottle neck link

and Natt is the number of attackers (CBR sources). We

vary the attack loads among 0.6, 0.8, 1.0, 1.2, 1.4 and 1.6

of the bottle neck link bandwidth (1 Mbps in this con-
figuration). In the case of TCP attack, the attack load is

computed in term of arrival rate of the attackers, similar

to the ITCarr formula above. The load of the attacker,

however, are distributed among the attacker nodes. We

vary the total attack load among 0.2, 0.4, 0.6. 0.8 and 1.0
12

29

11

28

109

27

8

26
7

25

6

24

5

23

4

22

3

2

0

Fig. 4. Topology of the s

Table 2

Parameter settings for the simulation

Case of simulation Parameter settings

Client load Migration inter

1. No Mig & No Att 0.1–0.9 n/a

2. Mig & No Att 0.1–0.9 2, 4, 6, 8, 10

3. No Mig & Att 0.1–0.9 n/a

4. Mig & Att 0.1–0.9 2, 4, 6, 8, 10
of the bottle link bandwidth. We use the range of the

attack loads lower than those used in the UDP attacks

because the TCP seems to be more aggressive and sen-

sitive to the available bandwidth than does the UDP. The

high rate of TCP attack may cause the system fluctuate

too drastically to study. Moreover, the UDP attack will
compete with the lighter legitimate traffic along the ac-

knowledgment (ACK) path; while the TCP attack will

deplete resources along the data path directly. In other

words, the UDP attack will deplete resources only along

the path from client to server; while the TCP attack,

deploying the same FTP request–response, uses up most

of resources along the path from the server to the client.

The summary of all the values used in each simulation
are described in Table 2.

6.2. Simulation design for a large network

A 40-node network, shown in the Fig. 4 is composed

of three servers, labeled node 12, 14 and 23 and one

authenticator, labeled node 0, and 35 client nodes. The

links are assigned as recommended in Ratnassamy et al.
(2002) with the following bandwidths and delays: 1

Mbps bandwidth and 10 ms delay for intra-stub links

and 10 Mbps bandwidth and 1 ms delay for all inter-

stub links, i.e. links connecting to node 0 and 1, and the

33–36 and 9–16 links.

We design the experiment for this network different

from the the 10-node network simulation. Basically, the
16

34

15

33

14

32

13

31

30

41
39

40

21

38

19

20

37

1

18

36

17

35

imulated network.

val (s) Attack load (of bottle link bandwidth)

n/a

n/a

TCP att: 0.2, 0.4, 0.6, 0.8, 1.0

UDP att: 0.6, 0.8, 1.0, 1.2, 1.4, 1.6

TCP att: 0.2, 0.4, 0.6, 0.8, 1.0

UDP att: 0.6, 0.8, 1.0, 1.2, 1.4, 1.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

client load

av
g.

 c
lie

nt
 r

es
po

ns
e

tim
e

fo
r

ea
ch

 tr
an

sf
er

Migrate Intervals vs Average Client Response Time

miv: 2s
miv: 4s
miv: 6s
miv: 8s
miv: 10s
No migrate

Fig. 5. Cost of the roaming: increased response time.

14

16

tr
an

sf
er

Average Number of Migration & Migrate Intervals

miv: 2s
miv: 4s
miv: 6s
miv: 8s

C. Sangpachatanaruk et al. / The Journal of Systems and Software 73 (2004) 15–29 23
network is larger and we need to introduce the ran-

domness to the locations of the senders of the legitimate

and illegitimate requests. In addition, the servers are

places at the different stub domains as defined in our

system models in Section 3 to simulate an effective model

for the roaming scheme. To simplify the analysis, we
carefully place the servers where they all have the same

access bandwidth (i.e. 3 Mbps) and where they all have

some independent paths from clients to access. We take

five runs with a total clients requests generated in the first

four hundred seconds for each run. After the four hun-

dredth second, we stop generating the request and let the

simulation run until all transfers are completed. We

schedule the requests using the following procedure.

