Compiler Assisted Fault Detection for Distributed-Memory
Systems

Chun Gong
gong@cs.pitt.edu

Rami Melhem
melhem@cs.pitt.edu

Rajiv Gupta
gupta@cs.pitt.edu

Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

Abstract

Distributed-memory systems provide the most
promising performance to cost ratio for multiproces-
sor computers due to their scalability. However the
issues of fault detection and fault tolerance are crit-
tcal in such systems since the probability of having
faulty components increases with the number of pro-
cessors. We propose a methodology for fault detection
through compiler support. More specifically, we aug-
ment the single-program multiple-data (SPMD) eze-
cution model to duplicate selected data items in such
a way that during ezecution, whenever a value of a
duplicated data is computed, the owners of the data
are tested. The proposed compiler assisted fault detec-
tion technique does not require any specialized hard-
ware and allows for a selective choice of redundancy
at comptile time.

1 Introduction

Distributed-memory systems provide a promising
performance to cost ratio for multiprocessor comput-
ers. Such systems can incorporate thousands of pro-
cessors at a reasonable cost. However due to the large
number of processors, fault detection and fault toler-
ance become critical issues. The probability of hav-
ing faulty components increases with the number of
processors. The traditional approach to fault-tolerant
computing is to add specialized hardware to perform
fault detection efficiently [4] [12]. Recently, it has been
realized that the computing power of a multiprocessor
system is rarely completely used. Therefore it is nat-
ural to use the spare capacity of the multiprocessor
systems for fault detection and fault location [6] [13].
By replicating a task on more than one processor and
comparing the results obtained, errors can be detected
and masked. The fault detection is performed at the
task level and an error can be detected only after a
task is completed. The main advantage of this ap-
proach is that no additional hardware is required for
fault detection and location.

In this paper, we propose a compiler-assisted
methodology for fault detection in distributed-

memory systems. We augment the single-program
multi-data (SPMD) execution model for programming
distributed-memory systems with fault detection ca-
pabilities. In this model, a data item that is stored in
the local memory of a processor is said to be owned by
that processor, and it is assumed that the owner pro-
cessor of a data executes the statements that compute
the value of that data. If a data item, d, is replicated
on more than one processor, the statements that com-
pute the value of d will be executed by each of these
processors, making it possible to test these processors
by comparing their values of d. Given any program,
the compiler selects the data items for replication in
such a way that, during the execution of the program,
all active processors are tested. The degree of fault
coverage is controlled by the degree of data replication.
If a data item is selected for replication, then when-
ever the value of the data item is computed in the pro-
gram the owner processors of the data are tested. The
advantages of the proposed compiler-assisted fault de-
tection approach include:

1. Better efficiency: the fault detection is done at
the statement level instead of the task level,

2. Flexibility: full control over which processor is to
be tested and how should it be tested is exercised
at compile time;

3. Ease of implementation: no specialized hardware
is needed. Only the compilation techniques for
SPMD execution are modified; and

4. On-line fault detection: the test is done during
the execution of a program.

The idea of taking advantage of compiler techniques
for the purpose of fault detection and tolerance is not
new. In [2], a loop transformation to perform fault
detection on multiprocessor systems is presented. In
[1], a compiler-assisted scheme to enable a process
to quickly recover from transient faults is given. A
method that utilizes a VLIW compiler to schedule re-
dundant operations into idle functional units for fault
detection purposes is proposed in [3]. One reason that
makes compiler approaches appealing is the fact that

compilers can apply a variety of analysis techniques
to efficiently allocate resources in multiprocessor sys-
tems. Our approach is unique in that it exploits the
dependencies of a program to reduce the overhead in-
curred by fault detection strategies.

The multiprocessor system considered in this pa-
per consists of N processors connected by an inter-
connection network. Each processor has its own local
memory and there is no global memory. Interprocessor
communication is carried out through message passing
primitives. Transient or permanent faults may occur
in any of the N processor modules, and it is assumed
that a fault causes the processor to produce a wrong
result. It is also assumed that two faulty processors
do not produce the same wrong result.

We organize the paper as follows. Section 2 intro-
duces the SPMD execution model. In Section 3, we
first present the principle of fault detection through
data duplication and then discuss several different
fault detection strategies. In Section 4, some exper-
iment results are presented, and our conclusions are
given in Section 5.

