
Journal of Parallel and Distributed Computing 56, 71�98 (1999)

Modeling Communication Locality
in Multiprocessors1

C. Salisbury, Z. Chen, and R. Melhem

Department of Computer Science, University of Pittsburgh,
Pittsburgh, Pennsylvania 15260

E-mail: salisbur�cs.pitt.edu; zchen�transarc.com; melhem�cs.pitt.edu

Received November 13, 1997; revised October 26, 1998; accepted October 27, 1998

Locality of reference is an important aspect of many computer operations.
It is often exploited to optimize the performance of computer functions. In
this paper, we apply the locality concept to the communication patterns of
parallel programs operating over an interconnection network with a fixed
communication latency between any pair of attached nodes. Unbuffered mul-
tistage networks and all-optical networks are examples of these. We quantify
the notions of spatial and temporal locality in this context, and combine
them in a locality measure. This measure is used as the basis for identifying
the communication working sets of a parallel program. We focus on
programs with a looping structure and investigate conditions under which
each working set consists of the complete set of paths required by a single
loop. � 1999 Academic Press

Key Words: locality of reference; working sets; compiled communication;
communication cost; interconnection networks; multiprocessor communication.

1. INTRODUCTION

Locality of reference was first identified as being important in the context of
managing a program's use of pages of physical memory [6]. It has since been
recognized as a concept that can be applied to a wide variety of contexts and has
been exploited to improve the performance of many functions of modern
computers. It is the fundamental reason for the effectiveness of caches used for both
memory and file accesses. It has been used to improve performance of communica-
tion networks by caching the routing associated with network addresses. Locality
of reference also exists in the patterns of communication over a multiprocessor
interconnection network.

The effectiveness of various strategies to exploit memory access locality are often
measured in terms of hit ratios for caches of various designs. This treatment
of locality produces a result that is architecture and machine dependent. In

Article ID jpdc.1998.1513, available online at http:��www.idealibrary.com on

71 0743-7315�99 �30.00
Copyright � 1999 by Academic Press

All rights of reproduction in any form reserved.

1 This work is supported in part by NSF Award MIP-9633729 to the University of Pittsburgh.

some studies, the locality of a sequence of memory references has been evaluated
independent from cache design, as in [8, 15, 21]. A key characteristic of memory
accesses is that sequential addresses are likely to be accessed in order.

In the realm of communications, there may not be a significant relationship
between processors located at sequential network addresses, in terms of either
physical location or access patterns. Thus the spatial aspects of communication
locality differ from those of memory accesses. On a local area network (LAN),
message traffic is driven by end-user activity and can be highly variable. Traffic
frequently reflects a client�server relationship between devices on the network.
Quantitative measures of locality in communication over a local area network have
been described in [9].

Communication patterns on the interconnection network of a parallel processing
system have additional characteristics. While LAN traffic is driven by end-user
activity, communication in a interconnection network is the result of the behavior
of a single program constructed by a compiler. Interprocessor communication is
required to coordinate tasks executing on different processors. The exploitation of
locality through assignment of tasks to processors and the impact of data distribu-
tion on communication for cache coherence have been examined in numerous
studies, including [7, 18, 20]. Communication in parallel programs often involves
simultaneous, synchronized communication between processors and repetitive com-
munication patterns arising from looping programs. Different loops may incor-
porate common algorithms for processor coordination and hence have similar com-
munication patterns. While communication patterns that result in contention for
network resources (i.e., ``hot spots'') can also be considered a form of locality, our
focus is on network-independent characteristics arising from program behavior.

Communication locality in multiprocessor interconnection networks such as a
k-ary n-cube is often described by the number of links between communicating
processors. The performance impact of physical distance in an interconnection
network with nonuniform communication latency was studied in [11]. Com-
munication locality is frequently handled in more qualitative terms. Communica-
tion that is equally likely between any source and any destination has little locality.
Communication between nearest neighbors along one or more dimensions has high
locality. This is reflected not only in the reduced number of communicating pairs,
but in the reduction in average number of links traversed by each message.
Multiprocessor performance models have been developed to accommodate these
kinds of assumptions about communication locality [1, 10]. Other researchers have
recognized the importance of locality by designing multihop networks that reduce
cost by providing fewer communication links between processors that are unlikely
to communicate [4, 17].

We are interested in networks where the delay between each pair of processors
is fixed. Such networks include unbuffered multistage networks and all-optical
networks such as passive stars and WDM networks. Communication between any
pair of processors has the same latency in these networks. Moreover, in many
recent systems such as the Cray T3D physical distance may not be a significant
factor in network performance [2, 16]. This requires a different approach to

72 SALISBURY, CHEN, AND MELHEM

describing locality than what is used in the multihop networks. To be applicable to
a variety of network architectures, we seek to understand locality and communica-
tion working sets independent of the network architecture. We will quantify some
intuitive notions of locality and see how broadly the results can be applied.

In some cases, techniques called compiled communication can be performed on
parallel programs to identify static communication patterns prior to program
execution [3, 12, 14, 22]. For this reason, we will consider the locality of a
predetermined sequence of communication requests that will be presented to an
interconnection network. In particular, we define a quantitative measure that
satisfies some intuitive properties of locality and can be applied to parallel
processor communication patterns over networks with uniform latency. The measure
provides a way to compare sequences and determine which has more locality.

More important than locality, however, is a program's communication performance.
Although the locality measure is network independent, to be useful it should be capable
of predicting performance. Networks that use multiplexing techniques have perfor-
mance characteristics that depend on the number of connections provided simul-
taneously. Using a model of compiled communication performance, we show there is
a strong relationship between locality and performance on a multiplexed network.

Techniques for compiled communication could therefore incorporate a locality
analysis to assist in identifying communication working sets and optimize perfor-
mance. On distributed shared memory systems, such analysis could assist with
development of a data distribution that minimizes communication delays [13].
Similarly, when communication patterns are established by the programmer, a
locality analysis could be used to assist in the selection of an algorithm with good
communication performance.

In Section 2 we present a model of the communication pattern of a parallel
application. In Section 3, we quantify the concept of communication locality of
reference and show how to identify the working set of communication paths used
by an application. We develop the results more fully for the special case of looping
programs in Section 4, where we show how locality is affected by the number of
loop iterations and by the reoccurrance of paths in different loops. We show that
our measure of locality is related to communication performance in a circuit-
switched, time-division-multiplexed network in Section 5. Our conclusions are in
Section 6.

2. THE APPLICATION MODEL

To the interconnection network, an application appears as a sequence of requests
for a network connection. These requests can originate on any node attached to the
network. Each request can be characterized by its source, destination, message
length, and arrival time. We model the requests using fixed length messages and
represent arrival times by ordering messages in the sequence in which they are
presented to the network. The network processes each request by providing a path
connecting the message source and destination. We will represent the sequence of
communication connection requests by T= p1 , p2 , ..., where pi represents the path
connecting the source�destination pair (si , di) for the ith communication request.

73MODELING COMMUNICATION LOCALITY IN MULTIPROCESSORS

To express the looping structure common to parallel applications, we let Ti be the
sequence of requests generated by one iteration of loop i and ri be the number of
iterations. We denote the sequence of requests generated by this loop as T ri

i ,
indicating that the sequence Ti is repeated ri times. When ri=1, the sequence Ti

does not repeat and ri can be omitted from the notation. The requests from an
application with n loops can be described by

T=T r1
1 T r2

2 } } } T rn
n .

We will often be interested in the number of different paths required for
communication. We define Mi to be the set of different paths used in loop i and the
number of different paths to be li=|Mi |. We will also find it useful to deal with
looping structures that have disjoint loops or distinct paths, as defined below.

Definition 1. We say that a looping structure has disjoint loops if each loop
uses paths that are not used by any other loop. Specifically, if Mi contains all the
paths in Ti and Mj contains all the paths in Tj , then Mi & Mj=< for all i{ j.

Definition 2. We say that a loop has distinct paths when each path in the loop
is used exactly once in each iteration of the loop. Loops with distinct paths have
li=|Ti |.

3. MODELING LOCALITY OF REFERENCE

To be useful for understanding communication performance, we would like to
define a locality measure that encapsulates application characteristics related to the
size of the network required to handle communication and the number of connec-
tion requests that can be satisfied before the network state must change. To be
useful in a variety of contexts, the measure should depend only on program charac-
teristics, and not on the characteristics of a network or how it is controlled. This
suggests that the locality measure should be useful for determining a program's
communication working set.