Procedure Schedule_FTP_Req_Forty_Node_Network

(client_load)

1: avg_it_arrival_time¼Atftp/Totclientload
2: c_start¼ c_init_start_time; i ¼ 0

3: while c_start 6 400.0 do

4: cit¼ exp(avg_it_arrival_time)

5: c_start¼ c_start + cit

6: client(i).attach_node(uniform(l,35))

7: start client(i) at time c-start
8: increment i
9: end while

For the roaming interval, since a client takes about

1.5 s in average to finish a transfer, the roaming intervals

were varied among 4, 8, 10, and 20 s for the 40-node
network. For the attack model, we use the same simple

model of attacking only one server as does in the small

network simulation. The only type of the attack we run,

however, is only the TCP.

The attackers’ nodes are picked uniformly among

client nodes in the same way we pick the client node for

a request. The attack load is computed in term of arrival

rate of the attackers, similar to the ITCarr formula above.
The load of the attacker, however, are distributed

among the attacker nodes. We use the total attack load

of 1.0 of the total access bandwidth, i.e. 3 Mbps.

Moreover, the simulation starts introducing the attack-

ers at the hundredth second and stop the attack at the

three hundredth second. The summary of all the values

used in each simulation are described in Table 3.
Table 3

Parameter settings for the simulation

Case of simulation Parameter settings

Client load Migration

interval (s)

Attack load

1. No Mig & No Att 0.1–0.9 n/a n/a

2. Mig & No Att 0.1–0.9 4, 8, 10, 20 n/a

3. No Mig & Att 0.1–0.9 n/a 1.0

4. Mig & Att 0.1–0.9 4, 8, 10, 20 1.0
7. Results/analysis

In this section, the results of all simulations will be

described with our analysis. The result and analysis of

the simulation of a 10-node network and the 40-node

network will be described respectively.

7.1. Result/analysis of the 10-node network simulation

We study the cost of the roaming from the compar-

ison of the results from case (1) and (2) in Table 2. Later,

we shows the benefit of the roaming by first introducing

the cost incurred by the attacks and then comparing the

results of case (3) and (4) from the table.

7.1.1. The cost of the roaming

We measure the cost of the roaming in term of the

increased response time and the average number of

migrations for a transfer. They are shown in Figs. 5 and

6 respectively. According to these results, the roaming

interval is the main factor for the roaming cost. As the

roaming interval decreases, the average response time
and number of migrations for a transfer increase. This

relation can be explained that as the roaming interval
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

client load

av
g.

 n
um

be
r

of
 m

ig
ra

tio
n

fo
r

ea
ch

 miv: 10s

Fig. 6. Cost of the roaming: number of migrations.

24 C. Sangpachatanaruk et al. / The Journal of Systems and Software 73 (2004) 15–29
decreases, the probability that a transfer will finish

without any migration diminishes. This will cause av-

erage number of migrations per a transfer increases and

lead to a longer time to finish a transfer, due to the delay

introduced by starting fresh connections. In addition,

the cost, which can be seen as the vertical distance be-
tween the base case (no migration) and the case of in-

terest in the Figures, in both terms will get higher as the

total load in the system grows. The total load of FTP

clients reflects how many FTP connections are at the

same time. When the total load increases, the competi-

tion among the connections for the limited bandwidth of

the bottleneck link get more intense, leading to the

longer average transfer time. This gains the chance for a
connection to be migrated before finishing a transfer. As

a result, with the effects of the bandwidth competition

and the migration, the cost of migration will increase

exponentially as the total load of the system increases.

7.1.2. The loss by the attack

The costs introduced by UDP and TCP attacks are

shown in Figs. 7 and 8 respectively. In the case of the
av
g.

 c
lie

nt
 r

es
po

ns
e

tim
e

fo
r

ea
ch

 tr
an

sf
er

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

client load

client loads vs. average response time for each attack load

att:0.6
att:0.8
att:1.0
att:1.2
att:1.4
att:1.6
No attack

(a)

Fig. 7. Cost caused from the UDP attacks: (a) effect of total load to each

av
g.

 c
lie

nt
 r

es
po

ns
e

tim
e

fo
r

ea
ch

 tr
an

sf
er

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140

160

180

200

client load

Attack Loads vs Client Response Time

att load:0.2
att load:0.4
att load:0.6
att load:0.8
att load:1.0
No attack

(a)

