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Abstract

Cireuit-switched Banyan interconnection networks
ean be built from simple swilching elements that do not
have logical processing or buffering capabilities. This
paper describes a distributed lechnigque for dynamic
control of such a network, so that circuits can be es-
tablished in response to the changing needs of a paral-
lel application. Control information is interleaved with
data, thus avoiding the need for a separate network to
process control messages. These techniques are partic-
ularly useful in optical networks, where it may be desir-
able to provide all-optical circuit-switched connections.

1. Introduction

A common technique used in banyan interconnec-
tion networks is packet switching, in which data is
buffered at each switch, processed, and routed to the
correct destination. Circuit-switched banyan networks
can also be constructed, in which a direct connection is
provided between the source of a message and its des-
tination. Since neither packet processing nor buffer-
ing is needed, circuit switching can be implemented
with switches that are simpler and faster than those
required for packet switching. The circuits provided at
any instant of time are determined by the states of the
switches, and are collectively referred to as the network
state.

One means of providing multiple network connec-
tions for each processor is to use time division mul-
tiplexing (TDM). With TDM, the network hardware
automatically cycles through a sequence of network
states. A control operation may, for example, load a
register with a bit string representing a sequence of
states for a switch. Rotating the bits in the register
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changes the control signal sent to the switch, provid-
ing a very rapid means of changing the network state,
TDM can improve performance when the time to cycle
between network states is much less than the time to
perform the control operation[6]. Fach network state
is provided for a time slot sufficient to transmit a mes-
sage. The number of network states in the sequence is
the multiplexing degree. A global clock is required to
synchronize all switches.

Techniques have been developed for dynamic con-
trol of circuit-switched networks. One approach is to
use a central network controller to accept communi-
cation requests, determine the required network state,
and notify the requester when the state is available[2].
Distributed approaches spread control functions across
several devices, Increasing fault tolerance and perfor-
mance while also potentially increasing complexity.
The distributed approach described in [5] uses a sep-
arate control network and control logic placed in each
switch. A distributed approach for controlling an opti-
cal passive star network is described in [1].

This paper describes distributed, dynamic control
of circuit-switched banyan networks comprised of sim-
ple switches, without the need for a control network.
Multiplexing is used to share the network bandwidth
for both control and data communication. Using a dis-
tributed algorithm, each processor attached to the net-
work independently develops a network state that is
consistent with the states developed by all other pro-
Cessors.

The rest of this paper is organized as follows. The
principles of the distributed algorithm are reviewed in
section 2. In section 3, we describe an implementation
of the algorithm for a banyan MIN built from 2 x 2
switches. Section 4 describes how network control pro-
tocols can be built upon the contention resclution al-
gorithm. Our conclusions are in section 3.
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Figure 1. A reverse cube network.

2. Controlling banyan networks

A banyan network is a class of mnultistage intercon-
nection network (MIN) that provides a unique path
between any pair of nodes. A banyan network inter-
connecting N = k™ processors is built with n stages of
NJk switches, where each switch is a cross-bar switch
of size k x k. The distributed algorithm for creating
network states is based on a commonly used banyan
network structure called a Bi-Delta network[4].

2.1. Self-routing in banyan networks.

Banyan networks are distinguished by the intercon-
nection pattern between the network stages. For exam-
ple, the network shown in Figure 1 is called the “reverse
cube” network for ¥ = 8 and & = 2. The source and
destination nodes are labeled with n radix-k digits.

The messages from each source node can only pass
through a subset of the switches in the network. The
switches that can be used for messages from inputs 0
and 1 are highlighted in Figure 1.

The path from a source node to a destination node
can be described by the sequence of digits that label
the successive outputs of the switches at each stage of
the network. This sequence of n digits is called a path
descriptor. For example, using the switch port labels in
Figure 1 we see that the descriptor for the path between
input node 0 and destination node 5 is 101. We can also
define a reverse path descriptor describing the route
backwards through the network from a destination to
an input node.