In order to identify the communication working sets of a program, we will make
an estimate of the working sets and apply the locality measure. We do this by
breaking a sequence of communication requests T into n subsequences such that
T=P1 , P2 , ..., Pn . Each subsequence Pi is called a partition, and the set of these
partitions is a partitioning of T. Each partition is an estimate of the working set at
a different point in time. We denote a function which creates these partitions as
P(T). A locality measure should characterize the network size and path reuse
characteristics of the estimated working sets. A locality measure is therefore a
function of both the sequence of requests and the manner in which the requests are
partitioned. We define the locality of a partitioning and the locality of a sequence
as follows.

Definition 3. The locality of a partitioning refers to the value of the locality
measure L on the partitioning of the sequence T created by the function P. This
is denoted by L(T, P) and is called the L-measure of T with P.

74 SALISBURY, CHEN, AND MELHEM

Definition 4. The locality of a sequence T, denoted L(T), is equal to the
greatest L-measure that can be obtained from a partitioning of T,

L(T)=max
P

[L(T, P)].

Definition 5. If P is a partitioning function for which L(T)=L(T, P), then
the partitioning P(T) is an optimal partitioning of T.

The communication working sets of the parallel program are the partitions
created by the optimal partitioning function. The objective of this study is
to develop a general approach for locating the communication working sets of T

by determining an appropriate measure L and identifying an optimal partitioning
function P.

3.1. The Locality Measure

A communication pattern that is highly local is desirable for two reasons. First,
high locality suggests that the communication working set has only a ``small''
number of different paths. Thus, the application does not use many network
resources at any one time. This loosely corresponds to the notion of high spatial
locality. Second, good locality also suggests that path utilization should be high,
which means the paths provided should be reused often. This loosely corresponds
to the notion of temporal locality. We combine these concepts of spatial and
temporal locality in our locality measure. Small partition sizes coupled with high
reuse of the paths in a partition means high locality. The choice of measure will
necessarily reflect a balance between these two. That is, a reduction of spatial
locality due to an increase in partition size can be offset by a gain in temporal
locality due to an increase in the amount of reuse.

We are particularly interested in the locality of the looping programs commonly
run on parallel systems. When a program has a single loop in which communica-
tion paths are distinct, the number of paths may be a reasonable measure of
communication locality. However, this may not be an appropriate measure when
paths are used multiple times within a loop, the program consists of a series of
loops, or the communication is not from a looping program. We will therefore
develop a more general measure that incorporates the notions of temporal and
spatial locality of reference for an arbitrary communication pattern. In many cases,
to gain insight into the characteristics of locality and to develop closed form
solutions it will be necessary to consider communication patterns with a specific
structure. When special communication patterns are used, the insight gained into
the properties of locality should be applicable to other patterns as well.

Consider a sequence T and a partitioning P1 , P2 , ..., Pn . Let Mi be the set of all
the different paths used in the partition Pi , and let |Mi | and |Pi | be the number of
paths in Mi and Pi , respectively. We define spatial locality of a partitioning to be
inversely proportional to the average number of different paths used in its partitions.

75MODELING COMMUNICATION LOCALITY IN MULTIPROCESSORS

Fewer paths means greater spatial locality, reflecting a smaller demand for network
paths. That is,

Spatial Locality (T, P)=
1

(1�n) �n
i=1 |Mi |

. (1)

Temporal locality is expressed in terms of the reuse of paths within a partition.
Path reuse for partition Pi is |Pi |�|Mi |. To encourage the creation of partitions with
high path reuse as would be found in a working set, we use the root-sum-of-squares
of the reuse to weight the temporal locality measure strongly toward such parti-
tions. Thus, the temporal locality of a partitioning is defined as

Temporal Locality (T, P)=
1
n � :

n

i=1

(|Pi |�|Mi |)
2. (2)

The locality of a partitioning is defined as the product of these two measures:

L(T, P)=
- � (|Pi |�|Mi |)

2

� |Mi |
. (3)

While partitioning functions can create partitions arbitrarily, certain functions
warrant special consideration. We define PS to be the function that places all
communications into a single partition. We can also create n partitions so that, for
some value m, |Mi |=m for i=1, ..., n&1 and |Mn |�m. When the partitions are
created sequentially so that Pi is the longest sequence for which |Mi |=m, we call
this the m-path partitioning of T and denote the partitioning function PMm .

In the following examples we will use an integer to represent a single communica-
tion request on a particular path. For clarity, the examples will use short sequences
T and small values of m. It should be clear, however, that the concepts presented

TABLE 1

Partitioning Simple Sequences with Various Methods

Requests T Method Partitions Pi Path sets Mi L(T, P)

1, 2, 3, 4, 5, 6, 7, 8 PS (1, 2, 3, 4, 5, 6, 7, 8) [1, 2, 3, 4, 5, ,6, 7, 8] 0.13

PM1 (1), (2), (3), (4), (5), (6), (7), (8) [1], [2], [3], [4], [5], [6], [7], [8] 0.35

PM2 (1, 2), (3, 4), (5, 6), (7, 8) [1, 2], [3, 4], [5, 6], [7, 8] 0.25

Arbitrary (1), (2, 3, 4), (5), (6), (7, 8) [1], [2, 3, 4], [5], [6], [7, 8] 0.28

1, 2, 2, 3, 3, 3, 1, 4 PS (1, 2, 2, 3, 3, 3, 1, 4) [1, 2, 3, 4] 0.50

PM1 (1), (2, 2), (3, 3, 3), (1), (4) [1], [2], [3], [1], [4] 0.80

PM2 (1, 2, 2), (3, 3, 3, 1), (4) [1, 2], [1, 3], [4] 0.54

Arbitrary (1, 2, 2, 3), (3), (3, 1, 4) [1, 2, 3], [3], [1, 3, 4] 0.28

1, 3, 2, 3, 2, 3, 1, 4 PS (1, 3, 2, 3, 2, 3, 1, 4) [1, 2, 3, 4] 0.50

PM1 (1), (3), (2), (3), (2), (3), (1), (4) [1], [3], [2], [3], [2], [3], [1], [4] 0.35

PM2 (1, 3), (2, 3, 2, 3), (1, 4) [1, 3], [2, 3], [1, 4] 0.41

Arbitrary (1), (3, 2, 3, 2, 3), (1), (4) [1], [2, 3], [1], [4] 0.61

76 SALISBURY, CHEN, AND MELHEM

apply as well to arbitrarily large sequences and values of m. Table 1 shows the
locality of simple path sequences with different partitionings.

Example 1. A network that connects four inputs to four outputs has 16
possible paths through the network. These paths can be represented by the integers
1 through 16. The sequence T=1, 2, 2, 1 represents the use of path 1, followed by
path 2, followed by the reuse of paths 2 and 1. An arbitrary partitioning of this
sequence could be P1=1, 2, 2 and P2=1. In this case, M1=[1, 2] and M2=[1].
Using PS(T) we have P1=1, 2, 2, 1 and M1=[1, 2]. With PM1 (T) we obtain
P1=1, P2=2, 2, P3=1, and M1=[1], M2=[2], M3=[1].

3.2. Partitioning Sequences

In some cases, we can describe how to modify a partitioning to increase locality.
In Lemma 1, we show that locality will increase if we can divide a partition into
two pieces which have no paths in common. Lemma 2 then describes when locality
is increased by joining adjacent partitions.

Lemma 1. Let Pi be a partition of P(T). Let P$(T) be a refinement of P(T)
formed by splitting partition Pi into Pi1 , Pi2 , so that P$(T)=P1 , ..., Pi1 , Pi2 , ..., Pn .
Let Mi1 and Mi2 be the set of paths corresponding to Pi1 and Pi2 , respectively. If
Mi1 & Mi2=< then L(T, P$)>L(T, P).

Proof. Since Mi1 & M i2=< we know that �P$ |Mi |=�P |Mi |. Thus the
lemma will be true when

\ |Pi1 |
|Mi1 |+

2

+\ |Pi2 |
|Mi2 |+

2

>\ |Pi |
|Mi |+

2

.

