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Abstract— Crosstalk in Multistage Interconnection Networks
can be avoided by ensuring that a switch is not used by two
connections simultaneously. In order to support crosstalk-free
communications among N inputs and N outputs, a space domain
approach dilates an N xN network into one that is essentially
equivalent to a 2N x2N network. Path conflicts, however may
still exist in dilated networks.

This paper proposes a time domain approach for avoiding
crosstalk. Such an approach can be regarded as “dilating” a net-
work in time, instead of space. More specifically, the connections
that need to use the same switch are established during different
time slots. This way, path conflicts are automatically avoided.
The time domain dilation is useful for overcoming the limits on
the network size while utilizing the high bandwidth of optical
interconnects.

We study the set of permutations whose crosstalk-free con-
nections can be established in just two time slots using the
time domain approach. While the space domain approach trades
hardware complexity for crosstalk-free communications, the time
domain approach trades time complexity. We compare the pro-
posed time domain to the space domain approach by analyzing
the tradeoffs involved in these two approaches.

I. INTRODUCTION

ROADBAND switching networks can be built from 2 x 2

electro-optical switches such as lithium-niobate switches
[2], [71], [8], [21]. Each switch has two active inputs and
two active outputs. Optical signals carried on either input
can be coupled to either output by applying an appropriate
voltage to the switch. Fig. 1 shows the two logic states of
such a switch, namely, “straight” and “cross,” and a multistage
interconnection network (MIN) with the generalized cube
(GC) topology built from these switches.

One of the problems associated with these electro-optical
switches is crosstalk, which is caused by undesired coupling
between signals carried in two waveguides. For example, when
a switch is in state “straight,” a certain amount of signal power
from input “A” may be coupled to “D”. Similarly, a certain
amount of signal power from input “B” may also be coupled

Manuscript received June 30, 1993; revised June 9, 1994. This work was
supported in part by the Air Force Office of Scientific Research under Contract
AFOSR-89-0469 and in part by the Andrew Mellon Educational Trust in the
form of a fellowship to the first author.

C. Qiao is with the Department of Electrical and Computer Engineering,
State University of New York at Buffalo, Buffalo, NY 14260.

R. Melheim and D. Chiarulli are with the Department of Computer Science,
University of Pittsburgh, Pittsburgh, PA 15260.

S. Levitan is with the Department of Electrical Engineering, University of
Pittsburgh, Pittsburgh, PA 15260.

IEEE Log Number 9404870.

Input Output
[ 0
| RS
, ) B D
3 straight
4 4
s 5
6 . 6

7 Cross

Stage i 2 3
Fig. 1. An 8 x 8 generalized cube (GC) MIN built from 2 x 2 switches.

to output “C”. Crosstalk also occurs when the switch is in state
“cross”. When both inputs of the switch carry signals, output
signals are affected by first order crosstalk. This is a significant
factor which affects the signal-to-noise ratio (SNR).

First order crosstalk at switches (hereafter abbreviated as
crosstalk) can be avoided by ensuring that only one input of
every switch is active at any given time. In other words, no
two connections should use the same switch simultaneously.
For MIN’s, this can be accomplished with a space domain
approach, called nerwork dilation [9], [10], [24], [25]. Using
this approach, an N x N network is dilated into a network
that is essentially equivalent to a 2N x 2N network, in which
half of the input and output ports are used for N inputs
and outputs, respectively. In the resulting dilated network, the
connections of certain permutations can be established simul-
taneously without crosstalk. This concept has been generalized
into wavelength dilation which is used to suppress crosstalks
between closely separated wavelengths in wavelength-routing
networks [19]. The space domain approach is reviewed in more
details in Section II-A.

If the size of the network is limited to N x N, crosstalk-
free communications between N/2 inputs and outputs can
be supported using the space domain approach. One of the
objectives of this research is to support crosstalk-free commu-
nications among up to N inputs and outputs using the NxN
network. For this, time-division multiplexing (TDM) can be
employed to utilize the high bandwidth offered by the optical
interconnects [1], [12]. An alternative would be to construct a
2N x 2N network, which, depending on the value of N, may
or may not be economically and/or technologically feasible.

The time domain approach proposed in this paper is a
method that achieves the above objective. It extends the
principle of the reconfiguration with time division multiplexing

0733-8724/94304.00 © 1994 IEEE



QIAO et al.: A TIME DOMAIN APPROACH FOR AVOIDING CROSSTALK

(RTDM) paradigm [13], [15], [16], to be described in Section
II-B. The RTDM resolves the path conflicts by partitioning
a set of connections into conflict-free subsets and is thus
applicable to dilated networks as well. The basic idea of the
proposed time domain approach is to avoid crosstalk in a way
similar to avoiding path conflict. More specifically, a set of
connections is partitioned into several subsets such that the
connections in each subset can be established simultaneously
in a network not only conflict-free but also crosstalk-free.
As such, the set of connections is established within several
time slots, one for each subset. Clearly, the connections in
some permutations realizable in a dilated network may need
two time slots to be established using this time domain
approach. The proposed approach can be regarded as “dilating”
a network in the time domain, which is described in more
details in Section II-C.