2 The SPMD Execution Model

The SPMD execution model provides a powerful
approach for programming distributed-memory sys-
tems [5] [10] [11] [7] [9]. In this paper, we assume that
the user writes a sequential program and uses direc-
tives to specify the distribution of data. The compiler
then translates the program to execute in SPMD fash-
ion according to the owner-computes rule. A processor
examines the statements in the program sequentially,
and for each statement, it takes one of the following
actions: (a) performs the operation indicated by the
statement if it owns the data element whose value is
being computed; (b) sends a local data to the proces-
sor that needs the data to execute the statement; or
(c) skips the statement. Communication instructions
are introduced by the compiler. The communication
primitives are non-blocking send and blocking receive.
We use the following notation for send and receive in-
structions:

S(name, P, — Py):

P, Sends {name = val(name)} to P,
R(name, Pg — P;) :

P; Receives {name = val(name)} from P

The basic compilation rules for SPMD execution are
given in [5]. Here, we briefly discuss some key points
of the basic compilation. Two functions, Owner and
Loc, are defined for each data element d. The func-
tion Owner(d) returns the identifier of the processor
on which d resides, and the function Loc(d) returns
the location of d in the local memory of the processor
Owner(d). These functions can be stored in a table
on each processor’s local memory. Two statements,
LOAD and STORE, are introduced with the follow-
ing semantics:

LOAD d,t, pid:

IF (Owner(d) = mypid) THEN
IF (pid = mypid) THEN t «—Loc(d)
ELSE S(d, mypid — pid)
ELSEIF (pid = mypid) THEN
R(d, mypid — Owner(d))
Move d,t

STORE d, f(t1, .. .,tn):
IF (Owner(d) = mypid) THEN
t f(t1,. 1 tn)
Move t, Loc(d)

where £ and ¢;,1 < 7 < n, are local temporary mem-
ory locations, mypid is the identifier of the processor
that executes the LOAD or the STORE statement,
and pid is the identifier of the processor to which d
is to be loaded. These two statements do not appear
in the source program. They are used only by the
compiler. With these two statements, a standard as-
signment statement d = f(d1,...,dy) is compiled to
the following sequence:

LOAD d,,t1, Owner(d)

LOAD dy, t,, Owner(d)
STORE d, f(t1, .. .,tn)

Here, Owner(d) is said to be a consumer processor for
dy,da,...,dy.

Our implementation of the SPMD model is to have
two modules on each processor, an ezecutor and a com-
municator. The ezecutor is responsible for the execu-
tion of a statement and the communicator is respon-
sible for sending and receiving data. When the execu-
tor needs to send a data item to another processor, it
gives the data item and destination to the communica-
tor and continues execution. When the executor needs
to receive a data item, it sends a request to the com-
municator and waits until the communicator has pro-
vided the requested data. More specifically, when the
executor executes the instruction S(d, P; — P;), it is
the communicator that actually sends the data. When
the executor executes the instruction R(d, P; — P;),
the communicator holds the executor until the data re-
quested arrives, then the communicator gives the data
to the executor and the executor continues its execu-
tion. Both the communicator and the executor have
access to the functions Owner and Loc. In addition,
the communicator also maintains a hash table for stor-
ing received data temporarily. For normal SPMD exe-
cution, it is enough for each data element to have only
one owner processor. In order to achieve fault detec-
tion, we will replicate selected data items and modify
the basic compilation rule. For this purpose, we intro-
duce two modified communication mechanisms: mul-
ticast and multireceive. In the specification of these
mechanisms given below, Py is a processor identifier
and PID is a set of processor identifiers.

S(d, Py — PID):
For all p € PID Do
S(d, Py — p)

R(d, Py — PID):
For all p € PID Do
R(d, Pg — p)

Multicast allows one processor to send a data to a set
of processors and multireceive allows a processor to
receive multiple copies of a data item from a set of
processors. For multireceive instruction, the variable
d is a vector that can hold multiple copies of the same
data item. These multiple copies may be then com-
pared for fault detection purposes. If P; € PID, then
S(d, Py — P;) means that the executor of P; trans-
fers the value of d to the communicator of P; and
R(d, Py — P;) means that the communicator of Py
gets a value of d from the executor of Py.