Fig. 8. Effect of the TCP attacks: (a) attack effect (tota
UDP attack, only the cases that the total attack load

higher than 1.0 affect the average transfer time of the

FTP client. These high attack loads (attack loads of 1.2,

1.4 and 1.6), however, show an interesting and doubtful

results. Two relations drawn from the results in partic-

ular are our interest. First, when the client load is in the
range of 0.1–0.3, the average response time is getting

better as the load of the client increases. Second, in-

creasing the attack load from 1.2 to 1.4 brings the av-

erage response time up; while increasing the attack load

from 1.4 to 1.6 improves the average response time. In

the case of the TCP attack, all attack loads affect the

average response time of the FTP clients. The effect

gains significance as the attack load increases. In gen-
eral, the results of the TCP attacks seem reasonable;

however, the result at the 1.0 TCP attack load is skep-

tical since the result in the case of the light load of client

shows the worse average response time comparing to the

results from the the higher client load simulations.

We validate the results by monitoring and tracing the

simulations. We first look at the number of dropped

packets for each case. We explain the worst average
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

10

20

30

40

50

60

70

80

90

attack load

client load vs. average response time

load 0.1
load 0.2
load 0.3
load 0.4
load 0.5
load 0.6
load 0.7
load 0.8
load 0.9

av
g.

 c
lie

nt
 r

es
po

ns
e

tim
e

fo
r

ea
ch

 tr
an

sf
er

(b)

attack load case, (b) effect of attack load to each client load case.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

attack load

Client Load vs Client Response Time

load 0.1
load 0.2
load 0.3
load 0.4
load 0.5
load 0.6
load 0.7
load 0.8
load 0.9

av
g.

 c
lie

nt
 r

es
po

ns
e

tim
e

fo
r

ea
ch

 tr
an

sf
er

(b)

l attack load), (b) attack effect (total client load).

1 1.1 1.2 1.3 1.4 1.5 1.6
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

attack load

nu
m

be
r

of
 d

ro
pp

ed
 p

ac
ke

ts

Client Load vs. Number of Dropped Packets (Client Load)

load:0.1
load:0.2
load:0.3
load:0.4
load:0.5
load:0.6
load:0.7
load:0.8
load:0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

attack load

nu
m

be
r

of
 d

ro
pp

ed
 p

ac
ke

ts

Client Load vs. Number of Dropped Packets (Client Load)

load:0.1
load:0.2
load:0.3
load:0.4
load:0.5
load:0.6
load:0.7
load:0.8
load:0.9

(a) (b)

Fig. 9. Number of dropped packets categorized by client load: (a) number of dropped packets of the UDP attack, (b) number of dropped packets of

the TCP attack.

C. Sangpachatanaruk et al. / The Journal of Systems and Software 73 (2004) 15–29 25
response time at the light load of clients and high load of

attack by drawing the number of dropped packets

shown in Fig. 9. According to the graphs, when the at-

tack load is high (1.2 for UDP attack and 1.0 for TCP

attack), the number of the dropped packets in the cases

of 0.1 client load is the highest comparing to those in

other higher load cases. This can be explained that the

light load of traffic from the legitimate clients allure their
TCP agents to inject packets to the servers faster than

the rate they should be. Therefore, their packets are

dropped a lot more than those in the higher client load

cases, where by the agents rather perceive congestion

along the path.

For another questionable relation, shown in results

from UDP high load attacks, we can explain by de-

ploying the proportion of the number of packet drops to
arrivals from legitimate clients. As shown in Fig. 10, this

proportion in the case of the 1.4 total attack load is the

highest comparing to those in all other attack load cases;

the case of 1.6 total attack load has the smallest pro-

portion in all three high load attack cases. Our conjec-
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

client load

%
 d

ro
pp

ed
 p

ac
ke

ts
 fr

om
 a

ll
ar

riv
al

 p
ac

ke
ts

 a
t s

er
ve

r
lin

k

Client Load vs. % of Dropped Packets (good drops/arrivals): No Migration

att:0.6
att:0.8
att:1.0
att:1.2
att:1.4
att:1.6
No attack

(a)

Fig. 10. Proportion of packet drops to arrivals: (a) catego
ture of this phenomenal is that the TCP state has

changed when the total attack load is higher than 1.4. In

other word, when the total attack load is higher than

1.4, the TCP agents for the legitimate FTP clients have

perceived the congestion along the path to the server

and adjust themselves by shrinking their sending win-

dows. This will, in return, let them complete delivering

more packets to the server and receive better response
times than do the agents in the cases of the attack load

1.2 and 1.4.