Since |Pi |=|Pi1 |+|Pi2 | and |Mi |=|M i1 |+|Mi2 | , with some algebraic manipula-
tion we can determine that this expression is always true. K

Lemma 2. Let P(T) be a partitioning which has adjacent partitions Pi and Pi+1 .
Let Mi and Mi+1 be the corresponding sets of paths. Let P$(T) be a partitioning
identical to P(T) except that Pi and Pi+1 are combined into a single partition. If
Mi �Mi+1 and

2|Pi+1 |
|Pi |

�\ |Mi+1 |
|Mi | +

2

&1, (4)

then L(T, P$)>L(T, P).

Proof. The proof is straightforward, following the same approach used for
Lemma 1. K

When Mi=Mi+1 the condition of Lemma 2 is always met and we will always
increase locality by combining adjacent partitions that use the same paths. When
adjacent partitions use almost the same set of paths (Mi /Mi+1 and
|Mi |r |Mi+1 |), we should consider merging the partitions even when the sequence

77MODELING COMMUNICATION LOCALITY IN MULTIPROCESSORS

lengths are very different (|Pi+1 |<<|Pi |). When the numbers of paths used by
these partitions are very different (|Mi+1 |>>|Mi |) we should consider merging the
partitions only when the partition with more paths has many more requests
(|Pi+1 |>>|Pi |).

It is difficult to make general statements governing arbitrary sequences of
requests. In the next section we focus on looping applications.

4. LOCALITY OF LOOPING SEQUENCES

In looping programs, it is natural to expect that the communication requests
from each loop form a working set. Thus, we define the partitioning that places all
requests from each loop into a separate partition to be the natural partitioning of
the application and refer to it as PN . Note that PN(T) is the partitioning that
results from applying PS to each individual loop, Tri

i . Intuitively, this partitioning
should have the greatest locality as long as the number of iterations of each loop
is sufficiently large and the loops are sufficiently disjoint. To quantify these two
conditions for general loop structures is rather complicated, if at all possible. Thus,
in the next sections we will consider only special loop structures, beginning with
loops that are disjoint.

4.1. Sequences of Disjoint Loops

We can show directly from the definition of the locality measure that PS is the
optimal partitioning of a loop Tr with distinct paths when r3>l, where l=|T |. It
is more difficult to determine when PS is optimal for other loops where l<|T |.
However, we can place an upper bound on the minimum value of r needed to
ensure that PS is the optimal partitioning.

Theorem 3. Let T=Tr be a sequence of communication requests, and let k be
the maximum number of times any path is used in a single iteration of the loop. Then
the single partitioning of the loop, PS(T), is optimal when

r�
(kl)2

|T |
. (5)

Proof. To show that the locality of PS(T) is greater than the locality of an
arbitrary partitioning P(T) with more than one partition, it is sufficient to show
that both temporal locality and spatial locality are greatest with PS(T). In taking
this approach, we do not consider offsetting an increase in one locality with a
decrease in the other.

For spatial locality, the value of �i |Mi | for PS(T) is l. No other partitioning of
the loop can have a smaller value, so that PS(T) has the greatest spatial locality.

We can bound the amount of temporal locality attainable from a function that
creates two or more partitions. Let Pi be the partitions created by P(T), and let
Mi be the corresponding sets of paths. Place the partitions in two groups based on
the size of Mi . Group 1 contains partitions where |Mi |=l and group 2 contains
partitions where |Mi |<l. Let q be the total number of communication requests in

78 SALISBURY, CHEN, AND MELHEM

group 2. Then r |T |&q is the total number of communication requests in group 1.
We can place an upper bound on the contribution from group 1 to the sum of
squares in temporal locality, since

:
i \

|Pi |
|Mi |+

2

=:
i \

|Pi |
l +

2

�\� i |Pi |
l +

2

=\r |T |&q
l +

2

.

Similarly, we can bound the sum of squares contribution from partitions in group
2. There are at most q such partitions, and they have reuse no greater than k. For
these partitions,

: \ |Pi |
|M i |+

2

�qk2.

Combining these results for the two groups, we know that the temporal locality of
P(T) is at most

qk2+\r |T |&q
l +

2

.

The temporal locality of the single partitioning PS(T) is (r |T |�l)2. This exceeds the
temporal locality of an arbitrary partitioning when (kl)2+q�2r |T |. Since q can-
not exceed the total number of requests r |T |, if r�(kl)2�|T | then L(T, PS)�
L(T, P) and PS(T) is an optimal partitioning. K

Note that for a loop with distinct paths where l=|T | and k=1, Theorem 3
provides the bound r>l, which is much higher than the r3�l obtained directly
from the locality definitions. This shows that requiring both spatial and temporal
locality to be optimal produces a bound which is not tight. It is difficult to tighten
this bound without placing additional restrictions on the sequence T.

We can, however, state when the natural partitioning of a sequence of disjoint
loops is an optimal partitioning.

Corollary 3.1. Let T=T r1
1 , ..., T rn

n be a sequence of communication requests
from an application with n disjoint loops, and let ki be the maximum number of times
any path is used in a single iteration of loop i. Then the natural partitioning of the
sequence, PN(T), is optimal when

ri�
(ki li)

2

|Ti |
for all i.

For loops with distinct paths, PN(T) will be optimal when ri�li for i=1, ..., n.

Proof. Since the paths required by the loops are disjoint, from Lemma 1 we
know that the greatest locality is attained with partitions containing requests from
only one loop. Since the number of iterations in each loop meets the requirement
of Theorem 3, the natural partitioning of the sequence of loops is optimal. K

79MODELING COMMUNICATION LOCALITY IN MULTIPROCESSORS

TABLE 2

Partitions of Disjoint Looping Sequences

Sequence T Partitioning P M1 , M2 , ..., MEND END L(T, P)

(1, 2, 3, 4)40 PS [1, 2, 3, 4] 1 10.00
PM1 [1], [2], [3], [4], [1], ... 160 0.08

(1, 2, 3, 3)20 (4, 5, 6, 6)20 PN [1, 2, 3], [4, 5, 6] 2 6.28
PS [1, 2, 3, 4, 5, 6] 1 4.44

PM1 [1], [2], [3], [1], ..., [3], 120 0.13
[4], [5], [6], [4], ..., [6]

PM2 [1, 2], [3, 1], [2, 3], ... 60 0.09
[4, 5], [6, 4], [5, 6], ...

(1, 2, 3, 4)30 (5, 6, 7, 8)10 PN [1, 2, 3, 4], [5, 6, 7, 8] 2 3.95
PM1 [1], [2], [3], [4], [1], ..., [4], 160 0.08

[5], [6], [7], [8], [5], ..., [8]

(1, 2, 3, 4)20 (5, 6, 7, 8)20 PN [1, 2, 3, 4], [5, 6, 7, 8] 2 3.54
PS [1, 2, 3, 4, 5, 6, 7, 8] 1 2.50

PM1 [1], [2], [3], [4], [1], ..., [4], 160 0.08
[5], [6], [7], [8], [5], ..., [8]

Table 2 shows several looping sequences, the sets of paths required by various
partitionings, and the resulting locality. For these sequences, the number of itera-
tions meets the requirement of Theorem 3. The examples in Table 2 confirm that
the natural partitioning has the greatest locality. The locality of the one and two
path partitioning is very low because there is little or no path reuse, and temporal
locality is low. The large number of partitions means that the sum of the partition
sizes is large, making spatial locality low as well. Combining disjoint loops into a
single partition also reduces locality compared to the natural partitioning.

4.2. Partitioning Sequences of Non-disjoint Loops with PN and PS

In this section we show when it is better to partition a sequence of loops with
overlapping sets of paths by using PN rather than by Using PS . Lemma 2 can be
applied when the paths used by one loop are a subset of the paths used by an adja-
cent loop. However, it cannot be applied when loops have some common paths as
well as some different paths.

To evaluate partitions that combine a number of overlapping loops, we need
additional information. The ratio of the number of communication requests in loop
i to the total number of requests in the sequence, ri |Ti |��n

j=1 rj |Tj |, will be called
ui . When ui>u j , the locality characteristics of loop i will have a greater impact on
the L-measure of a combined partitioning than will the locality characteristics of
loop j. The total number of different paths in a sequence of k loops starting at loop
j is equal to | _ j+k&1

i= j Mi | and will be denoted *k . The value of j will be clear from
the context. For example *n is the total number of different paths in the entire
sequence of n loops, requiring j=1. The parameters used to characterize locality are
summarized in Table 3.