In Sections III and IV, we study the connectivity of networks
dilated in the space domain and that of networks dilated in the
time domain. More specifically, we determine the relationship
between the set of permutations realizable in one time slot
using the space domain approach and the set of permutations
that require two time slots using the proposed time domain
approach. In addition, we determine the number of time
slots needed to establish arbitrary connections using either
approach.

While the space domain approach can be regarded as a
way to trade hardware complexity for crosstalk-free commu-
nications, the time domain approach trades time complexity,
which is equivalent to communication bandwidth. Whether to
trade hardware complexity or to trade bandwidth for crosstalk-
free communications depends on the specific application being
considered. For instance, for multiprocessor interconnections,
the computation bandwidth of a processor is much lower than
the optical bandwidth. Thus, it is more appropriate to utilize
the excessive bandwidth to achieve crosstalk-free communica-
tions. In Section V, we discuss the tradeoffs involved in the
time domain and space domain approaches. Finally we draw
the conclusions in Section VI.

II. APPROACHES FOR SUPPORTING
CROSSTALK-FREE COMMUNICATIONS

Throughout this study, we consider MIN’s with the gen-
eralized cube (GC) topology [20] such as the one shown in
Fig. 1. This topology is chosen partly because a large GC
network can be easily constructed from smaller ones in a
recursive way. For example, a 16 x 16 network is constructed
from two 8 x 8 networks and an additional front stage, as
shown in Fig. 2. The recursive characteristics of the topology
will facilitate the discussions in later sections. Note that such
a GC network is topologically equivalent to many blocking
MIN’s such as the Omega network [26]. For instance, the
GC network in Fig. 1 becomes an 8 x 8 Omega network
after positions of the two middle switches at the middle
stage are interchanged. Similarly, by properly interchanging
the positions of the switches at the (two) middle stages of
the 16 x 16 GC network shown in Fig. 2, we can obtain a
16x16 Omega network. Based on this topological equivalence,
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Fig. 2. A 16 x 16 GC network recursively constructed from 8 x 8 ones.

Fig. 3. The realization of the 8 x 8 identity permutation in a dilated 8 x 8
GC network.

we conclude that a GC network can realize the same set of
permutation as an Omega network. Let this set of permutations
be defined as follows.

Definition 1: Let 2 be the set of N by N permutations
realizable by an N x N Omega or GC network.

The next subsection reviews the space domain approach for
avoiding crosstalk, followed by a subsection describing RTDM
for resolving path conflicts and a subsection describing the
proposed time domain approach for avoiding crosstalk and
resolving path conflicts as well.

A. Space Domain Dilation for Avoiding Crosstalk

A dilated N x N network is similar to a 2N x 2N network.
A major difference is that in a dilated network, only half of
the input and output ports is used. Fig. 3 shows a dilated 8 x 8
GC network, in which only one of the two input (or output)
ports of the switches at the first (or last) stage of the network
is actually used. Other than that, this dilated 8 x 8 network
is the same as the 16 x 16 network shown in Fig. 2. For
this reason, we conclude that a dilated GC network is also
topologically equivalent to a dilated Omega network. That is,
they can realize the same set of permutations without crosstalk.

In a dilated network, a connection between an input and
output is established by choosing an appropriate path in the
network so that no switch in the network will have both
input ports active at the same time. This avoids crosstalk as
discussed earlier. By dilating a network, it becomes possible
to establish a set of connections, or to realize certain permu-
tations, without crosstalk. In [10], it is shown that a dilated
Omega network has the same permutation capability as an
Omega network. That is, the set of permutations realizable
in a dilated Omega network without crosstalk is also €2 (see
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Definition 1). Therefore, based on the topological equivalence
mentioned previously, we establish the following lemma.

Lemma I: € is also the set of permutation realizable in a
dilated N x N GC network without crosstalk.

Since GC and Omega networks are blocking networks, Q
will contain some but not all possible permutations. Lemma
] implies that certain permutations (such as the identity
permutation as shown in Fig. 3) can be realized in a dilated
GC network without crosstalk while others cannot. That is,
dilated GC (or dilated Omega) networks are also blocking
networks. This means that the network dilation approach can
avoid crosstalks but cannot resolve path conflicts that exist in
the original network. In the next section, we describe a time
division multiplexing technique that may be used to resolve
path conflicts in optically interconnected networks.