3 Fault Detection Through Data Du-
plication

Replicated execution of an assignment statement
may be achieved during SPMD execution by replicat-
ing the data item at the left hand side of the state-
ment on different processors. If a data item d is repli-
cated, then Owner(d) is a set of processors, and when
a statement such as d = f(dy,...,dy) is encountered,
all the processors in Owner(d) execute the statement
and compute their own values for d. These values may
be compared to determine if an error has occurred in
one of the owners of d. One of the following alterna-
tives may be used for achieving the comparison:

1. Check before use: After areplicated data dis com-
puted, all the processors in Owner(d) continue
their execution until the value of d is used in an-
other statement. At that time, all the owners of d
send their copies of d to the consumer processors
and the communicators of the consumer proces-
sors compare these copies. This alternative ad-
heres to the spirit of SPMD execution, where data
is sent to the consumer only when it is needed.

2. Check after definition: Each processor in
Ouwner(d) sends the computed value of d to the
other processors in Owner(d) as soon as d is com-
puted, thus allowing an immediate comparison of
the computed values of d. This way, an error is
detected as soon as it occurs.

If data is replicated on more than two processors, then
it is possible to locate and mask faults. However,
it is sufficient to duplicate data for fault detection.
For this reason, we will assume in this paper that
|Owner(d)| < 2 for any data item d. To detect tran-
sient faults, |Owner(d)| = 2 for each data d. To detect
permanent faults, we require that for each processor
P;, there must be at least one data item d such that
P; € Owner(d) and |Owner(d)| = 2. However we do
not need to duplicate every data item. In the follow-
ing two sections, we will discuss, in some details, the
above alternatives for fault detection.

3.1 Check Before Use Strategy

In this strategy, comparison is performed just be-
fore a duplicated data item is used. In order to de-
scribe the strategy, we need to modify the semantics

of the LOAD statement to account for the fact that a
dataitem, d, may be owned by two processors and may
be used in a statement executed by two processors.
Specifically, the following version of the LOAD state-
ment loads one or two copies of d (depending upon
Owner(d)) into a set, PID, of consumer processors:

LOAD d,t, PID:
IF (Owner(d) = {mypid}) THEN
IF (mypid € PID) THEN t — Lod(d)
S(d, mypid — PID — {mypid})
ELSE
IF (mypid € Owner(d)) THEN
S(d, mypid — PID)
IF (mypid € PID) THEN
R_C(d, mypid — Owner(d))
Move d,t

In the above description, (PID — {mypid}) = PID if
mypid is not in PID. Note that t «— Loc(d) is exe-
cuted only by a processor if that processor is the only
owner of d and is a consumer of d. In all other cases,
the loading process will involve the communicators of
the owner and consumer processors. The instruction
R_C() is a modified version of multireceive instruction
that allows multiple values of the same data item to
be received and compared. In any given statement
where a duplicated data d is used, the ezecutor of a
consumer processor will execute the instruction R_C()
when it loads d. This causes the executor to wait for
the communicator’s response. The communicator of
the consumer processor will receive two copies of d.
It then compares the two copies, and if they match,
it gives one copy to the ezecutor. The communica-
tor acts as a server, always waiting for an event. The
event is one of the following:

1. S(d, P): the executor wants to send a data d to a
set of processors P;

2. R(d, P): the executor requests receiving the data
d from a set of processors P;

3. A(d): a copy of d has arrived from another pro-
Ccessor.

The communicator maintains a hash table, Hash, to
store the received data temporarily. FEach entry of
Hash contains a pointer pt which points to a queue.
The queue is implemented by a linked list and each en-
try in the queue is either a pair of values (for a dupli-
cated data item) or a single value (for a non-duplicated
data item). To illustrate the former case, assume that
a data item z is duplicated on processors P; and P;.
If at a time during the execution, processor P; needs
to use z, it receives two copies of z, one from P; and
the other from P; (see Figure 1 (a)). However, since
the execution is asynchronous, it is possible that one
processor proceeds faster than the others. Suppose F;
is ahead of P; in the execution and before P; gets the
chance to send its first copy of z, P; recomputes z and
reaches another statement that uses z. If this state-
ment is also executed on Py, then P; will send z again
to P;. When the communicator of Pj receives the new

z from P;, it enqueues it at the end of the queue (see
Figure 1 (b)). Only after the first copy of z from P;
arrives, could the communicator of P; give the first
value of z to its executor. After using the first value
of z, the communicator deletes the head of the queue.
See Figure 1 (c) and (d).