80 SALISBURY, CHEN, AND MELHEM

TABLE 3

Locality Parameters

Parameter Meaning

Ti A sequence of communication requests in loop i
Mi The set of different paths used in a sequence of requests
li The number of different paths used in a sequence of requests. li=|Mi |
ri The number of iterations of a loop
ui The ratio of the number of communication requests in loop i to the total number

of requests in the sequence, ri |Ti |��n
j=1 r j |Tj |

*k The total number of different paths in a sequence of k loops, |� j+k&1
i= j Mi |

The following theorem describes when a sequence of overlapping loops has a
greater L-measure when the natural partitioning is used than when the loops are
combined into a single partition.

Theorem 4. Let T=T r1
1 T r2

2 } } } T rn
n . Define the decision function

d(ui , li , *n)#
*2

n

�n
1 l i �:

n

1

u2
i �l2

i . (6)

Then, L(T, PN)�L(T, PS) when d(ui , li , *n)�1, and L(T, PS)�L(T, PN) when
d(ui , li , *n)�1. In particular, L(T, PN)�L(T, PS) for any values of ui whenever

*2
n�\:

n

1

li+ �:
n

1

l2
i . (7)

L(T, PS)�L(T, PN) for any values of ui whenever

*2
n�\:

n

1

li+ min
i

[li]. (8)

Proof. From the definitions, the locality of the natural partitioning is

L(T, PN)=
- �n

1 ((ri |Ti |)�li |)
2

�n
1 l i

and that of the single partitioning is

L(T, PS)=

:
n

1

ri |Ti |

*2
n

.

We construct the decision function d(ui , li , *n) as

d(ui , li , *n)#
L(T, PN)
L(T, PS)

=
*2

n

:n
1 li

- �n
1 ((ri |Ti |)�li)

2

�n
1 ri |Ti |

=
*2

n

�n
1 li �:

n

1

u2
i �l2

i .

When d�1, L(T, PN)�L(T, PS).

81MODELING COMMUNICATION LOCALITY IN MULTIPROCESSORS

If we consider d(ui , li , *n) as a function of variables ui with �n
1 ui=1, we can use

the Lagrange multiplier to find the minimum value. Let

f (ui)=d(ui)+# \:
n

1

ui&1+ ;

then

f $ui
=d $ui

+#=
*2

n

l2
i �n

1 l i

u i

- �n
1 u2

i �l2
i

+#=0. (9)

Since f $#=�n
1 ui&1=0, the value of # does not affect the location of the minimum.

If we multiply Eq. (9) by l 2
i �*

2
n and add the terms for all u i we can determine the

value of #. Substituting this value back into Eq. (9), we find that the minimum value
of d(ui) occurs when, for all i,

ui=
l2
i

�n
1 l2

i

. (10)

Hence the minimum value of the decision function is dmin=*2
n �(�n

1 l i - �n
1 l2

i). The
natural partitioning has a greater L-measure for any values of ui whenever dmin�1.
This occurs when

*2
n�\:

n

1

l i+ �:
n

1

l2
i .

Since d $ui
is monotonic, the maximum value of d(ui) will be reached at a boundary

point where ui=1 for some value of i. Hence dmax=(*2
n ��n

1 l i) maxi [1�l i]. If
dmax�1, then a single partition has the greater L-measure and for any values of ui ,

*2
n�\:

n

1

l i+ min
i

[li]. K

This theorem says that when there is a lot of overlap between the loops, *n is
small and a single partition has a greater L-measure. When there is little overlap,
*n is large and the natural partitioning has a greater L-measure. In order to
quantify this more, we must look at special cases. If li=l for all i, we can use l�*n

as a measure of overlap. This ratio is equal to 1�n when loops are disjoint and is
equal to 1 when all the loops use the same paths. For this special case, we can sim-
plify the result of Theorem 4.

Corollary 4.1. Let T=T r1
1 T r2

2 } } } T rn
n , where li=l for all i. The natural

partitioning has a greater L-measure than a single partition when l�*n�1�- n - n.
The single partition has a greater L-measure when l�*n�1�- n.

When l�*n exceeds a threshold value, the loops have many paths in common and
a single partition is better regardless of the distribution of requests between loops.

82 SALISBURY, CHEN, AND MELHEM

When the ratio is below a different threshold, the loops are sufficiently different that
the natural partitioning is better. For example if n=4 and l=10, the natural parti-
tioning is best when l�*n�0.35, which means that the total number of different
paths in the loops is larger than 28. The single partitioning is best when l�*n�0.50,
corresponding to 20 or fewer different paths.

When there are only two loops, Theorem 4 identifies the optimal partitioning.

Corollary 4.2. Let T=T r1
1 T r2

2 with M1 & M2 {<, where r1 and r2 satisfy the
requirement of Theorem 3. The following decision function can be used to determine
then the natural partitioning is optimal:

d(u1 , u2 , *n , l1 , l2)=
*2

n

l1+l2
�\u1

l1 +
2

+\u2

l2 +
2

. (11)

If d�1, L(T)=L(T, PN). Otherwise, L(T)=L(T, PS). In particular, PN is
optimal when

*2
n�(l1+l2) - l2

1+l2
2 , (12)

and PS is optimal when

*2
n�(l1+l2) min[l1 , l2]. (13)

Figure 1 shows how the decision function is affected by the overlap and the dis-
tribution of requests between two loops. When both loops have the same number
of different paths as shown in Fig. 1a, the minimum value of the decision function
occurs when both loops have the same number of requests regardless of the amount
of overlap. When the amount of overlap is small enough that l�*n�0.59, the
natural partitioning is optimal regardless of the distribution of requests. When
l�*n�0.71, the single partition is optimal. An alternative way to measure overlap is
to use the ratio lc �l, where lc is the number of paths common to both loops. For
two loops, lc=l1+l2&*n . PN is optimal when lc�l�0.32 and the two loops have
less than 320 of their paths in common. PS is optimal when lc �l�0.59 and the
loops have more than 590 of their paths in common. For intermediate values of
overlap, the decision function must be used to make the optimal choice based on
the relative number of requests in the two loops.

Figure 1b shows how the location of the minimum value of the decision function
changes when l1 {l2 . The number of iterations of each loop at this minimum point
can be derived from Eq. (10) to be

ri, min=
|T|
|Ti | \\

l3&i

l i +
2

+1+
&1

for i=1, 2.

The further the number of iterations in each loop is from this minimum value, the
more favorable it will be to use the natural partitioning. When the fraction of

83MODELING COMMUNICATION LOCALITY IN MULTIPROCESSORS

FIG. 1. Locality of two loops with common paths. (a) Loop 1 has l1=l2 different paths; z=l�*n .
(b) Loop 1 has l1=2l2 different paths; z=l1 �*n .

requests in the larger loop is sufficiently small, the natural partitioning is optimal
regardless of the overlap between loops, similar to the statement of Lemma 2.

Table 4 provides examples that illustrate the relationships shown in Fig. 1. In
summary, there is always a degree of overlap below which the natural partitioning
is better than a single partition. The overlap can be exactly determined for any
number of loops with equal numbers of different paths and for two loops with any
numbers of different paths.

4.3. Partitioning Loops with Uniform Overlap

Theorem 4 compares the L-measure of PN and PS on sequences of paths from
several loops. Except for the case of two loops, it does not identify the optimal par-
titioning function. There are 2n&1 ways to partition a sequence of n loops. To find
the optimal partitioning, the decision function from Theorem 4 could be incor-
porated into an algorithm that determines which subsequences of loops should be
combined into a single partition to obtain the optimal L-measure. Development of

84 SALISBURY, CHEN, AND MELHEM

85MODELING COMMUNICATION LOCALITY IN MULTIPROCESSORS

T
A

B
L

E
4

D
if

fe
re

nt
P

ar
ti

ti
on

in
gs

of
O

ve
rl

ap
pi

ng
L

oo
ps

A
pp

lic
at

io
n

se
qu

en
ce

T
l 1

�*
n

u 1
l 2

�l
1

P
ar

ti
ti

on
in

g
P

at
h

se
ts

M
i

L
(T

,P
)

(1
,2

,3
,4

)20
(3

,4
,5

,6
)20

0.
67

0.
5

1.
0

P
N

[1
,2

,3
,4

][
3,

4,
5,

6]
3.

54
P

S
[1

,2
,3

,4
,5

,6
]

4.
44

(1
,2

,3
,4

)20
(4

,5
,6

,7
)20

0.
57

0.
5

1.
0

P
N

[1
,2

,3
,4

][
4,

5,
6,

7]
3.