B. Reconfiguration with Time Division Multiplexing (RTDM)

The reconfiguration with time division multiplexing
(RTDM) was proposed as a solution to the problem of
relatively slow network control in resolving path conflicts
[13]. The idea in RTDM is a generalization of techniques
used in the time-space-time switching networks as in [8],
[23], and [24].

With RTDM, a set of connections R is partitioned into
several conflict-free subsets, called mappings. Thereafter, the
connections in each mapping can be established in a network
without path conflicts. Based on these mappings, a sequence
of network configurations, or in other words, a set of states to
which the switches in the network are set, can be determined.
Each input and output is then informed of the sequence of
configurations, which the network goes through, one config-
uration during each time slor. As a result, the connections
in a mapping are established in one time slot and all the
connections in R are established within several time slots
in a time-division multiplexed fashion. Since no buffering or
arbitration is needed, electro-optical switching devices such as
lithium niobate directional couplers [2], [8], become suitable
for implementing such networks.

If the set of connections R required by an application
program is known and does not change during execution,
a sequence of network configurations can be determined
once at the beginning of execution of the application pro-
gram. This is referred to as static reconfiguration, which is
suitable whenever compile time analysis of the connection
requirements can be done or a target communication structure
is to be embedded in the interconnection network. Static
reconfiguration with time-division multiplexing in multistage
interconnection networks (MIN’s) was studied in [15].

In the cases when the connection requirements change
dynamically, the sequence of network configurations also
needs to be changed. By time-multiplexing K configurations,
K virtual networks are created in the time domain. The amount
of control overhead involved in determining and setting the
states of switches in these virtual networks can be amortized
with concurrent processing of the requests. In addition, a
sequence of configurations can capture communication locality
in a similar way that a set of pages in a virtual memory system
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captures memory reference locality [5]. As a result, dynamic
reconfiguration with time-multiplexing can effectively reduce
control overhead and improve network performance [11], [16].

The principle of the above described RTDM can thus be
used to resolve path conflicts in dilated networks as well. In
doing so, a set of connections is partitioned into subsets that
are not only conflict-free but crosstalk-free as well in a dilated
network. Such subsets are called crosstalk-free (CF) mappings
for the network. We will elaborate on the application of RTDM
to path conflict resolution in dilated networks in Section IV.
Next, we describe a way to integrate the solutions to crosstalk
and path conflicts based on RTDM.

C. Time Domain Dilation

The proposed time domain approach extends the principle of
the RTDM paradigm for avoiding crosstalk. More specifically,
the same ideas in RTDM can be applied except that a set
of connections needs to be partitioned into several subsets
to avoid not only path conflicts but crosstalk as well. These
subsets are CF-mappings for an undilated network. By es-
tablishing the connections in each of these CF-mappings in
a separate time slot, crosstalk is avoided without the need
for a dilated network and path conflicts are automatically
resolved. Note that, these CE-mappings are different from the
CF-mappings for a dilated network. One of the differences, for
example, is that a CF-mapping for an undilated N x N network
can contain only up to N/2 connections, while a CF-mapping
for a dilated N x N network can contain up to N connections.

Assuming that a permutation in € needs to be realized,
such a time domain approach that avoids crosstalk by using
two or more CE-mappings may be considered as “dilating” a
network in the rime domain. In particular, a network dilated
in the time domain using two time slots can be regarded as
a correspondence to a spatially dilated network. The next two
sections study the issues related to the connectivity of the
networks that are dilated either in the time or in the space
domain.

[II. PERMUTATION CAPABILITY OF THE
TIME AND SPACE DOMAIN APPROACHES

In this section, we first describe the set of permutations that
require just two CF-mappings using the time domain approach.
This set is then compared to the set of permutation realizable
in one time slot in a dilated network.

In the following discussions, the phase “in one time slot”
is usually omitted following the word “realizable” whenever
there is no confusion. We first introduce a definition which
corresponds to Definition 1 in Section IL

Definition 2: Let © be the set of N by N permutations
realizable with two CF-mappings by an N x N GC network.

The following theorems state the relationship between the
Q-permutations (see Definition 1) and the ©-permutations. For
the time being, we consider €2 as the set of permutations
realizable by a GC network (although it could be considered
as the set of permutations realizable by a dilated GC network,
as in Lemma 1).
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Fig. 5.

Theorem 1: Not every ()-permutation is a ©-permutation
in a network with N > 8.