Delta networks are a class of banyan network with
the property that the path descriptor for a destination
node is a permutation of the » radix-£ digits of the node
address[4, T]. This property is known as self-routing.
This means that the output port used at a switch does
not depend on the address of the node originating the
message.
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The self-routing property allows each switch to be
labeled with a single descriptor for the path used to
reach it. 'This descriptor is independent of the input
node from which the path originates. At a given stage,
several switches can have the same descriptor. For
switches at stage (), no routing is needed and the de-
scriptor is empty.

A Bi-Delta network is a Delta network in both di-
rections. That is, the path from a destination node
back through the network to an input node can also
be obtained by self-routing based on the address of the
input node. The switches in Figure 1 are labeled with
reverse path descriptors. Many of the commonly stud-
ied banyan networks are Bi-Delta networks, including
the Omega, cube, baseline, flip, and butterfly networks.

2.2, Distributed network control

We define a switch group to be a set of switches with
the same reverse path descriptor. Switches at different
stages of the network have different length descriptors
and thus are in different switch groups. Let &; be the
set of all switch groups at stage i. Each switch group
S € G, consists of switches with the same reverse path
descriptor. Clearly, these switch groups are disjoint.
For every switch group S € G, there is a corresponding
set of input nodes /s such that every node in 5 has a
path to every switch in §. Define this group of nodes
to be the inpul group for that switch group.

As shown in Figure 1, all switches in stage 2 have an
empty path descriptor and form a single switch group.
The corresponding input group consists of all eight in-
put nodes. At network stage 1, the two switches with
the descriptor {0) form a group for the group of input
nodes 0, 1, 2, and 3. Since each switch at stage 0 has
a unique descriptor, each switch is a group for the two
attached input nodes.

The following theorem describes an efficient dis-
tributed algorithm for resolving contention for switches
and developing a network state. The proof of the The-
orem is based on the self-routing properties of Bi-Delta
networks.

Theorem t: In a Bi-Delta network, the following
distributed procedure can be used to develop a network
state. For each network stage 7 from 0 ton — 1,

1. Exchange switch state requirements for switch
group S at stage i with all processors whose ad-
dress differs only in the position corresponding to
the reverse path routing descriptor for stage i.

. Resolve contention for the switches in S and deter-
mine the combined requirements from input group



Is for switches at subsequent stages of the net-
work.
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The required state of all switches can therefore be
determined in a control cycle of n steps, proceeding
from stage 0 to stage n — 1.

3. Developing the network state.

In this section, we consider an implementation of the
above algorithm for a network with & = 2. We describe
how processors specify their circuit requirements for
unicast connections and resolve contention to create
network states that satisfy these requirements, subject
to the blocking characteristics of the network. The
discussion and example are based on the reverse cube
network shown in Figure 1 with eight processors.

3.1. Overview

Each processor requests a circuit by placing its
switch state requirements into a control message. At
step ¢ of the algorithm, processors exchange control
messages. Contention is resolved for the switches in
the switch group at stage i and the resulting states
are retained for later use in setting the network state.
Since each message contains the requirements from an
entire input group, it may contain requests for sev-
eral circuits. Bach circuit requires exactly one switch
in each switch group. For circuits that can be pro-
vided through stage 7, the switch states required at
later stages of the network are merged into a control
message for step i + 1. Requests that are not satis-
fied are dropped and must be resubmitted later by the
originating processor.

When k£ = 2, information is exchanged between pairs
of processors. To set the switches at stage 7 in the eight
node reverse cube network, processor 0 = (020100) ex-
changes its request message with the processor that has
a different value of bit o;.

For example, to resolve contention for switches at
stage 1, nodes 1 and 3 exchange request messages since
their addresses differ in bit position 1. The message
from processor 1 contains the combined requirements
of its input group at stage (), which consists of proces-
sors 0 and 1. Similarly, processors 0 and 2 exchange
messages. After the exchanges, all four processors will
have complete information about the states requested
for the switches in the group at stage 1. Thus, all pro-
cessors in the input group can resolve contention and
merge control messages in a consistent manner.

