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Abstract

Dynamically changing CPU voltage and fre-

quency at speci�c power management points

(PMPs) has been shown to greatly save the pro-

cessor energy. However, dynamic speed adjust-

ment is not without overheads. In this paper we

study the e�ect of di�erent overheads on both

time and energy. We also propose a theoretical

solution for choosing the granularity of inserting

PMPs in a program. We validate our theoretical

results and show that the accuracy of the theoret-

ical model is between zero and �ve management

points of simulation results.

1 Introduction

In the last decade, there has been considerable re-

search on low-power system design. On-going re-

search has greatly in
uenced embedded real-time

systems' design due to the number of applications

running on power-limited systems that have tight

temporal constraints. Recently, dynamic voltage

scaling (DVS), which involves dynamically adjust-

ing CPU voltage and frequency, has become a ma-

jor research area. Reducing a processor's supply

voltage typically leads to considerable power sav-

ings, but also introduces delays in response time

and additional energy consumption for speed ad-

justments. Thus, there is a need to optimize en-

ergy consumption while considering both the sav-

ings achieved and the overhead of changing pro-

cessor speed and supply voltage.

In Mosse et al. [1] we introduced what we now

call power management points (PMPs), which are

pieces of code that manage information about the

execution of program segments to make decisions

about and to change CPU speed. The desired

speed is computed according to a speed setting

algorithm (for examples, see [1, 12, 8, 3]). Al-

though PMPs can be inserted by the compiler in

a program or executed by the operating system,

at speci�c times (e.g., context switch times), this

paper focuses on compiler-inserted PMPs.

Dynamic speed setting schemes used in periodic

real time systems take advantage of unused time

to slow down the CPU speed of future tasks or

task segments. This can be done when the sys-

tem load is light or when there is time left from

previous program segments. It is shown in [1] that

statistical slack management produces savings in

CPU energy consumption of up to 90% compared

to no power management and up to 60% com-

pared to a static speed setting scheme.

Compiler insertion of PMPs is particularly use-

ful for programs with frequent procedure calls or

loops with a relatively large number of iterations.

To select the granularity of the program segment

that is assigned a single speed, Hsu et al. [11] uses

global program analyses to detect regions of su�-

ciently large granularity, and then selects a single

region with the highest predicted bene�t, where

they place a speed setting instruction.

Our contributions in this paper are twofold: (1)

modeling how to incorporate the e�ect of over-

head in speed adjustment schemes, and (2) pro-

viding a theoretical solution for deciding the opti-

mal number of equally spaced PMPs that achieve

the minimum energy consumption. We com-

pare our results from the theoretical solution with

simulated results of our previous speed setting

schemes from [1]. The theoretical results show

a decision accuracy within �ve PMPs of the sim-

ulation results.
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We describe our model in the next section. The

e�ect of di�erent overheads are considered and

shown for dynamic speed setting schemes in Sec-

tion 3. Section 4 presents a theoretical solution

for selecting the best number of PMP and com-

pares these results with simulation results for each

scheme. Concluding remarks are in Section 5.

2 Model

Our techniques are targeted to embedded systems

where applications execute for a speci�ed allo-

cated time, d, decided by a scheduler. In this

initial work, we consider the sequential form of

program execution, where a program can be di-

vided into n segments of equal length, to deter-

mine an optimal number of PMPs. Such a model

is applicable to loops that have large compile-time

constant trip counts. In these loops, power man-

agement points can be placed every so many loop

iterations to adjust processor speed. We are cur-

rently extending our work to more general pro-

grams.

In this paper, we insert a PMP before each pro-

gram segment. A segment is characterized by its

worst case execution time, wci, and average ex-

ecution time avgi. The actual execution time of

segment i, aci, is only known at run time, but is

limited by the wci such that 0 � aci � wci. These

times describe the execution behavior of segment

i when the processor is running at its maximum

speed. The quantity � = avgi=wci is an indica-

tion of the expected slack in the execution time of

the segment.