Proof: We first consider the case N = 8 and show an
example Q-permutation which cannot be realized with just
two CF-mappings. Five paths, numbered from 1 to 5, are
drawn in bold lines in Fig. 4(a) as a part of the example -
permutation in an 8 x 8 GC network. Fig. 4(b) shows a graph
of five vertices. Each vertex in the graph corresponds to a
path in Fig. 4(a). Two vertices are connected by an edge if
the two corresponding paths share a switch in the network.
For example, vertex | and vertex 2 correspond to path 1 and
path 2, respectively. Clearly, these two paths cannot be in the
same CF-mapping. Since the graph in Fig. 4(b) is a ring of five
vertices, it is impossible to establish the five paths in Fig. 4(a)
with just two CE-mappings. This proves that the example Q-
permutation including these five paths is not a ©-permutation.
For N > 8, an Q-permutation which includes the above five
paths as partial paths can be constructed. The resulting -
permutation is not a ©-permutation and therefore the theorem
is proved. )

The above theorem indicates that © is not a superset of €.
The following theorem shows the converse.

Theorem 2: Not every O-permutation is an {2-permutation.

To prove this theorem, we first look at an example. Fig. 5
shows a 4 x 4 GC network and a permutation containing
four paths labeled a, b, ¢, and d. This permutation, which we
denote by w(4), is not an Q-permutation since these four paths
cannot be established simultaneously without conflict in switch
settings. However, since paths ¢ and ¢ can be established
in one CF-mapping and paths b and d can be established in
another CF-mapping, the permutation is a ©-permutation.

The proof of the theorem is based on recursive constructions
of a permutation 7(N) that is a ©-permutation but not an Q-
permutation. 7(N) will be recursively constructed from the
example permutation 7(4) shown in Fig. 5. Number the paths
inm(N) from 1 to N in a top-down order based on the position
of their originating input ports. Denote the set of odd and even
numbered paths by 7oq44(N) and Tepen(V), respectively. The
induction hypotheses about 7(/N) are as follows.
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Fig. 6. Recursive construction of the two sets for .\ = 8.

1. Bach of the sets, moqqa(N) and @eyen(V) is a CF-
mapping in an N x N network and their union, 7(N),
is a ©-permutation.

2. One path from set 7,44(/N) containing ¢ as a partial path
conflicts with one path from set Teyen(N) containing b
as a partial path. Therefore, the union of the two sets, is
not an {2-permutation.

For N = 4, m,qa(4) contains path 1 (which is @) and path

3 (which is ¢) while 7epen(N) contains path 2 (which is b)
and path 4 (which is d). Clearly, the above hypotheses are
true for N = 4.

Assume that the hypotheses are true for a network of
size N. Based on this assumption, we will prove that the
hypotheses are also true for a network of size 2N. We do
that by constructing the two sets, Togq(2N) and Teyen(2N),
from moq4(IN) and 7eyen (V). in the following way.

To construct 7,q4(2N) in a network of size 2N x 2N, the
top subnetwork (of size N x N} is set to establish the paths in
Toaq(N) while the bottom subnetwork is set to establish the
paths in 7. (V). After the two subnetworks are set properly,
the switches of the upper half of the first stage are then set
to the “straight” state while those of the lower half are set
to the ““cross™ state. This completes the construction of set
Toqa(2N). Fig. 6(a) shows the construction of 7,qq(8) from
'/Todd(4) and Wel'ew,(4)~

Since only one input (an odd numbered one) of each switch
at the first stage is used, there will be no crosstalk at that stage
when the connections in set m,q44(2/V) are established. Due to
the induction hypotheses 1), no crosstalk will be present at
later stages (of either subnetwork). Therefore, set 7oqq(2V)
is a CF-mapping.

The set Tepen (2IV) can be similarly constructed by reversing
the roles of the two subnetworks in the above procedure.
Fig. 6(b) shows the construction of Ty, (8). The resulting set
Teven(2N) is also a CF-mapping. Since different inputs and
outputs are active in set m,qq(2N) and set Teypen(2V), and
each set contains N connections, the union of the two sets is
thus a 2N by 2N permutation. Therefore, the hypotheses 1)
is also true for networks of size 2/V.

Note that when the set m,44(2/N) is constructed, the upper
4 x 4 subnetwork is set to establish a as a partial path.
Similarly, when the set Te,en(2N) is constructed, the same
4 x 4 subnetwork is set to establish b as a partial path.
Since paths a and b conflict in the subnetwork, the path from
Toqq(2N) containing a as a partial path conflicts with the
path from 7eyen(2N) containing b as a partial path. Thus,
hypotheses (2) is also true for networks of size 2N.
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Fig. 7. An example 4 X 4 permutation in both €2 and ©.

Fig. 8. Relationship between the set Q and the set O.

Since both hypotheses are true, we have proved the theorem
by induction. a

Having found from the above two theorems that the ©-
permutations and the {2-permutations are not the same, we
also observe the following.

Theorem 3: Some §2-permutations are also ©-permutations
(and vice versa).

We will sketch the proof of the theorem by examining an
example shown in Fig. 7. Note that the permutation in this
figure, which is different from the one shown previously in
Fig. 5, belongs to both  and ©. Therefore, the theorem holds
for a network with N = 4.