7.1.3. Benefit of the server roaming

The benefits of applying the server roaming to the

UDP and TCP attack cases are shown in Figs. 11 and 12

respectively. In the case of UDP attack, the average

response time is reduced significantly when the roaming
server is applied in the case of high attack load. Fig.

11(a) and (b) show the significant improvement, even in

the case of high migration cost of 2-s roaming interval.

In the case of the TCP attack, the roaming improves the

average response time in all simulated cases. The reason
1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

attack load

%
 d

ro
pp

ed
 p

ac
ke

ts
 fr

om
 a

ll
ar

riv
al

 p
ac

ke
ts

 a
t s

er
ve

r
lin

k

Client Load vs. % of Dropped Packets(good drops/arrivals): No Migration

load:0.1
load:0.2
load:0.3
load:0.4
load:0.5
load:0.6
load:0.7
load:0.8
load:0.9

(b)

rized by attack load, (b) categorized by client load.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80
average response time for each transfer (fix attack load 1.4)

re
sp

on
se

 ti
m

e(
se

c)

client load

miv: 2s & att 1.4
miv: 4s & att 1.4
miv: 6s & att 1.4
miv: 8s & att 1.4
miv: 10s & att 1.4
nomiv & att 1.4
nomiv & noatt

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35
average response time for each transfer (fix attack load 1.6)

re
sp

on
se

 ti
m

e(
se

c)

client load

miv: 2s & att 1.6
miv: 4s & att 1.6
miv: 6s & att 1.6
miv: 8s & att 1.6
miv: 10s & att 1.6
nomiv & att 1.6
nomiv & noatt

(a) (b)

Fig. 11. Benefit of roaming: UDP attacks. (a) 1.4 UDP attack, (b) 1.6 UDP attack.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120
average response time for each transfer (fix attack load 0.8)

re
sp

on
se

 ti
m

e(
se

c)

client load

miv: 2s & att .8
miv: 4s & att .8
miv: 6s & att .8
miv: 8s & att .8
miv: 10s & att .8
no miv & att .8
nomiv & noatt

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140

160

180

200
average response time for each transfer (fix attack load 1.0)

re
sp

on
se

 ti
m

e(
se

c)

client load

miv: 2s & att 1.0
miv: 4s & att 1.0
miv: 6s & att 1.0
miv: 8s & att 1.0
miv: 10s & att 1.0
nomiv & att 1.0
nomiv & noatt

(a) (b)

Fig. 12. Benefit of roaming: TCP attacks. (a) 0.8 TCP attack, (b) 1.0 TCP attack.

26 C. Sangpachatanaruk et al. / The Journal of Systems and Software 73 (2004) 15–29
is simply that migrating connections from the attacked

server to a non-attacked server increase opportunity for

the transfers to be completed a lot quicker than leaving

them with the stalled server.

7.2. Result/analysis of the 40-node network

For the simulation of the 40-node network, we focus
to study statistics in the aggregate level. The cost and

benefit of the roaming schemes are drawn from those

perceived by the clients scattering in the network. We

collect the start times and the response times of all cli-

ents to analyze the cost and benefit of clients based on

the time they send the requests. To simplify the analysis,

the FTP requests are grouped based on their start times

in the granularity of 10 s. For example, the average re-
sponse time of a FTP request in the thirtieth second

(RTavg30) is computed by RTavg30 ¼TRT30/NR30, where

TRT30 is the total response times of all requests gener-

ated from time 21st to 30th and NR30 is the total

number of the requests generated during that time.
7.2.1. The cost of the roaming

To measure the cost of the roaming, we compare case

(1) and (2) as done in the 10-node network simulation.

We pick the cases of total client load 0.4, 0.6, and 0.8 to

study. The result amazes us as shown in Fig. 13. The

cost of the roaming has changed to the profit as the total

client load increase. Our explanation is that, at the light

load (0.1–0.5), the migration introduces the unnecessary
cost of disconnect and reconnection; at the high load

(0.6 and over), however, the migration cost is out-

weighed by the profit of reducing effect from the con-

gestion mechanism caused by the TCP. Once a

congested TCP connection is moved to a new path, the

congestion state is reset and the path is likely to have

more available bandwidth.