158

3.2. Request messages.

Each processor creates a control message that spec-
ifies, for all switches to which it can be connected, the
states required to form a circuit to the desired desti-
nation. While the network contains % tog N switches,
each processor can be connected to only NV —1 of them.

For unicast communication, a 2 x 2 switch can be
set in either the “straight™ or “cross” state. Since all
switches accessible to a processor appear in the control
message, switches which are not required for a connec-
tion are indicated with a “don’t care” marking. In the
following examples we will use the notation “x” to in-
dicate a cross state, =" to indicate a straight state,
and “-" to denote “don’t care”.

The desired state of each switch can easily be com-
puted from the source and destination addresses using
the self-routing properties of the network. The request
for each switch is placed in the control message in a
location (i.e. a stage and offset) that allows the phys-
ical relationship between switches to be determined.
From the location of the state in the control message,
a simple mapping function can be used to locate the
requested states of the switches connected to the upper
and lower output ports.

For example, to connect processor (I to processor 3
requires the following (see Figure 1):

o The top switch at stage { must be in the cross
state (x}.

e The second switch at stage 1 must be in the
straight state (=).

e The second switch at stage 2 must be in the cross
state (x).

# The state of the other four switches to which pro-
cessor () could be connected do not affect this con-
nection. They are marked as “don’t care” (-).

These switch states are placed in a control message
and ordered by switch position within stage, so that
the control message from processor 0 is (x —= -x—-).

3.3. Resolving contention

At step 7 of the algorithm, contention is resolved
for each of the 2' switches in a switch group. Circuits
from the successful request(s) are traced through the
control message and switch requirements are inserted
into a merged control message that will be used at step
i + 1. Switches for which there is no specific request
are marked In the merged message with “don’t care”.
A circuit is traced through the control message using
the mapping function. For each switch, the following
contention is possible.



Source | Dest. Request Step 0
Message Switch | Merged
setting | request
5 X -= -x—— x x& -Xx-
1 6 X X- —X- x X= -Xx-
2 5 X -x -x-- x XX =x--
3 ¢ X x— ==-- x XX =x--
4 5 x -= -=—- x -= —=--
5 3 =-x —---Xx x = —=—-
6 2 = == ——X— = = —-—-X-
7 0 X X- x--— = =- --x-

Table 1. Resolving contention (part 1).

S. Step 1 Step 2 Final Need
Switch | Merged | Switch State Met,
setting | request | setting

0 x= =xx- =xx- x x= =xx- | Yes

1 x= =xx~— =xx-— X x= =xx- Yes

2 x =xx- =xx- X x= =xx- No

3 x= =xx- =xx- X x= =xx-— Yes

4 == -=x- =xx- x == =xx-— No

5 == -=x- =xx- X == =¥x-— No

6 == =y =xx- = == =yxy- Yes

7 == -=x- =xx- = == =xx- No

Table 2. Resolving contention (part 2).

o Both requests specify the same setting for a switch
in the current stage. There is no contention, and
hoth requests can be satisfied. Note that these two
requests can not have conflicting requirements at
any subsequent stage of the network.

s One request contains “don’t care” for the switch.
Again, there is no contention. If the other request
specifies a switch setting, it is successful.

o Two requests indicate “don’t care™ for the state of
the switch. The switch can be set arbitrarily.

o The requests are for different switch settings, in-
dicating contention. One request is chosen to be
successful, based on the contention resclution al-
gorithm. The unsuccessful request has become
blocked and is dropped from further processing.
The circuit from the successful request is traced
and the switch requirements are inserted into the
merged control message.