For networks with N > 4, a recursive construction proce-
dure similar to the one used in Theorem 2 can be carried
out and its description is thus omitted. It is worth noting,
however, that the recursive construction is now based on the
permutation in Fig. 7 instead of Fig. 5. Therefore, the theorem
can be proved using a similar induction proof in which the
hypotheses (2) becomes “no path in set modd(2IN) conflicts
with paths in set Teven(2N) and therefore the union of the
two sets is an {2-permutation.” |

So far, we have found that Q and © are two different
sets with a nonempty common subset. Fig. 8 summarizes the
relationship between the two sets. The figure also shows that
© is larger (that is, contains more permutations) than . This
is because there is a one-to-one (but not onto) mapping from
Q to O, as proved below.

Denote by f a perfect shuffle on set {0, 1,---, N — 1}.
That is, given any number D (0 < D < N — 1) and its
binary representation dids---d,, a perfect shuffle f maps
D = dyds - -+ dy, to its image D' = da - dnds.

Let each connection be represented by an input—output pair
(S, D) where 0 < S, D < N — 1. We may represent a
permutation P by N pairs of input-output ports. That is,
P = {(S;, Di)li = 1,2,---,N}. Denote by F a mapping
which maps P to P’ by shuffling all output ports of the
connections in P. More specifically, we have P’ = F(P) =
{(Si, f(D))|i =1, 2,---,N}. Fig. 9 illustrates the mapping
from P to P’ by F where N =8 and D; =1 — 1.
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Fig. 9. Mapping permutation P to P’ using F.

Lemma 2: F is a one-to-one mapping from Q to ©.

Proof: If P, and P are two different permutations, then
F(P,) and F(P,) are also different permutations. This is
because function f is a one-to-one mapping between integers.
To prove the lemma, we need to show that if P is an §-
permutation, then its image P’ = F(P) is a ©-permutation. So
far, we have considered €2 as a set of permutations realizable
by a GC-network as in Definition 1. In proving this lemma, we
consider  as a set of permutations realizable by a dilated GC
network as in Lemma 1. That is, we will show that if P can be
realized by a dilated GC network with one CF-mapping, then
P’ can be realized by a GC network with two CF-mappings.

While presenting the general proof for any permutation P
in an N x N network, we demonstrate the ideas used in the
proof by applying them to the identity permutation realized by
the 8 x & dilated GC network shown in Fig. 3. (Note that the
identity permutation in an Q-permutation according to Lemma
L)

Divide the connections in P into two subsets, p and ¢,
based on their destinations. More specifically, let p contain
the connections whose destinations are 0, 1,---, N, /2 —1 and
¢ contain the connections whose destinations are from N/2to
N — 1. For example, the 8 x 8 identity permutation is divided
into

P= {(07 0)7 (17 1)7 (27 2)7 (37 3)} (1a)

g =1{(4,4), (5,5), (6,6), (7, T} (1b)
When P is realized in a dilated network, the connections in
p will use the upper subnetwork while the connections in ¢
will use the lower subnetwork. The realization of p and ¢ for
the example identity permutation is shown in the left hand of
Fig. 10.

Given that P is partitioned into p and g, the permutation
P’ = F(P) is the union of the two subsets, p’ and ¢’, which
correspond to p and g, respectively. While the connections in
p’ have the same sources as those in p, their destinations are
£(0), f(1),--+, f(N/2—1), thats, 0, 2, - -- , N —2. Similarly,
the connections in ¢’ have the same sources as those in g but
their destinations are 1, 3,---, N — 1. For example, for the
8 x & identity permutation, we have

P ={(0,0), (1, 2), (2, 4), (3, 6)} (2a)

q = {(4. 1), (5.3).(6,5), (7. O} (2b)



QIAO et al.: A TIME DOMAIN APPROACH FOR AVOIDING CROSSTALK

P 0,0),(1,2).(2.4). (3, 6)

p:(0,0). (1, 11,(2,2),(3.3)

pass one

o, BB —O €
I ,;;ﬁ%r/’j\“g_;:}z <
WL B O
SR g
o, @ 0. 8- %
R 1 = [
SR, G S,

pass two

_l f L R -

q:(4,4),(5.5).(6,6).(7.7) g (4, 1)1,(5.3).(6,5). (7.7

Fig. 10. Emulating the two subnetworks of a dilated network by an undilated
network in two passes.

In order to show that P’ is a ©-permutation, it is sufficient
to show that both p’ and ¢’ are CF-mappings in an undilated
GC network.