Hash Hash

\% Xi Xi Xi
[= Il A I

—| Xj

Hash Hash

X% Xi Xi Xi
- XX | Xi]

—| Xj

© (d)

Figure 1: (a) The queue of Py after receiving two
copies of z; (b) P; sends z twice; (c) The copy of
the first z arrives from P;: (d) After deleting the first
z.

Algorithm 1. wait for all strategy:
Repeat
Switch(wait(event))
case S(d, P): Vp € P, send(d, p)
case R(d, P): IF (|Hash(d)| = |Owner(d)|) THEN
delete(d, Hash)
return(d)
ELSE return(wasit)
case A(d): arrived = false
IF (JOwner(d)| = 1) THEN
arrived = true
ELSEIF (|Hash(d)| = 1) THEN
IF (d # Hash(d).pt) THEN
broadcast(error)
ELSE arrived = true
insert(d, Hash)
IF (arrived) THEN Signal(d)

until forever

Figure 2: The communicator algorithm for the check-
before-use wait-for-all strategy

The algorithm for the communicator is given in Fig-
ure 2. In response to the event S(d, P), the commu-
nicator simply sends the data to all processors in P.
If the executor requests receiving a data d, the com-
municator checks if both copies of d have arrived by
comparing the number of values | Hash(d)|in the head
of the queue pointed by Hash(d).pt with the number
of owner, |Owner(d)|. If all copies of the data have
arrived, the communicator gives the data to the ex-
ecutor; otherwise it returns a special value wait which

Algorithm 2: wait for one strategy:
Repeat
Switch(wait(event))
case S(d, P): Vp € P, send(d, p)
case R(d, P): IF (|Hash(d)| > 0) THEN
IF (|Hash(d)| = |Owner(d)|)
Then delete(d, Hash)
return(d)
ELSE return(wast)
case A(d): IF (|Hash(d)| = 1) THEN
IF (d # Hash(d).pt) THEN
broadcast(error)
insert(d, Hash)
Signal(d)
Until forever

Figure 3: The communicator algorithm for the check-
before-use wait-for-one strategy

causes the executor to wait for an event. In the event
of a data arrival, the communicator checks if both
copies have arrived and if so it compares the two val-
ues and broadcasts an error message if the values are
not the same. The communicator uses a local boolean
variable arrived to remember if all copies of a data
item have arrived. In the algorithm shown in Figure
2, a consumer of a data, d, has to wait for all the copies
of d to arrive before resuming execution. We call this
strategy a wait-for-all strategy. Four types of time
overhead may be identified with the fault-detection
strategy:

1. communication overhead caused by sending mul-
tiple copies of data items to consumers;

2. duplication overhead caused by duplicating the
execution of some statements;

3. comparison overhead needed to compare multiple
copies of a data item; and

4. synchronization overhead caused by the possible
delay in the execution of a processor, P;, waiting
for multiple copies of a data item. Such a wait
may delay other processors waiting for the data
computed by P;.

The synchronization overhead is the most serious since
it may have a ripple effect on the execution of all the
processors. This overhead may be eliminated if we
resume the execution of a consumer processor after
it receives one copy of the data. The communicator
of a consumer processor still waits for two copies of
a duplicated data and performs the comparison, but
it gives the value to the executor once it receives the
first copy of the data item. This is called wait-for-one
strategy. The algorithm is given in Figure 3.

Another improvement is to eliminate duplicate
comparisons. Whether we use a wait-for-all or a wait-
for-one strategy, the comparison is performed by all
the consumers of a duplicated data item. The com-
parison and communication overheads may be reduced
by comparing the two copies of a duplicated data item

only once rather than twice. With only one processor,
P;, performing the comparison for a data item, d, a
fault in one of the owners of d may escape detection
if P; itself is faulty, thus reducing the fault coverage.
Noting that, in effect, P; is testing the two owners of d,
the detection of up to ¢ simultaneous faults, for some
t, may be accomplished if duplicated data is chosen
such that each processor is tested by at least ¢ differ-
ent processors during the execution of the program.