Given the parameters above, we can compute

the static slack in the system, which is the amount

of free time in the system with respect to the com-

putational requirements of an application. The

optimal static speed, Sstatic, for all segments can

be computed as
Pn

i=1

wci
d

= load. It has been

proven that this speed is optimal, while meeting

all deadlines [12]. Henceforth, we assume that all

segments are slowed down to Sstatic, making the

CPU busy at all times (albeit at a reduced speed),

if aci = wci; 8i. This is equivalent to having 100%

load (or load = 1).

Furthermore, extra slack is generated whenever

a program segment �nishes its execution before

the estimated worst-case time for this segment.

This is called reclaimed slack.

For CMOS technology, dynamic power con-

sumption is directly proportional to the frequency

and to the square of the supply voltage: P =

aCSV 2, where a is the activity factor in the pro-

cessor, C is the e�ective switched capacitance, S

is the operating frequency (speed), and V is the

supply voltage. In our work, we use a model sim-

ilar to Transmeta's TM 5400 processor [4]. Our

model has a 16-step frequency scale that ranges

from 200MHz at 1.1V to 700 MHz at 1.65V. Each

step is � 33MHz. We consider the di�erent over-

heads of each frequency and voltage change below.

2.1 Sources of Overhead

When computing and changing CPU frequency

and voltage, several sources of overhead may be

encountered. The principal sources of overhead

are computing the new speed and setting the

speed through a voltage transition in the proces-

sor's DC-DC regulator (resulting in a processor

frequency change) and the clock generator (PLL).

We denote changing both voltage and frequency

by the term speed change. Speed changing takes

time and consume energy. Below we discuss the

time overhead; the energy consumed can be de-

rived from the equation for power above, and

knowing that E = Pt.

Computing the new speed: For each adjust-

ment scheme considered, the time overhead, F , is

approximately constant in terms of the number

of cycles needed for execution. This includes the

overhead of calling library functions and perform-

ing the operations that compute the new speed.

Since this may be executed at di�erent frequen-

cies, the time overhead, O1, is:

O1(Si) =
F

Si
(1)

where Si is the CPU speed executing segment i

(and the PMP code at the end of segment i).

From experiments with SimpleScalar 3.0 [10] (a

micro architectural simulator), where we imple-

mented speed setting and inserted PMPs in appli-

cations like an MPEG decoder, we observed that

the overhead of computing the new speed varied

between 280 and 320 cycles. In the experiments

below we �x the overhead of computing the new

speed to 300 cycles.
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Setting the new speed: To change voltage,

a DC-DC switching regulator is employed. This

regulator cannot make an instantaneous transi-

tion from one voltage to another [2]. This transi-

tion takes time and energy. When setting a new

speed, the CPU clock and the voltage fed to the

CPU need to be changed, incurring a wide range

of delays. For example, the Strong Arm SA-1100

is capable of on-the-
y clock frequency changes

in the range of 59MHz to 206MHz where each

speed and voltage change incurs a latency of up

to 150 �sec [6], while the lpARM processor [7]

(a low-power implementation of the ARM8 archi-

tecture) takes 25 �s for a full swing from 10 MHz

to 100 MHz. Another example is the Transmeta

TM5400, which is speci�cally designed for DVS

[4]. Some systems can continue operation while

speed and voltage change [7, 2], but the frequency

continues to vary during the transition period. We

take a conservative approach and assume that the

processor can not execute application code during

this period.

Moreover, when looking at changing speed from

the energy perspective, the lpARM processor in-

curs at most 4�J, which is equivalent to 712

full-load cycles for the transition between 5 - 80

MHz[5]. In our simulation we assume a constant

number of overhead cycles, G, for each speed step

transition. This overhead is assumed to be 320

cycles for every 33MHz step (from [5], 712 cycles

for 5-80 MHz transition ' 320 cycles for 33MHz

transition). The time overhead for speed changes,

O2, depends on the speed that the CPU is execut-

ing the PMP and can be computed as follows:

O2(Si�1; Si) = G
d(Si�1; Si)

Si�1
(2)

where d(Si; Sj) is a function that returns the num-

ber of speed steps needed to make a transition

between Si and Sj . In the Transmeta model, this

function returns how many multiples of 33MHz

is the di�erence between Si and Sj . The energy

overhead is assumed to follow the same power

function presented in section 2 multiplied by the

time taken to accomplish the speed transition.