54
P

S
[1

,2
,3

,4
,5

,6
,7

]
3.

27

(1
,2

,3
,4

,5
,6

,7
,8

)10
(1

,2
,3

,4
)20

1.
0

0.
5

0.
5

P
N

[1
,2

,3
,4

,5
,6

,7
,8

][
1,

2,
3,

4]
1.

86
P

S
[1

,2
,3

,4
,5

,6
,7

,8
]

2.
50

(1
,2

,3
,4

,5
,6

,7
,8

)5
(1

,2
,3

,4
)30

1.
0

0.
25

0.
5

P
N

[1
,2

,3
,4

,5
,6

,7
,8

],
[1

,2
,3

,4
]

2.
53

P
S

[1
,2

,3
,4

,5
,6

,7
,8

]
2.

50

such an algorithm is beyond the scope of this paper. Instead, we will continue to
look at looping programs with specific structures in order to develop closed form
solutions for locality in different cases and to gain insight into the identification of
communication working sets.

In some programs it may be advantageous to combine some, but not all, loops.
We can extend our investigation of partitioning functions to include those that
combine several adjacent loops by considering loops with identical characteristics
that overlap in a uniform manner. We again consider the case where li=l and
ri |Ti |=r|T | for all i. We will divide the sequence of loops into groups of size w and
place each group of w loops together in a single partition. We will call this the
``grouped-by-w'' partitioning, PGw . For simplicity we assume w divides n, creating
n�w partitions, each containing w loops. We define uniform overlap to mean that the
number of different paths is the same in each group of w, so that the ratio l�*w is
the same in all groups.

Loops with a Common Core Set of Paths

One example of a sequence of loops with uniform overlap is one in which the
loops have a common core set of paths. These paths may be used for a basic
function such as computing a global sum or testing a completion condition.
The remaining paths in each loop are disjoint, for communication specific to the
function of the loop. We denote the number of paths of these two types as lc and
ld , respectively. The amount of overlap is thus l�*w=l�(wld+lc), which is the same
for each group of w. The L-measure of the natural partitioning of n such loops is
r |T |�(l 2

- n). The L-measure from partitioning the loops into groups of w is

r |T |

l 2
- n \w - w \ l

*n +
2

+ .

PN(T) has a greater L-measure than PGw (T) when l�*w�1�- w - w. This is a
generalization of Corollary 4.1. This decision function can also be expressed in
terms of the fraction of paths that are common to all loops as lc �l�
(w&- w - w)�(w&1). The result is shown in Fig. 2. When lc �l<0.32, the natural
partitioning has a greater L-measure than any grouped&by&w partitioning. With
any greater fraction of common paths, the L-measure is increased by combining a
pair of loops into each partition. As lc �l increases, the L-measure of grouped-by-w
exceeds that of the natural partitioning for larger values of w. The value of w which
has the largest L-measure can be found at the minimum point on the curve for each
value of lc �l.

For example, if the application can be represented by (1, 2, 3, 4)r

(1, 2, 5, 6)r (1, 2, 7, 8)r then lc�l=0.5. Figure 2 shows that L(T, PGw) is greatest at
w=3, and the L-measure is increased by combining all three loops into a single
partition. If the application is (1, 2, 3, 4)r (1, 5, 6, 7)r (1, 8, 9, 10)r, then lc�l=0.25
and the natural partitioning has a greater L-measure.

86 SALISBURY, CHEN, AND MELHEM

FIG. 2. Locality when overlapping natural partitions are combined.

Loops with Progressively Shifting Paths

Another example of a sequence with uniform overlap is one in which the paths
used by the loops progressively shift. That is, loop i has ld distinct paths, and shares
lc �2 paths with loop i&1 (i>1) and lc �2 paths with loop i+1 (i<n). It differs
from the previous example in that loops that are not adjacent do not hare any
paths in common. This sequence has a uniform overlap of *w=w(ld+lc �2)+lc �2.
While the decision function in terms of *a �l is the same as for the previous example,
the relationship between the natural and grouped-by-w partitionings is different
when expressed in terms of lc �l. The decision function for this example is
lc �l�2(w&- w - w)�(w&1), which is greater than 1 for w�16. For these values
of w, the natural partitioning will always have an L-measure greater than a
grouped-by-w partitioning.

Admissible Partitioning Functions

We can compare the natural partitioning to a broader set of partitioning func-
tions if we describe further what is required of functions that identify working sets.
Such functions should recognize communication patterns and construct, in a consis-
tent manner, partitions that represent working sets. We define functions that meet
the consistency criteria to be admissible partitioning functions.

We can see the value of a consistency requirement by considering the previous
examples of sequences of loops with identical locality characteristics and uniform
overlap. One possible partitioning of such sequences is to combine the first two
loops into a single partition and to place each remaining loop into its own parti-
tion. In some cases, such a partitioning produces an L-measure greater than that
of the natural partitioning. However, we would not normally identify the working
sets of a program in such an inconsistent manner. When the characteristics of all

87MODELING COMMUNICATION LOCALITY IN MULTIPROCESSORS

loops and the relationships between all loops are identical, the working sets should
consist of either two loops or one loop, but not sometimes one and sometimes two.

We can formalize the consistency requirement for an admissible partitioning
function in these cases. Consider the natural partitioning of the sequence
T=T r1

1 } } } T rn
n , and let Pi be the natural partition of loop i. Let Pi } } } Pj be a

sequence of partitions which are combined into a single partition by the partitioning
function P, so that partition boundaries occur after Pi&1 and Pj . Let Pi $ } } } Pj $, be a
sequence disjoint from Pi } } } Pj with an identical number of partitions (j&i= j $&i$).
If P(T) has a partition boundary after both Pi $&1 and Pj $, and P is admissible,
then for all k, i $�k< j $, Pk does not preceed a partition boundary of P(T).

A consequence of this definition is that for some sequences of n loops, some of
the 2n&1 possible partitionings cannot be produced by an admissible partitioning
function. In the case of uniformly overlapping loops, if P combines one
subsequence of w natural partitions into a single partition, then P(T) cannot
contain any subsequences of w natural partitions. All such subsequences must be
combined in some way, subject to the consistency requirement.

We can extend the results for this application to show that when the overlap is
low, the natural partitioning is optimal for any admissible partitioning function. We
first note that in this case there is a limit to the number of partitions that can be
produced by an admissible function.

Lemma 5. Consider a sequence of n natural partitions with uniform overlap where
li=l and ri |Ti |=rj |Tj | for all i and j. Let P be an admissible partitioning function
other than PN . Then P has no more than 2n�3 partitions.

Proof. Since P is admissible and P{PN , it must combine w loops into a
partition for some value of w>1. The longest subsequence of loops that are not
partitioned together must be less than or equal to w&1. Thus, every subsequence
of 2w&1 loops is placed in no more than w partitions. The number of partitions
cannot exceed wn�(2w&1). Since w�2, the maximum number of partitions is 2n�3. K

We can now construct a decision function to determine when the natural
partitioning has greater locality than any other admissible partitioning for the
application with core paths.

Theorem 6. Let T=T r1
1 T r2

2 } } } T rn
n be a sequence of loops with lc paths in com-

mon and ld distinct paths, and let P be an admissible partitioning function. Let li=l
and ri |Ti |=rj |Tj | for all i and j. Then L(T, PN)�L(T, P) when lc�l�0.14.

Proof. Let p be the number of partitions created by P and note that, for each
group of w natural partitions w�*w<1�ld . From the decision function, we can deter-
mine that a sufficient condition for the natural partitioning to have a greater
L-measure is that

d \p
n

,
lc

l +=�n
p \1&

lc

l + \1&
lc

l \1&
p
n++�1.