We first observe that a dilated N x N GC network (e.g., the
8 x 8 dilated network in Fig. 3) consists of a first stage and
two subnetworks. Each subnetwork is similar to an undilated
N x N GC network (e.g., the 8 x 8 network in Fig. 1).
The input ports of each subnetwork may be numbered in the
same way as the undilated network while the output ports
are numbered differently. For example, Fig. 10 shows that the
output ports of the upper subnetwork of the 8 x 8 dilated
network are numbered 0, 1, 2, and 3, respectively, while those
of the undilated network (shown at top right) are numbered
0, 2, 4, and 6, respectively. The difference between these
two numberings can be represented by the shuffle function
f. Similarly, as shown in Fig. 10, by applying f to output
ports 4, 5, 6, and 7 of the lower subnetwork, we obtain output
ports 1, 3, 5, and 7 of the undilated network (shown at bottom
right), respectively.

In general, by applying f to the numbering of the output
ports of the upper subnetwork of an NV x N dilated network,
we get the numbering of the corresponding output ports of an
N x N undilated network. Since p’ is obtained by applying f
to the destination of the connections in p, we may establish the
connections p’ in the undilated network in the same way that
the connections in p are established in the dilated network.
Similarly, we may establish the connections in ¢’ in the
undilated network in a way similar to that the connections in g
are established in the lower subnetwork of the dilated network.
Since both p’ and ¢’ are CF-mappings in an undilated N x N
network, P’ is a ©-permutation.

For example, as shown in Fig. 10, by setting the switches
of an undilated network (shown at the top right in Fig. 10)
in the same way as the upper subnetwork, the four paths
in p’ (see (2a)) can be established without crosstalk in the
same way that the paths in p (see (la)) are established in
the upper subnetwork. Similarly, we may set an undilated
network (as shown at the bottom right) according to the lower
subnetwork, except that the switches at the last stage should
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be set differently. This permits the four paths in ¢’ (see (2b))
to be established in the network without crosstalk in a similar
way that the four paths in g (see (1b)) are established in the
lower subnetwork. This shows that both p’ in (2a) and ¢’ in
(2b) are a CF-mapping and thus the union of the two subsets
is a ©-permutation. |

In order to show that © actually contains more permutations
than €2, we first note that a reverse mapping of F' exists. Denote
such a mapping by F'~. This mapping can be accomplished
by a reverse shuffle of all output ports. More specifically,
let a reverse shuffle be denoted by f~, where f~(D =
di---dp_1dp) = dpdy---d,_q1. Given a permutation P =
{(S;, Dy)|i =1, 2,---, N}, its image under the reverse map-
ping F~is P = F~(P)={(S;. f~(D:))|i=1,2,---,N}.
Note that both F/(F~) and F'~(F’) are identity mappings. That
is, given any P, F(F~(P)) = F~(F(P)) = P.

Lemma 3: F is not an onfo mapping from €} to ©.

To prove the lemma, it is sufficient to show that there exists
a ©-permutation 7, such that /'~ () is not an Q-permutation.
Note that  will again be considered in the context of an
undilated network according to Definition 1.

Let m be the O-permutation constructed recursively in
Theorem 2. 7 contains connection (0, 0) in meqq(NN) and
connection (N/2, N/2) in mepen(N). Thus, F'~ () contains
(0, 0) and (N/2, N/4). These two connections share the same
switch (for input O and input N/2) and their destinations are
both in the upper subnetwork, thus resulting in a conflict
in setting that switch. The more formal techniques used in
[17] may be applied to show that these two connections in
F~(Q) conflict with each other. Therefore, F~(7) is not an
Q-permutation. For example, when N = 8, w contains (0, 0)
and (4, 4). Thus, F~(7) contains two conflicting connections,
(0, 0) and (4, 2), and thus is not an -permutation.

Since F is an one-to-one mapping from Q to © and F'~ is
its reverse mapping, the proof that F' is not an onto mapping
is thus completed. |

Based on the above two lemmas, the following is estab-
lished.

Theorem 4: There are more O-permutations than §2-
permutations.

Note that this theorem implies that the time domain “di-
lation” is more powerful than the space domain dilation in
realizing permutations in blocking networks. As will be shown
next, the time domain approach enjoys a similar property as it
needs less than twice as many time slots as the space domain
approach when establishing an arbitrary set of connections.

1V. ESTABLISHING ARBITRARY
CONNECTIONS WITH CEF-MAPPINGS

We now consider sets of arbitrary connections, which are
not necessarily permutations. Such a set of connections may
need to be established in the MIN if the MIN is used
as a centralized switching hub. In [24], a dilated slipped
banyan (DSB) architecture is proposed which emulates an N x
N completely-connected network by repeatedly realizing N
different permutations. Each of these permutations is realized
in one CF-mapping for the duration of a time slot, and every
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input is connected to a different output each time a different
permutation is realized. Therefore, a completely-connected
network is emulated with N CF-mappings.