In order to eliminate duplicate comparisons, we
distinguish the two owners of a duplicated data as
primary and secondary owners. Non-duplicated data
have only primary owners. We also define a primary
consumer of a data item z as the primary owner of
y, where y is the left hand side of a statement that
uses . With these definitions, we may modify the
compilation rules such that if z is duplicated, only the
primary consumer of z compares its two copies. For
this purpose, the SPMD compilation should be mod-
ified such that the primary owner of z sends its copy
of z to all its consumers, while the secondary owner
of z (if z is duplicated) sends its copy of z only to its
primary consumer. This guarantees correct operation
whether z is duplicated or not, and whether z has one
or two consumers. Specifically, (a) if z is duplicated,
its two copies will be compared; (b) a primary con-
sumer of z will receive all the copies of z; and (c) a
secondary consumer of z will receive only one copy of
z.

Finally, the duplication overhead may be elimi-
nated if we add a spare processor, P;, to the system
and designate that spare as the primary owner of all
the duplicated data. With this modification, the exe-
cution time of a program is almost equal to the exe-
cution time without introducing the additional spare
and the fault detection capability. Since the executor
of a consumer processor waits for only one copy of a
data item, it will not be delayed, even if P; is delayed.
All the processors except P, execute at their own pace
while P, roves around executing selective statements
from each other processor. There is some overhead
due to the extra communication caused by the dupli-
cated data. However, this overhead is limited by the
fact that the send instruction is non-blocking.

The motivation for the check-before-use strategy
is to reduce the communication overhead by sending
data to its consumers when the data is used, thus fol-
lowing the original SPMD compilation model. This
strategy, however, delays the detection of an error in
the computation of a data until this data is used. It
also requires that each processor in the system owns
a duplicated data that is used somewhere in the pro-
gram, in order for that processor to be tested. The
Check-after-definition strategy overcomes these short-
comings at the expense of larger synchronization over-

head.

3.2 Check After Definition Strategy

In the strategy presented in this section, the com-
parison of independently computed values of a data
item is performed as soon as these values are com-
puted. Specifically, immediately after a duplicated

data item, z, is computed by two processors, the two
processors exchange copies of z and compare them.
The same four types of overhead discussed in the pre-
vious section apply to the check-after-definition strat-
egy, and similar variations of the basic strategy may be
used to reduce that overhead. Although the principle
discussed here can be applied for general case, due to
space limitation, we only discuss a wait-for-one check-
after-definition strategy in which a spare, P;, is used
and is designated as the primary owner of duplicated
data. Only, the primary owner of a duplicated data
item z namely P, compares the two copies of z and
flags an error if the two copies are different. Specif-
ically, if P, and P; are the primary and secondary
owners of z, then whenever z is computed, P; sends
its copy of z to P, immediately and P, performs the
comparison.

In addition to P; sending a copy of z to P, for the
purpose of comparison, each consumer of z should re-
ceive a copy of z at the time z is used. However, each
consumer should receive only one copy of z since no
comparison will be done before use. In order to guar-
antee that each consumer will receive one copy of z
whether or not z is duplicated, the LOAD instruction
should be modified such that:

1. For a non-duplicated data item, the owner sends
this item to all consumers, and

2. For a duplicated data item, z, the primary owner
of z sends it to its primary consumer, and the
secondary owner of z sends it to its secondary
consumer (if any). Note that the primary owner
of z is always P,, and if z has two consumers, its
primary consumer is also P;.

For the proper exchange of data after definition and
before use, the semantics of LOAD and STORE should

be modified as follows:

LOAD d,t, PID:
IF (myptd € Owner(d)) THEN
IF (mypid € PID) THEN t «— Loc(d)
ELSEIF (|Owner(d)| = 1) THEN
S(d, mypid — PID)
ELSE S(d, mypid — PID — {P,})
ELSEIF (mypid € PID) THEN
R(d, mypid — (Owner(d) — {P,}))
Move d,t

STORE d, f(t1, .. ., tn):
IF (mypid € Owner(d)) THEN

o f(t1,...rtn

IF (myptd # P;) THEN Move t, Loc(d)

IF (|Owner(d)| > 1) THEN

S(t, mypid — Py)

IF (mypid — P,) THEN

R.C(d, Py — Owner(d))

Whenever a data d is used in the program, a LOAD
statement will be executed and whenever a data d
is defined in the program, a STORE statement will
be executed. The algorithm for the communicator is
shown in Figure 4. In this strategy, the communicator

needs to store only one copy of any duplicated data
since the spare will do the comparison.