We study the impact of varying this overhead

on the selection of the optimal number of PMPs

in Section 4.

3 Speed Adjustment Schemes

We use two schemes from [1] as examples to

demonstrate how to include the aforementioned

overhead in speed adjustments at each PMP.

Deadlines are only violated in cases where the pro-

cessor needs to run at almost the maximum speed

to meet the application's deadline and there is not

enough slack to accommodate the time overhead

for a single speed computation. We regard this as

insigni�cant for the purpose of this study.

3.1 Proportional Dynamic Power Man-

agement

In this scheme, reclaimed slack is uniformly dis-

tributed to all remaining segments proportional

to their worst-case execution times. The time

overheads for both computing and setting the

new speed are subtracted from the time remain-

ing to the deadline. Our main concern here is

to compute the exact time left for the applica-

tion to execute before the deadline. The pro-

cessor's speed for segment i, Si, is computed as

follows: the execution times for the remaining

tasks are stretched out based on the remaining

time to the deadline (d� ti�1), while taking into

consideration the overhead of switching the speed

of the current task (Ocur(Si�1; Si) = O1(Si�1) +

O2(Si�1; Si)) and the overhead of potentially

needing to switch the speed of the next task

to the static optimal speed (Onext(Si; Sstatic) =

O1(Si) +O2(Si; Sstatic)), where Sstatic is the opti-

mal static speed [12]. The total overhead, Ototal,

is:

Ototal(Si�1; Si) = Ocur(Si�1; Si)+Onext(Si; Sstatic)

(3)

With overhead, this scheme computes a new

speed as:

Si =

Pn
j=i wcj

d� ti�1 �Ototal(Si�1; Si)
(4)

where ti�1 is time at the beginning of the ith PMP

(the end of segment i� 1).

Given that the voltage setting overhead is de-

pendent on the new frequency, we note that Si
appears on both sides of the formula. It is solved

iteratively and we have observed that, on aver-

age, it converges in about two iterations. Because
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the algorithm starts with the speed for the previ-

ous segment, there is typically minimal change in

speed, which leads to fast convergence.

3.2 Dynamic Greedy Power Manage-

ment

The Dynamic Greedy scheme distributes the re-

claimed slack only to the segment immediately

after a PMP. The way to compute the speed of

the next segment is similar to (4): the time for

the next task is spread over the remaining time

to the deadline, minus the overhead of computing

and switching speeds from (3).

Si =
wci

d� ti�1 �

P
n

j=i+1
wcj

Sstatic
�Ototal(Si�1; Si)

(5)

3.3 Results

We simulated our two power management

schemes with and without overhead for a hypo-

thetical program divided into di�erent number

of equal length segments. The actual execution

times aci of each segment is drawn randomly from

a normal distribution. Each data point presented

is an average of 500 runs. We use the energy func-

tion from Section 2, and the energy consumption

is normalized to a case where no power manage-

ment is empolyed.

In Figure 1 we show the energy consumption

based on the number of PMPs for the Propor-

tional and the Dynamic Greedy schemes. The op-

timal number of PMPs varies according to many

factors, like � or the speed adjustment scheme.

We show results for � = 0.6 and 0.8 and a variable

number of PMPs (from 5 to 30). From the �gure,

the optimal number of PMPs, based on simula-

tion, is between 10 and 20 for �=0.6 and between

between 5 and 15 for � = 0.8. Other values of �

behaved consistently with these results.