7.2.2. The benefit of the roaming

In the cases of the attacks, the result shows that the

migration improves the response time in all cases. As

shown in Fig. 14, all the migration cases (i.e. migration

interval 4, 8, 10, and 20 s) are below the non-migration

0

2

4

6

8

 10

 12

 14

0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 R
es

po
ns

e
tim

e
fo

r
a

tr
an

sf
er

Session start time

Client Load = 0.4

0

5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 R
es

po
ns

e
tim

e
fo

r
a

tr
an

sf
er

Session start time

Client Load = 0.6

no migration
miv 4 s
miv 8 s

miv 10 s
miv 20 s

no migration
miv 4 s
miv 8 s

miv 10 s
miv 20 s

no migration
miv 4 s
miv 8 s

miv 10 s
miv 20 s

0

 20

 40

 60

 80

 100

 120

 140

 160

0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 R
es

po
ns

e
tim

e
fo

r
a

tr
an

sf
er

Session start time

Client Load = 0.8

(a)

(b)

(c)

Fig. 13. Cost of the roaming in 40-node network: (a) client load 0.4, (b) client load 0.6, (c) client load 0.8.

C. Sangpachatanaruk et al. / The Journal of Systems and Software 73 (2004) 15–29 27
cases, where they perceive the same attack load. In ad-

dition, as shown in the high client load case (0.8 client

load, Fig. 14(b)), the migration improves the average

response time of the clients in the cases of server being
attacked surpass even that of the clients in the cases of

the non-attack server. This can be explained as in the

previous section that in the case of high client load, the

TCPs seem to shrink their windows too much and quite

often wait for timeout to occur; while the migration will

refresh these TCP and let them start with the new fresh

paths. Therefore the migrating TCPs are likely to pro-

gress more than the non-migrating ones.
8. Conclusion and future work

The paper proposes a framework for mitigating the

effects of both node and link-based DoS attacks. A
scheme, referred to as Proactive Server Roaming, was

described and its implementation was discussed. The

scheme uses the novel concept of ‘‘replicated elusive

service’’ to mitigate the effects of DoS attacks. Based on

this scheme, the active server changes its location among

a pool of servers to defend against unpredictable and

likely undetectable attacks. Only legitimate clients will

be able to follow the server as it roams.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

R
es

po
ns

e
tim

e
fo

r
a

tr
an

sf
er

Session start time

Attack load 1.0 & Client load 0.2

no migration & no attack
Attack with no migration

miv 4 s
miv 8 s

miv 10 s
miv 20 s

no migration & no attack
Attack with no migration

miv 4 s
miv 8 s

miv 10 s
miv 20 s

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400

R
es

po
ns

e
tim

e
fo

r
a

tr
an

sf
er

Session start time

Attack load 1.0 & Client load 0.8

(a)

(b)

Fig. 14. Benefit of the roaming in 40-node network: (a) client load 0.2, (b) client load 0.8.

28 C. Sangpachatanaruk et al. / The Journal of Systems and Software 73 (2004) 15–29
To study the roaming behavior of the clients and its

effect on DoS, a simulation model was developed. The

model uses NS2 and adds a socket layer to enable

roaming of clients and servers, and handle connection

migration. In addition, FTP server and client modules to
simulate request–reply type of network applications

were also created. These modules reside on top of the

socket layer.

The experiments focused on four cases: no-roaming

and no-attack, roaming and no-attack, no-roaming and

attack, roaming and attack. The first case is simulated to

find the basic cost of a FTP transfer; while the second

case is experimented to find the extra cost caused by the
roaming. The third case, no-roaming with attack, is

simulated to discover the loss caused by the attack. Last,

the case of roaming with attack is simulated to find the

benefit of applying the server roaming to the servers in

the malicious environment. In addition, we generate two

topologies, namely 10- and 40-node networks, with

different sizes to study the impact of the roaming scheme

in the different scale of networks. The results of the
simulations are promising. The benefit of the server

roaming outweighs the cost of the roaming and the loss

caused by the attacks. In addition to the simulations, the

implementation of the server roaming strategy is also

being experimented in our networking lab. We have

designed a more complex model of the secure roaming,
which protects information being passed among clients,

servers and authenticator.