For any overlap lc �l, this function reaches its minimum value at p�n=
(1&lc�l)�(lc�l). For an admissible function, p�n�2�3. Thus, the minimum value is

88 SALISBURY, CHEN, AND MELHEM

F
ile

:7
40

J
15

13
19

.B
y:

G
C

.D
at

e:
02

:0
2:

99
.T

im
e:

07
:2

7
L

O
P

8M
.V

8.
B

.P
ag

e
01

:0
1

C
od

es
:

20
89

Si
gn

s:
50

1
.L

en
gt

h:
52

pi
c

10
pt

s,
22

2
m

m
R

O
T

E
R

E
N

IN
P

D
F

89MODELING COMMUNICATION LOCALITY IN MULTIPROCESSORS

T
A

B
L

E
5

P
ar

ti
ti

on
in

g
M

ul
ti

pl
e

O
ve

rl
ap

pi
ng

L
oo

ps

A
lt

er
na

ti
ve

P
N

pa
rt

it
io

ni
ng

L
oo

pi
ng

pr
og

ra
m

pa
rt

it
io

ni
ng

D
ec

is
io

n
fu

nc
ti

on
is

al
w

ay
s

be
tt

er

A
ny

P
S

*2 n

�
n 1

l i
�:n 1

u2 i l2 i
�

1
*2 n

�
\:n 1

l i +�
:n 1

l2 i

A
ny

n
P

S
*2 n

nl
2
�:n 1

u2 i
�

1
l * n

�
1

-
n

-
n

n=
2

P
S

*2 2

2l
2

-
u2 1

+
u2 2

�
1

l * 2
�

.5
9

F
or

al
l

i,
C

or
e

{P
G

w
* w l

1

-
w

-
w

�
1

l c l�
w

&
-

w
-

w
w

&
1

l i=
l

F
or

al
l

i,
j

pa
th

s
P

G
2

* 2 l
�

1.
68

l c l�
.3

2

r i
|T

i|
=

Sh
ift

in
g

{P
G

w
* w l

1

-
w

-
w

�
1

l c l�
2(

w
&

-
w

-
w

)
w

&
1

r j
|T

j|
pa

th
s

P
G

2
* 2 l

�
1.

68
l c l�

.6
4

U
ni

fo
rm

P
ad

m
is

si
b

le
�n p

\1&
l c l +\

1&
l c l
\1&

p n ++
�

1
l c l�

.1
4

ov
er

la
p

reached with the maximum number of partitions as long as lc �l�0.6. In this range
of overlap, d(p�n, lc �l)�1 whenever lc �l�0.14. Thus, for overlap less than this
amount, the natural partitioning has an L-measure greater than that of any other
admissible partitioning. K

Table 5 summarizes the results so far. This table shows when the natural parti-
tioning is better at identifying working sets than alternative partitioning functions.
This occurs when the amount of overlap between loops is low. The exact amount
depends on the application and the alternative partitionings considered.

5. THE NATURAL LOCALITY OF LOOPING SEQUENCES

We have used our measure to find that placing a loop into a single partition
often identifies the working set. We have investigated when the working sets in a
sequence of loops consist of the paths from each loop in cases where loops are dis-
joint and where loops overlap. Since the problem of finding the optimal partitioning
can be complex, we have looked at different approaches that combine several loops
into a single working set. While the measure can be applied to any partitioning, it
can be hard to determine an optimal partitioning function in the general case.

Since the natural partition can be the best of the alternatives even when loops
overlap, we will estimate the locality of a sequence of loops to be the L-measure of
its natural partitioning. We expect this to be a reasonable approximation, especially
for simple cases. We define the natural locality of a sequence of requests from a
looping program to be LN(T)=L(T, PN). We will approximate the locality of a
sequence using its natural locality, L(T)rLN(T).

We consider three final points. First, we look for general properties of locality
based on our measure. Second, we validate the locality approximation by compar-
ing its results to a model of communication performance. Third, we briefly look at
how our results would be affected by an alternative measure for spatial locality.

5.1. Properties of the Locality Measure

Using the natural partitioning, we can develop properties that partially order
communication request sequences by locality. These properties hold for the natural
locality LN(T), and for locality L(T) when loops have a sufficient number of
iterations.

Property L1. Given two disjoint sequences T1 and T2 and a fixed number of
iterations r,

L(T r
1 T r

2)>L((T1T2)r).

Locality always increases with disjoint sets of paths in separate partitions.

Property L2. Given two loops, T r1
1 and T r2

2 , where r1 |T1 |=r2 |T2 | and l1<l2 ,

L(T r1
1)>L(T r2

2).

90 SALISBURY, CHEN, AND MELHEM

For an equal number of requests, a loop with fewer paths will have greater locality
than a loop with more paths.

Property L3. Given two sequences T1 and T2 with l1<l2 , and iteration values
r1 , r2 , r$1 , and r$2 , where r1>r$1>r1, min and r1 |T1 |+r2 |T2 |=r$1 |T1|+r$2 |T2 |,

L(T r1
1 T r2

2)>L(T r$1
1 T r$2

2).

When loops have a different number of paths, the distribution of requests between
two loops affects locality. The minimum locality occurs when most of the requests
come from the loop with the largest number of different paths. When the fraction
of requests from the loop with the fewest paths increases, locality increases.

Table 6 shows the locality of several example communication patterns with the
same number of requests. These sequences were chosen to have different looping
structures and to have loops with a variety of locality parameters l, |T |, and r.
Clearly, the ordering obtained from the L-measure and shown in Table 6 follows
the intuitive notion of locality. For example, (1, 2)80 is intuitively more local than
(1, 2)40 (3, 4)40, which is more local than (1, 2, 3, 4)40.

5.2. Locality and Communication Performance

While the measure developed in this paper measures the communication locality
of an application's requests, a more important program characteristic is its com-
munication performance. Communication performance depends on the charac-
teristics of the network on which the program is run, while locality does not. One
way to validate the locality measure is to see how well it predicts communication
performance.

In [19], we describe a model of the communication delays encountered in a
circuit-switched network which is controlled by time division multiplexing. The
model applies to compiled communication, in which a sequence of network states
is predetermined by the compiler to provide the paths needed by the program. To
adapt to changes in working set, these states are loaded into the network hardware
as the program executes. Additionally, time division multiplexing can be used

TABLE 6

L-measure of Several Sequences of Equal Length

Sequence T L(T, P) Sequence T L(T, P)

(1, 2)80 40.0 (1, 2, 3)20 (4, 5, 6, 6)20 6.28
(1, 1, 1, 2)40 40.0 (1)35 (2, 3)25 (4, 5, 6, 7, 8)15 5.69
(1, 2, 3, 3)40 17.8 (1, 2, 3, 4, 5, 6)27 4.44

(1, 2)40 (3, 4)40 14.1 (1, 2, 3, 4)30 (5, 6, 7, 8)10 3.95
(1, 2, 3, 4)40 10.0 (1, 2, 3, 4)20 (5, 6, 7, 8)20 3.54

(1)70 (2, 3, 4, ..., 9, 10)10 7.07 (1, 2, 3, 4, 5, 6, 7, 8)20 2.50
(1, 2, 3, 4, 5)32 6.40 (1, 2, 3, 4, ..., 9)18 1.96

(1, 2)50 (3, 4, 5, 6, 7, 8)10 6.37 (1, 2, 3, 4, ..., 10)16 1.60

91MODELING COMMUNICATION LOCALITY IN MULTIPROCESSORS

to cycle through a sequence of K states which have been loaded together. While
reducing the number of times the network state is loaded into the hardware, the
additional paths in the cycle may delay the program's use of a path.

Network performance characteristics include the time to load the network state
into the hardware (E), the cycle time of states in the multiplexed sequence (A), and
the number of paths the network can provide simultaneously (m). The delay per
request can be described in terms of A, E, m, and the multiplexing degree K.
Analogous to the natural partitioning, a multiplexing degree K=Wl�mX contains all
the paths required by a loop and is defined to be one-partition multiplexing. The
associated delay, i.e., the cost of communication, is shown in [19] to be

Cost (Tr)=E+
AKr |T |

2m
.

This cost is less than the cost of any other multiplexing degree when 2 |T |<
Em�A<r |T |�2. This shows how the choice of optimal multiplexing degree can be
determined from the relationship between network characteristics and application
characteristics.

Communication locality should clearly affect performance using such a network.
The size of the working set affects the multiplexing degree K. The amount of
temporal locality affects the frequency with which a new state must be loaded.
Thus, it is reasonable to validate the locality model by comparing the locality of a
sequence of requests to the cost of compiled communication for those requests in
a circuit switched network.

Corresponding to the locality properties we can develop cost properties for
partially ordering applications when one-partition multiplexing is used for each
loop. Equality or inequality in these properties is dependent on the network's value
of m. In general, looping sequences with disjoint sets of paths and a sufficient number
of iterations will be placed in the same partial order by both locality and cost.