In the previous section, it was shown that not every permu-
tation can be realized with two CF-mappings by an undilated
network. Thus, it is not clear that an undilated GC network
can emulate an N x N completely-connected network using
just 2N CF-mappings. However, we establish the following
theorem.

Theorem 5: An N x N completely-connected network can
be emulated in 2N CF-mappings in an undilated GC network.

Proof: Let Py, Ps,---,Py be the N §-permutations
used when a dilated network emulates a completely-connected
network. Since all possible N2 connections are contained in
these permutations, we have Uf’: 1 Pi=1Ix O, where I denotes
the set of N inputs and O denotes the set of N outputs.

To prove the theorem, we apply the F' mapping in Lemma
2 to the above {-permutations and consider the permuta-
tions: F(P1), F(P2), -, F(Pn). Since each of these per-
mutations is a ©-permutation, it can be realized with two
CF-mappings by an undilated network. Therefore, all these
N ©-permutations can be realized with 2N CF-mappings.
It remains to be shown that any connection in I x O is in
Uisi F(P).

Given any connection (S, D) € I x O. Let D’ = f~(D).
Since (S, D') is also a connection in I x O, it belongs to Py
for some k (1 < k < N). That is, (S, D') € Py. According
to the definition of mapping F', we have (S, (D)) € F(Pr).
That is, (S, f(f~(D))) € F(P) and thus (S, D) € F(Px).

|

For applications that may not require all possible con-
nections at all times, using 2N CF-mappings results in low
bandwidth utilization. The static and dynamic RTDM summa-
rized in Section II-B are shown to be effective in achieving
high communication efficiency [15], [16]. Although the results
in [15], [16] do not consider crosstalk, the same ideas can
be applied except that a set of arbitrary connections needs
to be partitioned into several CF-mappings to avoid not only
path conflicts but crosstalk as well. Note that, to establish a
set of arbitrary connections R, more than one CF-mapping
is needed even in a dilated network. This is because, as
mentioned earlier, that space domain dilation does not resolve
path conflicts. More specifically, a dilated blocking network
is still a blocking network. Even in a dilated nonblocking
(or rearrangeably nonblocking) network, path conflicts exist
between connections with the same source or destination.

We are interested in determining the number of time slots
(or CF-mappings) needed to establish a set of arbitrary con-
nections using either the time domain or the space domain
approach. To do so, let K, and Ky be the number of CF-
mappings resulted from the partitioning of R in an undilated
and a dilated network, respectively. Clearly, K, > K. Based
on Theorem 5, K, = 2 x K4 when R =1 x O.

When R C I x O, simulations have been carried out to
determine K and K. A set of random, distinct connection
requests is generated from all possible N 2 connection requests.
A greedy algorithm is used to partition this set into CF-
mappings in either an undilated or a dilated network. Fig. 11
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Fig. 11. Simulation results when N = 32.

shows both K; and K, as a function of the number of
requests when N = 32. From this figure, we see that K, <
2 x K. This result may be explained by the fact that the time
domain approach integrates the solutions to both crosstalk and
path conflict problems, and thus is more efficient than the
space domain approach which deals with crosstalk avoidance
only and still relies on the time multiplexing techniques to
resolve path conflicts. For example, when establishing a set of
connections that contains two connections with identical inputs
or outputs, at least two CF-mappings are needed in either an
undilated or a dilated network. As such, the space domain
approach may lose its advantage of being able to save twice
as much time as the time domain approach in such cases.

V. TRADEOFF ANALYSIS

Ordinarily, a network having N input and output ports can
support communications between N inputs and outputs. That
is, up to N connections may be established in the network.

In order to support crosstalk-free communications among
N inputs and outputs, the space domain approach increases
the hardware complexity by dilating an N x N network into
one that is essentially equivalent to a 2N x 2N network.
Although there may be other factors, we assume that the
hardware complexity of a network is proportional to the
number of switches, links and electronic driver circuits used
in the network. As such, the hardware complexity of a dilated
N x N (or a 2N x 2N) network can be considered as twice the
hardware complexity of an (undilated) N x N network. Note
that, however, the actual cost of a dilated N x N photonic
switching network made of lithium niobate may be less than
twice the cost of an N x N network, as long as constructing
such a network is technologically and/or economically feasible
[91, 125].

The time domain approach, on the other hand, increases
time complexity by using more than one time slot to support
crosstalk-free communications among N inputs and outputs.
Note that this increase in the time complexity also represents
a decrease in throughput, or usable bandwidth of the network.
For example, in an 8 x 8 network with 2.5 Gb/s lasers, the
time domain approach can only provide a (crosstalk-free)
bandwidth of 10 Gb/s. If crosstalk had not been of any concern,
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an 8x 8 configuration with 2.5 Gb/s lasers would have provided
a bandwidth of 20 Gb/s. The usable bandwidth for crosstalk-
free communications can only be increased if more hardware
is used as in the space domain approach.