The next step for the simulation is to develop better

and more practical attack and roaming models. Some

heuristic techniques are needed. We plan to seek for the
attack patterns in the real world and draw experiment

designs to improve our models. Additionally, we will

deploy the other well-known network applications, such

as a web server and domain name servers, as the at-

tacked services to explore different behaviors of the at-

tackers and the roaming strategies to fight against them.
References

Andersen, D., Balakrishnan, H., Kaashoek, M., Morris, R., 2001.

Resilient overlay networks. In: Proceedings of 18th ACM SOSP,

pp. 131–145.

Axelsson, S., 2000. Intrusion detection systems: a survey and taxon-

omy. Tech. rep., Department of Computer Engineering, Chalmers

University.

Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.,

1998. An architecture for differentiated services. In: IETF, RFC

2475.

Brustoloni, J., 2002. Protecting electronic commerce from distributed

denial-of-service attacks. In: Proceedings of the Eleventh Interna-

tional World Wide Web Conference, pp. 553–561.

Desmedt, Y., 1994. Threshold cryptography. European Transactions

on Telecommunications 5, 449–457.

C. Sangpachatanaruk et al. / The Journal of Systems and Software 73 (2004) 15–29 29
Ferguson, P., Senie, D., 2001. Network ingress filtering: defeating

denial of service attacks which employ ip source address spoofing.

In: RFC 2827.

Garg, A., Reddy, A.L.N., 2002. Mitigation of dos attacks through qos

regulation. In: Proceedings of the tenth IEEE International

Workshop on Quality of Service, pp. 45–53.

Goldreich, O., Goldwasser, S., Micali, S., 1986. How to construct

random functions. Journal of the ACM 33, 792–807.

Goldreich, O., Levin, L., Nisan, N., 1995. On constructing 1-1 one-

way functions. Proceedings of the Electronic Colloquium on

Computational Complexity 2, 1–11.

Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M., 1995. Proactive

secret sharing or: How to cope with perpetual leakage. In: LNCS

963, Proceedings of the Crypto’95, vol. 5. Springer-Verlag, pp. 339–

352.

Ivan, A., Harman, J., Al‘en, M., Karamcheti, V., 2002. Partitionable

services: a framework for seamlessly adapting distributed applica-

tions to heterogeneous environments. In: Proceedings of the IEEE

International Conference on High Performance Distributed Com-

puting (HPDC), pp. 103–112.

Jones, J., 2000. Distributed denial of service attacks: defenses, a special

publication. Tech. rep., Global Integrity.

Juels, A., Brainard, J., 1999. Client puzzles: a cryptographic counter-

measure against connection depletion attacks. In: Proceedings of

NDSS ’99, Networks and Distributed Security Systems, pp. 151–

165.

Keromytis, A., Misra, V., Rubenstein, D., 2002. Sos: secure overlay

services. In: Proceedings of the SIGCOMM’02 Conference on

Applications, Technologies, Architectures, and Protocols for

Computer Communications. ACM Press, pp. 61–72.

Khattab, S.M., Sangpachatauaruk, C., Znati, T., Melhem, R.,Moss, D.,

2003. Proactive server roaming for mitigating denial-of-service

attacks. In: Proceedings of 1st International Conference on Infor-

mation Technology Research and Education (ITRE), pp. 1–5.

Mankins, D., Krishnan, R., Boyd, C., Zaho, J., Frentz, M., 2001.

Mitigating distributed denial of service attacks with dynamic

resource pricing. In: Proceedings of Annual Computer Security

Applications Conference (ACSAC 2001), pp. 1–11.

Park, K., Lee, H., 2000. On the effectiveness of probabilistic packet

marking for ip traceback under denial of service attack. Tech. rep.,

Department of Computer Sciences, Purdue University.

Park, K., Lee, H., 2001. On the effectiveness of route-based packet

filtering for distributed dos attack prevention in power-law

internets. In: Proceedings of the SIGCOMM’0l Conference on

Applications, Technologies, Architectures, and Protocols for

Computer Communications. ACM Press, pp. 15–26.