Property C1. Given two disjoint sequences T1 and T2 , and a fixed number of
iterations r,

Cost(T r
1T r

2)�Cost((T1T2)r).

Cost cannot increase with disjoint sets of paths in separate partitions. Separate
partitions may decrease cost even when there is some overlap between the sets of paths.

Property C2. Given two loops, T r1
1 and T r2

2 , where r1 |T1 |=r2 |T2 | and l1<l2 ,

Cost(T r1
1)�Cost(T r2

2).

For an equal number of requests, a loop with fewer paths cannot cost more than
a loop with more paths.

Property C3. Given two sequences, T1 and T2 , and iteration values r1 , r2 , r$1 ,
and r$2 , where r1>r$1 , l1<l2 , and r1 |T1 |+r2 |T2 |=r$1 |T1 |+r$2 |T2 |,

92 SALISBURY, CHEN, AND MELHEM

Cost(T r1
1 T r2

2)�Cost(T r$1
1 T r$2

2).

When loops have a different number of paths, the distribution of requests
between two loops affects cost. As the proportion of requests in the loop with fewer
paths increases, cost cannot increase.

Figure 3 shows the relative cost and locality of the sequences in Table 6. In order
to make cost and locality trends similar, the inverse of locality is plotted in Fig. 3a.
The value of Em�A has very little effect on the relative costs in Fig. 3. For these
sequences, the statistical correlation between cost and locality is 0.93 and locality
is a good predictor of communication cost.

To broaden the variety of sequences on which locality and cost are compared,
we randomly generated sets of parameters for use with the two models. Locality
was computed using the natural partitioning, and cost was computed using one-
partition multiplexing. The parameters were chosen to be representative of
characteristics that could be found in parallel programs:

FIG. 3. Locality as a predictor of relative communication cost. (a) Inverse of locality for sequences
in Table 6. (b) Relative cost of sequences in Table 6.

93MODELING COMMUNICATION LOCALITY IN MULTIPROCESSORS

v |Ti | randomly chosen between 32 and 960;

v li randomly chosen between 32 and |Ti |;

v ri randomly chosen between 3000 and 3500;

v n randomly chosen between 1 and 20 loops.

Sequences were generated in sets of 1000 using various additional restrictions on
the above parameters. The correlation between cost and locality for each set was
consistently in the range of 0.60 to 0.80, with even higher correlations for sequences
from a single loop. This high degree of correlation over a wide range of sequences
suggests that using the natural partitioning to identify working sets can be a useful
way to predict communication performance.

5.3. Communication Patterns in Parallel Programs

Communication in parallel programs often involves permutation patterns. These
patterns arise from the algorithmic decomposition of a problem and subsequent
assignment of tasks to processors. This decomposition often reflects a logical
arrangement of processors with characteristic communication patterns. These
patterns are reflected in the analysis of many benchmarks. See, for example, the
locality analysis in [5].

For example, it is common in programs that use a Jacobi algorithm for finite
element analysis to view processors as logically arranged in an array of one or more
dimensions. (This may or may not be the physical arrangement of processors.)
With this logical view, communication is often from each processor to its nearest
neighbors along each dimension of the array. These permutations are disjoint.
Nearest neighbor communication is also used in parallel programs that perform
matrix multiplication. Systolic applications are often associated with arrays where
communication occurs in only one direction along each dimension.

The transposition of a matrix can be implemented in a single permutation when
each processor holds a block of the matrix. The more general case of data redistribution
may require several permutations, depending on the specific requirements.

Another common logical arrangement of N processors is as a log N-dimensional
binary hypercube. Communication across each dimension of the hypercube is a
permutation, and the permutations for all dimensions are disjoint. The fast Fourier
transform uses these permutations, as do some sorting algorithms. An efficient all-to-all
communication pattern can be implemented by using these permutations in sequence.

The models of the previous sections can easily be applied to sets of disjoint
permutations such as these. In a nonblocking network where m equals the number
of processors, we can interpret each integer in the locality notation to be not just
a single path, but the entire set of paths required for the permutation. A loop
requiring m paths in each of two network states can therefore be represented as
(1, 2)r. This loop can be contained in a single multiplexed network state with a multi-
plexing degree of two. For example, consider m processors arranged as a log m-
dimensional binary hypercube. The integer i can represent the set of m paths used
for communication over dimension i. These sets of paths are disjoint. The notation
(1, 2, ..., log m)r then represents the pattern of m processors communicating over

94 SALISBURY, CHEN, AND MELHEM

F
ile

:7
40

J
15

13
25

.B
y:

G
C

.D
at

e:
02

:0
2:

99
.T

im
e:

07
:2

7
L

O
P

8M
.V

8.
B

.P
ag

e
01

:0
1

C
od

es
:

16
55

Si
gn

s:
47

9
.L

en
gt

h:
52

pi
c

10
pt

s,
22

2
m

m
R

O
T

E
R

E
N

IN
P

D
F

95MODELING COMMUNICATION LOCALITY IN MULTIPROCESSORS

T
A

B
L

E
7

P
ar

ti
ti

on
in

g
R

el
at

io
ns

hi
ps

w
it

h
an

A
lt

er
na

ti
ve

L
oc

al
it

y
M

ea
su

re

P
N

is
al

w
ay

s
be

tt
er

A
lt

er
na

ti
ve

B
as

e
m

ea
su

re
A

lt
er

na
ti

ve
m

ea
su

re

L
oo

pi
ng

pr
og

ra
m

pa
rt

it
io

ni
ng

�:
\|T

i|
|M

i|
+2 <:

|M
i|

�:
\|T

i|
|M

i|
+2 <-

:
|M

i|

O
ne

lo
op

,
di

st
in

ct
pa

th
s

P
ar

b
it

ra
ry

r3
�

l
r�

l

n=
2

P
S

l 1 * n
�
\� \

1+
l 2 l 1
+�

1+
\l 2 l 1
+2

+&
1

l 1 * n
�
\�1

+
\l 2 l 1
+2

+&
1

n=
2,

l 1
=

l 2
=

l
P

S
l * n

�
0.

59
l * n

�
.7

1
O

ve
rl

ap
pi

ng
lo

op
s

{A
ny

n,
l i=

l,
co

re
pa

th
s

P
G

w
l c l�

2w
&

-
w

-
w

w
&

1
l c l�

w
&

-
w

w
&

1

n=
3,

l i=
l,

co
re

pa
th

s
P

G
3

l c l�
0.

36
l c l�

0.
63

each dimension in succession in a loop executed r times. Similarly, (1, 2, 3, 4)r

can represent a pattern where each of m processors in a two-dimensional torus
communicates once to its nearest neighbors in each dimension.

5.4. An Alternative Locality Measure

The locality measure contains an implicit balance of the spatial and temporal
locality of a sequence of requests. To understand how changing this balance affects
our results, we replaced the measure of spatial locality from Eq. (1) with one that
reduces the locality of large working sets. A locality measure built with this should
identify working sets with a smaller number of different paths.

Specifically, we constructed a measure of spatial locality using the same mean-
root-square approach that was used for constructing the measure of temporal
locality. This alternate measure of spatial locality is defined as

Spatial LocalityAlt(T, P)=
1

(1�n) - �n
i=1 |Mi |

2
.

Lemmas 1 and 2 and Theorem 3 can be shown to hold for the locality measure
built from this definition. Table 7 shows how the results for different sequences are
affected. The alternative measure does encourage the identification of smaller working
sets. While the decision functions retain the same general form, the conditions
under which grouping increases locality become more restrictive. On the one hand,
the number of iterations required to combine paths from a loop into a single parti-
tion increases from r>l1�3 to r>l. On the other hand, the overlap in a sequence
of loops must be greater before combining two or more loops into a single partition
increases locality. For example, combining two loops with an equal number of
different paths into a single partition increases locality using the base measure when
each loop has more than 590 of the total number of paths. With the alternative
measure, the locality of the natural partitioning remains the greatest until each loop
has more than 710 of the total paths.

6. CONCLUSIONS

Communication locality is a characteristic of an application that, in some cases,
can be understood before the application is executed. For example, with compiled
communications we can obtain the sequence of communication requests in advance
of program execution. Intuitively, communication locality should affect the
demands on the network and hence communication performance as well. We
proposed a model for measuring the locality of parallel applications and showed
that the results of applying this measure correspond to our intuitive notions about
locality. We found that it is hard to determine the optimal partitioning of a
sequence of requests, even for restricted cases of looping sequences. We argued that
for sufficiently disjoint loops and a sufficiently large number of iterations, the natural
partitioning of an application provides the greatest measure of locality of any parti-
tioning, and communication working sets can be identified by loop boundaries.