We note that to achieve crosstalk-free communications with
about the same amount of hardware (e.g., a time-dilated N x N
network or a space-dilated N/2 x N/2 network), the space
domain approach would have been able to connect only N/2
inputs to N/2 outputs. But if each of these N/2 inputs is time
multiplexed with two input sources, and each of these N/2
outputs is time multiplexed with two output destinations, then
the (crosstalk-free) bandwidth connecting the N inputs to N
outputs in the space domain approach is the same as with the
time domain approach.

If the future technology allows the transmission rate to
scale up faster than the network size, the proposed time
domain approach will be a useful way to support crosstalk-
free communications. That is, if the cost of increasing the
bandwidth of each connection should become as “cheap” as (or
even cheaper than) the cost of constructing a network whose
size is twice its original size, then one may consider using the
time domain approach instead of the space domain approach.
For example, let us assume that a goal is to provide 32 channels
between 32 input and output pairs with each channel having
2 Gb/s bandwidth. Using the proposed time domain approach,
one can achieve the goal by using a 32 x 32 undilated network
and lasers each operating at 4 Gb/s. This is appropriate when
(and if) building a 32 x 32 dilated network which needs lasers
that operate only at 2 Gb/s, is less feasible than building the
smaller (undilated) network that needs lasers at 4 Gb/s. Of
course, it would be ideal to have a 32 x 32 dilated network
and use these high speed lasers (each operating at 4 Gb/s) to
provide higher bandwidth. In summary, whenever the limit on
the network size is reached before the limit on the available
bandwidth, the time domain approach may be used as a way
to trade the bandwidth for the desired connectivity, as many
other multiplexing techniques would do.

We also note that so far, we have assumed that each switch
in a network, whether dilated or undilated, is controlled indi-
vidually. A network control algorithm will be responsible for
processing a given set of connection requests and determining
the state of each switch in the network. The time, as well
as memory, needed for such an algorithm to determine a
sequence of network configurations that can establish a given
set of requested connections is on the same order whether
the network is dilated or not (although, as can be seen from
Fig. 11 for example, the number of configurations, i.e., the
number of time slots, needed will be different). If column
control (or stage control) [3] is used in either the dilated or
the undilated network, the connectivity of the network in terms
of its capability in realizing permutations will be reduced and
the network control will be simplified. It would be interesting
to investigate if results that are similar to those theorems and
simulation results previously obtained under individual switch
control can also be obtained under column control.

In [14], a space-time complexity measure is defined as the
product of the number of switches (and links) used in the net-
work and the number of time slots needed to establish a set of
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crosstalk-free connections. This is similar to the measure used
in VLSI design [4], [6], [18], [22]. Simulation results presented
in [14] show that the time domain approach improves the
space-time tradeoffs over the network dilation approach when
used to establish a set of arbitrary connections. An intuitive
explanation is that the time domain approach integrates the
solutions to the crosstalk and path conflict problems while
space domain dilation only deals with crosstalk avoidance
and still relies on time multiplexing techniques to resolve
path conflicts. Note that although only blocking networks
are simulated, these results are expected to be applicable to
nonblocking networks as well since path conflicts exist among
the connections having the same source or destination. This is
in spite of the fact that the set of permutations realizable with
two time slots by a nonblocking network would be the same
as the set of permutations realizable by a dilated nonblocking
network (both consist of all possible permutations).

VI. SUMMARY

In this paper, a time domain approach which is an extension
of RTDM is proposed. Using this approach, a set of con-
nections to be established is partitioned into several subsets,
so that the connections in each subset can be established
simultaneously in the network without crosstalk. Such an
approach may be regarded as a way to “dilate” a network
in the time domain as opposed to the space domain network
dilation approach.

The relationship between ©, which is the set of permutations
realizable with two CF-mappings by a GC network (or its
equivalence) and €2, which is the set of permutations realizable
by a dilated GC network (or its equivalence), is studied. In
particular, it is shown that there is a one-to-one but not onto
mapping from Q to ©. In other words, the set © contains
more permutations than the set 2. This implies that the time
domain “dilation” is more powerful in realizing permutations
than space domain “dilation.”

Note that since dilating a network usually increases the
number of stages in the network as well, the time domain
approach for avoiding crosstalk will result in less propagation
delay and optical path loss than the network dilation approach.
It is also more flexible since the same architecture may be used
for applications with or without crosstalk budget problems.
Finally, it is worth noting that the proposed time domain
approach is a useful approach for overcoming the limits
imposed on the network size, especially if future technology
allows optical bandwidth to scale up faster than network
sizes. On the other hand, if the technology allows the feasible
construction of large networks and the bandwidth does not
scale up accordingly, then the network dilation approach
should be used.
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