3.4. An example.

Let the conpections desired by the processors and

the associated control messages be those shown in the
first three columns of Table 1. Contention resolution
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at step 0 produces the resnlts shown in the last two
columns of the table. For example:

¢ Both processors 0 and 1 request the (x) setting for
the stage 0 switch. There is no contention. The
cross state is selected for the switch at stage 0 and
the merged message for the remaining switches is
(x= -xx-).

s Processors 6 and 7 have conflicting requests for
the stage 0 switch. For this example, we will use
a fixed priority scheme with the request from the
processor with lowest address having the higher
priority. The request from processor 7 is blocked,
and the stage 0 switch will be used in the straight
state. The merged message for the remaining
switches is {=— —-x-}.

Column 5 of Table 1 shows the control message devel-
oped for stage 1 after resolving contention for switches
at stage 0. At step 1, consider the requests exchanged
between processors 0/1 and 2/3. These requests must
be processed for each switch in the switch group.

e Both requests for the uppermost switch at stage
1 specify the cross state. There is no contention,
and circuits for both requests are inserted into the
merged control request. This stage 1 switch will
be set in the cross state, and both paths through
it will be used. The merged message for stage 2
switches based on this stage 1 switch is (=-x-).

e The requests conflict for the lower switch at stage
1. Contention is resolved and the switch will be
set in the straight state. The circuit requested by
processors 0 and 1 is traced and (-x--) is inserted
into the merged message. The complete control
message for the next step is therefore (=xx-).

In the final step, the state of all switches in the fi-
nal stage is determined. There is no need to merge
requests. The control register of each switch can then
be loaded with the required state by a processor asso-
clated with the switch. For example, processors with



cven (or odd) numbered addresses may be assigned to
load the registers for the n switches in the correspond-
ing row of the network. By comparing the network
state after stage 2 to its initial request, each processor
can determine if the circuit it requested will be estab-
lished. The final network state information contained
in each processor is shown in column 5 of Table 2. For
this example, four circuits will be established from pro-
cessor 0 to 5, 1 to 6, 3 to 0, and 6 to 2, as shown in
Figure 2. The successful requests are shown as a dark
solid line, while requests that have become blocked are
shown as a dashed line extending to the switch where
the blocking occurred.

Since control message processing does not require a
large amount of computation or memory, it could be
performed by network interface hardware.

4, Implementation alternatives.

The number of network states required for control
communication depends on the topology of the banyan
network. We can multiplex these states for network
control together with states for data communication to
implement dynamic, distributed control of the circuit
switched network. Various network control protocols
can be developed by describing sets of rules which gov-
ern how control cycles can alter the states used for data
communication.

4.1. Allocating network bandwidth.

To allow the control communication pattern to
be implemented without blocking the network must
be partitionable into contention-free and channel-
baianced disjoint k-ary cubes, as described in {3). The
processors that must communicate in each step of the
distributed procedure form a k-ary l-cube. From [3],
a cube banyan network (and by symimetry, the reverse
cube network of Figure 1) has the required property.
Thus, the communication required for each step of the
distributed algorithm can be accomplished with a sin-
gle network state.

Control communication therefore requires n network
states corresponding to the n steps of the algorithm. In
addition, data transmission requires one or more net-
work states. The required states can be provided in a
sequence using TDM. In an optical network they can
also be provided using wavelength division multiplex-
ing (WDM), or with a combination of WDM and TDM.
In the remainder of this paper we will illustrate the use
of the algorithm with TDM. In general, the length of a
time slot for data communication may differ from the
tength of a time slot for control communication.
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A sequence of n network states for controf can be in-
terleaved with a sequence of K states for data in many
different ways. One approach is to determine, after
each time slot, whether the state in the following time
slot is to be taken from the same sequence or not. We
call the use of a control state following each data state
data interleaving. Similarly, when a data state always
follows a control state, we call it control interleaving.
The time slot following the final state in each sequence
always contains a state of the opposite type. This ap-
proach can be used to produce the sequences shown
in Figure 3. For example, control interleaving alone
produces a sequence in which every control state and
every data state (except for the A*" one) is followed
by a data state. The K" data state is always followed
by a control state.