Paxson, V., 2001. An analysis of using reflectors for distributed denial-

of-service attacks. ACM Computer Communications Review
(CCR) 31 (3). Available from <citeseer.nj.nec.com/pax-

son01analysis.html>.

Perrig, A., Szewczyk, R., Cullar, D., Wen, V., Tygar, J.D., 2001. Spins:

security protocols for sensor networks. In: Proceedings of MOBI-

COM’01, pp. 189–199.

Ratnassamy, S., Handly, M., Karp, R., Shenker, S., 2002.

Topologically-aware overlay construction and server selection.

In: Proceedings of the INFO-COMM’02 Conference, vol. 3. pp.

1190–1199.

Rivest, R., 1992. The md5 message-digest algorithm. In: RFC 1321.

Sangpachatanaruk, C., Khattab, S.M., Znati, T., Melhem, R., Moss,

D., 2003. A simulation study of the proactive server roaming for

mitigating denial of service attacks. In: Proceedings of the 36th

Annual Simulation Symposium 2003, pp. 7–14.

Savage, S., Wetherall, D., Karlin, A., Anderson, T., 2000. Practical

network support for ip traceback. In: Proceedings of the SIG-

COMM’00 Conference on Applications, Technologies, Architec-

tures, and Protocols for Computer Communication. ACM Press,

pp. 295–306.

Snoeren, A.C., 2001. Hash-based ip traceback. In: Proceedings of the

SIG-COMM’01 Conference on Applications, Technologies, Archi-

tectures, and Protocols for Computer Communications. ACM

Press, pp. 3–14.

Snoeren, A.C., Andersen, D.G., Balakrishnan, H., 2001a. Fine-grained

failover using connection migration. In: Proceedings of 3rd

USENIX Symposium on Internet Technologies and Systems

(USITS), pp. 221–232. Available from <citeseer.

nj.nec.com/snoeren01finegrained.html>.

Snoeren, A.C., Balakrishnan, H., Kaashoek, M.F., 2001b. The migrate

approach to internet mobility. In: Proceedings of the Oxygen

Student Workshop, July 2001, pp. 1–2.

Song, D.X., Perrig, A., 2001. Advanced and authenticated marking

schemes for IP traceback. In: Proceedings IEEE Infocomm 2001,

pp. 878–886.

Spatscheck, O., Petersen, L.L., 1999. Defending against denial of

service attacks in scout. In: Proceedings of the 3rd Symposium on

Operating Systems Design and Implementation (OSDI’99), New

Orleans, Louisiana, pp. 59–72.

Sultan, F., Srinivasan, K., Iyer, D., Iftode, L., 2001. Migratory tcp:

highly available internet services using connection migration. Tech.

rep., Rutgers University.

Sultan, F., Srinivasan, K., Iyer, D., Iftode, L., 2002. Migratory tcp:

connection migration for service continuity in the internet. In:

Proceedings of the 22nd International Conference on Distributed

Computing Systems (ICDCS) 2002, pp. 369–370.

Wong, C.K., Gouda, M., Lam, S., 1998. Secure group communica-

tions using key graphs. In: Proceedings of SIGCOMM’98, pp. 68–

79.

http://citeseer.nj.nec.com/paxson01analysis.html
http://citeseer.nj.nec.com/paxson01analysis.html
http://citeseer.nj.nec.com/snoeren01finegrained.html
http://citeseer.nj.nec.com/snoeren01finegrained.html

	Design and analysis of a replicated elusive server scheme for mitigating denial of service attacks
	Introduction
	Related works
	Denial of service attack defenses
	Node-based attack defenses
	Link-based attack defenses

	TCP-Migration

	System model
	System components
	Threat model

	Server roaming
	Secure proactive roaming

	Overview of the simulation model
	Experiment design and procedure
	Simulation design for a small network
	Simulation design for a large network

	Results/analysis
	Result/analysis of the 10-node network simulation
	The cost of the roaming
	The loss by the attack
	Benefit of the server roaming

	Result/analysis of the 40-node network
	The cost of the roaming
	The benefit of the roaming

	Conclusion and future work
	References