Algorithm 3: check-after-definition strategy:

Repeat
Switch(wait(event))
case S(d, P): Vp € P, send(d, p)
case R(d, P):

IF (|Hash(d)| > 0) THEN
IF ((mypid = s)&(|Hash(d)| = 2)) THEN
delete(d, Hash)
IF (mypid # s) THEN delete(d, Hash)
return(d
ELSE return(wait)
case A(d):

IF ((mypid = s)&(|Hash(d)| =
IF (d # Hash(d).pt) THEN
broadcast(error)

insert(d, Hash)

Signal(d)

until forever

1)) THEN

Figure 4: The communicator algorithm for the check-
after-definition strategy

With the spare processor being the primary owner
of any duplicated data, duplicate execution of state-
ments and comparison of duplicate data are per-
formed on the spare processor. Thus, the exe-
cution of the non-spare processors does not suffer
from any duplication or comparison overheads. The
non-spare processors also do not suffer from any
synchronization overhead since their executions do
not depend on that of the spare. The execution of the
program, however, is not terminated until the spare
terminates. Thus, duplicate data has to be chosen
carefully such that the spare finishes its execution no
later than the last non-spare processor.

3.3 Fault Detection for Regular Loops

In general, the problems of selecting the data to
be duplicated and the processors on which duplicated
data is to reside are nontrivial. On the one hand, we
would like to cover as many faults as possible and on
the other hand, we do not want to cause too much
overhead.

The reason for the wide acceptance of the SPMD
model is that data distributions that lead to efficient
SPMD execution may be found for parallel loops op-
erating on arrays of data, and that such loops usually
comprise the core of large scientific programs.

For a large class of regular loops (loops in which
the data dependencies are independent of the loop in-
dices), not all processors can be active all the time due
to data dependencies. For these loops, we can dupli-
cate the data in such a way that the idle processors are
exploited for the purpose of fault-detection. In [8], we
have developed some efficient fault-detection schemes
that exploit the data dependencies of a regular loop.
Following is an example of such a loop:

Time

VAR
N
N7 N

O
f 2@5 e

/\\/\/
\/\/Q\
/\/\9
N/ N\
VAR NV 4

Processor

Figure 5: Execution pattern.

Integer A[1:M, 1:N]
Distribute A[] =]
Doi=1,M,1
Doj=1,N, 1
Alij] = Afi, j-1]*Afi-1, j+1]4C
Enddo
Enddo

where the directive Distribute A[i,j/=j indicates that
the data element A3, j] is owned by processor P;. Un-
der this data distribution, the execution pattern of the
above loop with M = 5 and N = 6 can be plotted as
in Figure 5, in which circles represent the executions
of statement instances and arrows indicate data de-
pendencies. As can be seen, processors have to be idle
for some time slots during the execution of the loop.
These idle time slots can be used for fault detection
purposes. To detect permanent faults, we only need to
duplicate the last statement instance of each proces-
sor. This can be achieved through an additional direc-
tive: Distribute A[M,j] = (j-1), for j > 1. See Figure 6
(a) for the duplicated execution pattern, in which the
shaded circles represent those duplicated executions of
statement instances. In order to detect transient fault,
we have to duplicate all statement instances through
the directive: Distribute Afi, j] = (j-1), for j > 1 (see
figure 6 (b)).

4 Experiment Results

In the previous sections, different duplication
strategies were described. The different strategies rep-
resent different tradeoffs between fault coverage and
overheads. In this section, we present some results
that empirically and experimentally estimate some of
the overheads associated with duplicated execution.

In order to separate the different overheads asso-
ciated with the duplication strategies, we first con-
ducted an experiment to measure the communica-
tion and comparison overheads O... The experiment,
which was conducted on the Intel IPSC/2 multipro-
cessor, aimed at estimating the time overhead spent
in the communication and comparison of duplicated

Time

Time
259 4
O%/\"X-o 3¢
% \ / ?? \’/
A A Dl
‘*})\ })\ 7 g?’ \? */
\o 9\0 9\0 \é%xé} ~o
O/ N 7N\ S *}\\g}/
\O/ AN /% \?? \O/ \O
o xo/ N A gs%j\‘?yx@/
\O/ \O/ \g“gﬂ?\g/
VAR SV 4 %}*\\:/
Q, O Q, * O
\O/ \C:)/
7 2
Processor Processor