In these methods, the control cycle is repeated for
each data state to establish circuits for requests that
are new or were blocked. Once established, circuits for
data communication are provided in the same time slot
until a control cycle of n steps has been completed for
each of the K data states. After this time the network
state may change, as determined by the rules of the
protocol. Many characteristics of the network can be
computed from the manner in which the two sequences
are intericaved and the lengths of the data and control
time slots. This includes, for example, the minimum
latency to build a network state, the minimum number
of times a state can be used before it may be rebuilt,
and the percent of network bandwidth used for control.

Determining the optimal multiplexing method is a
complex task beyond the scope of this paper. Perfor-
mance is affected by many factors, including the rate
and burstiness of communication requests, switch con-
tention within the communication pattern, the use of
blocking communication or other synchronization, the
use of variable length messages, higher level protocol
requiremnents (e.g. reverse paths required for acknowl-
edgments), the frequency with which processors require
new circuits, and the relative size of data and control
time slots. Further, the time between the receipt of a
control message and transmission of the merged mes-
sage must allow for contention resolution processing.
Depending on the interleaving method and data slot



size, the control slot size may need to be extended to
allow sufficlent processing time.

‘I'hese same factors also influence the choice of the
optimal multiplexing degree. This value may change
as the communication activity of the program changes.
The value can be dynamically chosen using a dis-
tributed algorithm that adds information to the request
messages. [t may be easy to add an additional state to
the sequence of data states being multiplexed. The dif-
ficulty of removing a state from the sequence depends
on the network control protocol.

4.2. Network control protocols.

Network control protocols provide rules governing
how data states are created. One approach is to be-
gin each contro!l cycle with an empty set of circuits.
Once established, each circuit is available for a fixed
amount of time that can be computed from the net-
work parameters. We call this Reservation with Fixed
Expiration (RFE). Connection requests may be pro-
cessed in any control cycle. Circuits are released auto-
matically when the state that provided them has been
rebuilt. Even when the communication requirements of
the program do not change, RFE requires control op-
erations to rebuild states as they expire. RFE is suited
to programs that use fixed length messages which can
be transmitted in a single time slot and to programs
with frequently changing communication patterns.

Another approach is to update each network state,
and process only requests that do not alter existing
straight or cross switch settings. This allows proces-
sors to request circuits only once and to keep them in-
definitely. As a consequence, there may be restrictions
on the states into which a request can be processed.
By selecting this state carefully, it may be possible to
optimize the number of circuits used in each network
state, To avoid the need to continually increase the
multiplexing degree to accommodate new circuits, an
explicit release message is required. Thus, this proto-
col is called Reservation with Explicit Release (RER).
A “use count” must be kept for each switch to accu-
rately reflect available (*don’t care”) switches. The
contention resolution process can be extended with a
roll-back algorithm to maintain this use count. RER
depends on processors to be well-behaved and release
unneeded circuits, RER may be most appropriate for
programs that send variable length messages, and for
programs that require infrequent changes to the com-
munication pattern.

The control communication pattern allows addi-
tional information to be added to a control message
and used to make other decisions in a distributed fash-
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ion. For example, a flag could be added 1o support
an algorithm to change the protocol used based on the
communication needs of the program. The choice of
RFE or RER could then be made dynamically to ad-
just the performance of the network control protocol
to suit the program’s needs.

5. Conclusions

We have presented a distributed algorithm for re-
solving contention and developing network states in
Bi-Delta banyan networks built from simple switches.
The algorithm can be used as the basis of dynamic
network control protocols which provide unicast com-
munications.

Multiplexing can be used not only to interleave con-
trol and data in the same network, but to increase the
number of paths that can coexist in a network and thus
reduce the frequency of control operations. Various
techniques can be used to multiplex the control proto-
col with data communication in a single network. In
future work, we will investigate how the choice of con-
trol protocol and multiplexing technique can be made
to match the capabilities of the network to a program’s
communication requirerments.
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