96 SALISBURY, CHEN, AND MELHEM

While the model provides an objective basis for determining the working set of
communication paths, the real usefulness of the model is the correspondence
between locality and cost. We compared the locality results to those of a separately
developed model of communication performance for an environment where
communication locality is expected to be important. We found that to a high
degree, increased locality correlates with reduced communication cost. Thus, the
locality measure can be used as a tool to improve performance of an application
without specific knowledge of the network over which it will communicate. The
precise effect of locality on cost depends on many factors such as the network
parameters, the order of the communication requests and the number of paths used.
The programmer can use locality to take expected communication performance
into consideration when choosing the most appropriate algorithm to solve a specific
problem. Locality can also be used to evaluate the impact of different data distribu-
tion alternatives on communications.

We note the similarity between replacing paths in a network state and the paging
process used to manage a processor's physical memory. The memory management
concepts of locality of reference and working set can be applied to path manage-
ment in a circuit switched network, as well. We expect that the ability to identify
and manage the working set of paths used by a parallel program will have a strong
impact on communications performance in an interconnection network.

REFERENCES

1. V. Adve and M. Vernon, Performance analysis of mesh interconnection networks with deterministic
routing, IEEE Trans. Parallel Distrib. Syst. 5 (1994), 225�246.

2. W. Athas and C. Seitz, Multicomputers: Message-passing concurrent computers, IEEE Comput. 21
(1988), 9�24.

3. F. Cappello and C. Germain, Toward high communication performance through compiled com-
munications on a circuit switched interconnection network, in ``Proceedings of the First IEEE Sym-
posium on High Performance Computer Architectures,'' pp. 44�53, IEEE Computer Society Press,
Los Alamitos, CA, 1995.

4. C. Chen, D. Agrawal, and J. Burke, DBCube: A new class of hierarchical multiprocessor intercon-
nection networks with area efficient layout, IEEE Trans. Parallel Distrib. Syst. 4 (1993), 1332�1344.

5. B. Dao, S. Yalamanchili, and J. Duato, Architectural support for reducing communication overhead
in multiprocessor interconnection networks, in ``Proceedings of the 3rd International Symposium on
High Performance Computer Architecture, HPCA '97,'' pp. 343�352, IEEE Computer Society Press,
Los Alamitos, CA, 1997.

6. P. Denning, The working set model for program behavior, Comm. Assoc. Comput. Mach. 11 (1968),
323�333.

7. D. Feitelson and L. Rudolph, Coscheduling based on runtime identification of activity working sets,
Internat. J. Parallel Programming 23 (1995), 135�159.

8. K. Grimsrud, J. Archibald, R. Frost, and B. Nelson, On the accuracy of memory reference models,
in ``Computer Performance Evaluation, Modeling Techniques and Tools: 7th International Con-
ference Proceedings,'' pp. 369�388, Springer-Verlag, Berlin�New York, 1994.

9. N. Gulati, C. Williamson, and R. Bunt, LAN traffic locality: Characterization and application,
in ``Local Area Network Interconnection: Proceedings of the First International Conference,''
pp. 233�250, Plenum, New York, 1993.

97MODELING COMMUNICATION LOCALITY IN MULTIPROCESSORS

10. M. Holliday and M. Stumm, Performance evaluation of hierarchical ring based shared memory
multiprocessors, IEEE Trans. Comput. 43 (1994), 52�67.

11. K. L. Johnson, The impact of communication locality on large-scale multiprocessor performance,
Comput. Architecture News 20 (1992), 392�402.

12. D. Lahaut and C. Germain, Static communications in parallel scientific programs, in ``PARLE '94
Parallel Architecture and Languages��Europe,'' Springer-Verlag, New York�Berlin, 1994.

13. P. Lee, Efficient algorithms for data distribution on distributed memory parallel computers, IEEE
Trans. Parallel Distrib. Syst. 8 (1997), 337�352.

14. J. Li and M. Chen, Compiling communication-efficient programs for massively parallel machines,
IEEE Trans. Parallel Distrib. Syst. 2 (1991), 361�375.

15. D. T. Michel and W. C. Hobart, Jr., Toward a unified model of program behavior, Perform. Eval.
20 (1994), 27�44.

16. R. Numrich, P. Springer, and J. Peterson, Measurement of communication rates on the Cray T3D
interprocessor network, in ``Proceedings of HPCN Europe '94,'' Springer-Verlag, Berlin�New York, 1994.

17. Y. Pan and Y. Chuang, Properties and performance of the block shift network, IEEE Trans. Circuits
Syst. Fund. Theory Appl. 44 (1997), 93�102.

18. V. Peris, M. Squillante, and V. Naik, Analysis of the impact of memory in distributed parallel
processing systems, Perform. Eval. Rev. 22 (1994), 5�18.

19. C. Salisbury and R. Melhem, Modeling communication costs in multiplexed optical switching
networks, in ``11th International Parallel Processing Symposium (IPPS),'' pp. 71�79, IEEE Computer
Society Press, Los Alamitos, CA, 1997.

20. A. Sivasubramaniam, A. Singla, U. Ramachandran, and H. Venkateswaran, Abstracting network
characteristics and locality properties of parallel systems, in ``Proceedings of the First IEEE
Symposium on High Performance Computer Architecture,'' pp. 54�63, IEEE Computer Society
Press, Los Alamitos, CA, 1995.

21. D. Thie� baut, J. Wolf, and H. Stone, Synthetic traces for trace-driven simulation of cache memories,
IEEE Trans. Comput. 41 (1992), 388�410.

22. X. Yuan, R. Melhem, and R. Gupta, Compiled communication for all-optical TDM networks, in
``Supercomputing '96,'' IEEE Computer Society Press, Los Alamitos, CA, 1996.

CHARLES SALISBURY received the B.S. and M.S. degrees from the University of Wisconsin-
Madison. He was employed by IBM in marketing, system performance evaluation, and software
development. He received M.S. and Ph.D. degrees in Computer Science from the University of
Pittsburgh in 1995 and 1998, respectively. His research interests include parallel computing, interconnec-
tion networks, optical networking, and communication switching.

ZHIXIONG CHEN received an M.S. in Computer Science and a PH.D. in Applied Mathematics from
the University of Pittsburgh in 1997. He is currently on the technical staff at IBM-TRANSARC. His
research interests are distributing computing algorithms and neuronal modeling.

RAMI MELHEM received a B.E. in Electrical Engineering from Cairo University in 1976, an M.A.
degree in Mathematics and an M.S. degree in Computer Science from the University of Pittsburgh in
1981, and a Ph.D. degree in Computer Science from the University of Pittsburgh in 1983. He was an
Assistant Professor at Purdue University prior to joining the faculty of the University of Pittsburgh in
1986, where he is currently a Professor of Computer Science and Electrical Engineering. His research
interest include fault-tolerant and real-time systems, optical interconnection networks, high performance
computing and parallel computer architectures. Dr. Melhem served on program committees of numerous
conferences and workshops on parallel, distributed and fault-tolerant systems. He served as the general
chair for the Third International Conference on Massively Parallel Processing Using Optical Interconnec-
tions and he is on the steering committee of that conference. He was on the editorial board of the IEEE
Transactions on Computers and served on the advisory boards of the IEEE technical committees on
parallel processing and computer architectures. He is the editor for the Plenum Book Series in Computer
Science and is on the editorial board of the IEEE Transactions on Parallel and Distributed Systems.
Dr. Melhem is a senior member of IEEE and a member of the Association for Computing Machinery.

98 SALISBURY, CHEN, AND MELHEM

	1. INTRODUCTION
	2. THE APPLICATION MODEL
	3. MODELING LOCALITY OF REFERENCE
	TABLE 1

	4. LOCALITY OF LOOPING SEQUENCES
	TABLE 2
	TABLE 3
	FIG. 1a
	FIG. 1b
	TABLE 4
	FIG. 2
	TABLE 5

	5. THE NATURAL LOCALITY OF LOOPING SEQUENCES
	TABLE 6
	FIG. 3a
	FIG. 3b
	TABLE 7

	6. CONCLUSIONS
	REFERENCES