@ (b)

Figure 6: (a) Data duplication for permanent fault;
(b) Data duplication for transient fault.

data. Specifically, let o be a computation executing on
a processor requiring data communication with other
processors, and let 7 and 7, be the time to execute
o in a non-duplicated and a duplicated environments,
respectively. That is, 7, takes into account receiving
and comparing two copies of any incoming data as well
as sending two copies of outgoing data. We measured
the effect of the granularity of o on the overhead O,
_ (1z—7)

=

We considered a parallel multiplication of a k£ x k
matrix, A, with a vector, X. The first £/2 rows of 4
and X are stored on a processor P; and the last k/2
rows on a processor P;. The computation, C; (exe-
cuting on Py) first sends X; .. . Xy /2 to P, teceives
Xij241--- Xy from P, and then performs the multi-
plication. The computation, C3, executing on P; is
similar in nature. In a duplicated environment, we ex-
ecuted C; on two processors, P; and P; and executed
Cz on two processors, P; and P4, and we modified C;,
1 = 1,2, such that it sends duplicated data to P; and
P,+2, and receives and compares duplicated data from
P; and P;;2. Figure 7 shows the overhead resulting
from such a duplication. As expected, the overhead
decreases when the granularity, &, of the computation
increases. Figure 7 also shows the overhead for a sim-
ilar experiment where the computations are sorting
and vector normalization.

In the above experiment, additional processors
were provided to perform the duplicate computations.
When no additional processors are provided, the ex-
ecution of the primary computation may be delayed
further. In Section 3.3, it was argued that, for some
parallel loops with data dependencies, it is possible to
duplicate execution when processors would be other-
wise idle. This argument, however, was based on the
assumption that the execution times of all instances
are the same and that this time includes the time for
data communication. In order to estimate the over-
head in the absence of these simplifying assumptions,

% Overhead (Occ)
1007 Vector normalization
90 F --- Sorting
80 — Matrix multiplication
7
60
O
“ el e
30 F \x\\\» -------------- B
20+ I T
10 - OO
L L L L L L L L L

100 150 200 250 300 350 400 450 500 Granularity (k/2)

Figure 7: Overhead of Fault Detection on Intel Hy-
percube.

we have implemented a parallel SPMD interpreter to
interpret intermediate language programs annotated
with data ownership functions. The goal of this inter-
preter is to emulate the performance of the code gener-
ated by an actual SPMD compiler when such compiler
is augmented with fault detection capabilities.

To emulate the execution of a program, G, on a
multiprocessor, N copies of the interpreter are initi-
ated on N processors and each is provided with a copy
of G. The N interpreters, then, execute the different
statements and communicate data among themselves
following the SPMD owner computes execution rules.
The interpreters are provided with information regard-
ing the average times to execute different instructions
and to send and receive messages. In order to ac-
count for variations in the execution time of memory
and communication operations, the time for these op-
erations are chosen randomly from a specified range.
Each interpreter keeps a local simulated time and lo-
cal times are aligned by time-stamping messages with
the local time of their senders. In the results pre-
sented here, a communication instruction is about 10
times slower than a floating point instruction which in-
cludes memory fetch and store. Statistical variations
of £25% are assumed.

We have hand coded the parallel loop shown in Fig-
ure 8a using our intermediate language. The inner
loop represents an instance with granularity & which
communicates k data items and executes k statements.
Figure 8b shows the overhead resulting from perma-
nent and transient fault detection on ten processors.
Although the duplicated instances are executed on
processors that would be otherwise idle, the results
show that the communication, comparison and syn-
chronization overheads cause the duplicated execution
to take longer than the non-duplicated one. How-
ever, the total overhead caused by adding the fault
detection decreases with the granularity of the loop
instance, k.

5 Conclusions

The main advantages of the fault-detection ap-
proach presented in this paper is that no specialized
hardware is needed and the overhead introduced by
the fault detection mechanism can be reduced through
compiler techniques. By applying data analysis, the

Real C, A[0:M,0:N+1]
Distribute A[i,Block(k)]
Doi=1,M,1
Do j=1,N-k, k
Do I=j,j+k,1
Ali,j]=A[iI-1]*Ali-1,1+1]+C
Enddo
Enddo
Enddo

% overhead

Transient fault/data dup.

""" - Permernent fault/data dup.

40 -

30

2

10—

— Granularity (k)

(b)

Figure 8: Overhead of Fault Detection with different
Granularities using the Simulation Environment.

compiler can take advantage of spare capacity of the
system for fault-detection purposes. Moreover, the de-
gree of replication and the method used for replication
may be chosen to be different for different parts of the
program.

The fault model considered in this paper assumes
that a faulty processor produces wrong results. Ex-
tending the fault detection technique to detect fail-
stop processors is straight forward. Each time an ex-
ecutor on a processor wants to receive a data, the com-
municator starts a clock and waits for a predefined
period of time. If the requested data does not arrive
within the predefined period of time, the communica-
tor signals error messages to other processors. This
extension could be used to also detect network faults
that cause a message to be sent to a wrong destination.

Unlike the software approaches that replicate a
whole task onto more than one processors and com-
pare the final results produced by those processor to
achieve fault detection, our approach performs fault
detection at the statement level, which results in bet-
ter efficiency. Although, the problem of choosing the
data to be replicated is not simple, it is possible to
solve that problem for the important case of parallel
loops operating on arrays of data.

References

[1] N. J. Alewine, S. K. Chen, C. C. Li, W. K.
Fuchs, and W. M. Hwu, “Branch Recovery with
Compiler-Assisted Multiple Instruction Retry,”
The 22nd Annual International Symposium on
Fault- Tolerant Computing, pp. 66—73, 1992.

[2] V. Balasubramanian and P. Banerjee, “Compiler-
Assisted Synthesis of Algorithm-Based Checking
in Multiprocessors,” IEEE Trans. on Computers,
Vol. 39, pp. 436—446, April 1990.

[3] D. M. Blough and A. Nicolau, “Fault Tolerance in
Super-Scalar and VLIW Processors,” IEEE Work-
shop on Fault-Tolerant Parallel and Distributed
Systems, pp. 193-200, 1992.

[4] M. A. Breuer and A. A. Ismaeel, “Roving Em-
ulation as a Fault Detection Mechanism,” IEEE
Trans. on Computers, Vol. c-35, pp. 933-939,
November 1986.

[5] D. Callahan and K. Kennedy, “Compiling Pro-
grams for Distributed-Memory Multiprocessors,”
The Journal of Supercomputing, Vol. 2, pp. 151—
169, 1988.

[6] A. T. Dahbura, K. K. Sabnani, and W. J. Hery,
“Spare Capacity as a Means of Fault Detection
and Diagnosis in Multiprocessor Systems,” IEEFE
Trans. on Computers, Vol. 38, pp. 881-891, June
1989.

[7] C. Gong, R. Gupta, and R. Melhem, “Compi-
lation Techniques for Optimizing Communication
in Distributed-Memory Systems,” Proc. Interna-
tional Conference on Parallel Processing, 1993.

[8] C. Gong, R. Melhem, and R. Gupta, “Automatic
Transformation of Programs for Fault Detection
on Distributed-Memory Multiprocessors,” Tech-
nique Report RT-94-12, CS Department, Univer-
sity of Pittsburgh, Jan. 1994.

[9] R. Gupta, “Compiler Optimizations for Dis-
tributed Memory Programs,” Proc. of the Scal-
able High Performance Computing Conference,
Williamsburg, Virginia, 1992.

[10] C. Koelbel, P. Mehrotra, and J. V. Rosendale,
“Supporting Shared Data Structure on Distributed
Memory Architectures,” Proceedings of the Sec-
ond ACM SIGPLAN Symposium on Principles €
Practice of Parallel Programming, pp. 177-186,
1990.

[11] M. J. Quinn and P. J. Hatcher, “Compiling SIMD
Programs for MIMD Architectures,” Proceedings
of International Conference on Computer Lan-
guages, 1990.

[12] L. A. Shombert and D. P. Siewiorek, “Using
Redundancy for Concurrent Testing and Repair-
ing of Systolic Arrays,” The Seventeenth Interna-
tional Symposium on Fault-Tolerant Computing,
pp. 244-249, 1987.

[13] S. Tridandapani and A. K. Somani, “Efficient
Utilization of Spare Capacity for Fault Detection
and Location in Multiprocessor Systems,” Interna-

tional Symposium on Fault-Tolerant Computing,
pp. 440-47, 1992.