We noticed that for higher number of PMPs

inserted in a program, the average number of step

transitions needed at each PMP for the greedy

scheme exceeds those needed for the proportional

scheme. This adds a greater energy burden on the

greedy's total energy consumption more than the

proportional's consumption. As a result, although

in general, the greedy energy consumption is less

than the proportional's at load = 1, in �gure 1
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Figure 1: Total Energy Consumption for di�erent

schemes versus the number of PMPs at � = 0.6

and � = 0.8.

there is an overlapping of their energy curves for

� = 0.8. There is a smaller di�erence in energy

as the number of PMPs increases for � = 0.6.

The curve shapes are due to two opposing

forces. First, the more management points, the

better the power management and thus the lower

energy consumption. However, the amount of en-

ergy consumed increases with an increasing num-

ber of PMPs, due to the overhead. The combina-

tion of these two factors is illustrated in Figure 1.

We also see that Greedy has lower energy con-

sumption than Proportional. This is because

Greedy is more aggressive at slowing down the

CPU speed, counting on future reclaiming for

slowing down future tasks.

Next we present a theoretical solution for select-

ing the number of PMPs to insert in a program.

4 Optimal Number of PMPs

The minimum energy consumption for any scheme

depends on the optimal number of equally-spaced

PMPs due to the e�ect of the energy overhead on

the total energy consumed.

In this section, we develop a theoretical frame-

work for deciding on the number of PMPs, given

that: (1) each segment has perfect execution be-

havior (i.e, aci = avgi for all 1 � i � n), (2) there

is a constant time overhead, h � O1+O2, for the

insertion of any PMP, and (3) the speed range is
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continuous.

The total energy consumed for n segments is

computed based on the formula given in Section 2

for power, and knowing that the E = Pt, where

t is the time taken. Part of each segment's en-

ergy is consumed in the actual execution of the

segment, avgi, while the other part is consumed

in the overhead induced by changing the speed.

The total energy, En, is the summation of the

segments' energies as shown below.

En = aC
nX

i=1

SiV
2

i (avgi+
h

Si
) = 


nX
i=1

S3

i (avgi+
h

Si
)

(6)

where the speed Si is proportional to voltage, and


 is a multiplicative factor. The energy overhead

is re
ected in this equation by the term h=Si,

where it represents the average time taken for each

speed change at each PMP.

In our analytical solution, we compute the

speed Si using the following formulas. We use

these speed values to evaluate the energy con-

sumption of the actual execution of the segment.

The formulas are derived from the corresponding

ones presented in Section 3 using our earlier as-

sumptions.

Proportional

SStatic

Si
=

n

n� i+ 1

i�1Y
k=1

�
1�

�

n � k + 1

�
(7)

where n is the number of placed PMPs.

Dynamic Greedy

SStatic

Si
=

1� (1� �)i

�
(8)

Due to the space limitation, the derivation of

these formulas is not included in this paper.

4.1 Performance of Analytical Model

The optimal number of PMPs varies based on sev-

eral parameters in the program execution behav-

ior, such as variability of the execution �, and

the amount of overhead for changing the speed.

Figures 2 and 3 show the e�ect of varying the

number of overhead cycles, h, on the total energy

consumed using the analytic model. The results

shown are for � = 0.6, although other values of

� have similar behavior. The optimal number of

PMPs in the Proportional scheme lies in the range

of 5-15, while for Dynamic Greedy it is from 10 to

30. As predicted, this optimal number decreases

with increased overhead. However, this does not

apply when � = 1, because as � reaches 1 the de-

sired optimal speed reaches Sstatic, with no CPU

time to reclaim. Henceforth, we exclude the � = 1

case from our experiments.
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Figure 2: Total energy consumption for the Pro-

portional scheme versus the number of PMPs, for

di�erent overheads, where � = 0:6.
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Figure 3: Total energy consumption for Dynamic

Greedy scheme versus the number of PMPs, for

di�erent overheads, where � = 0:6.

We ran experiments to validate our theoreti-

cal model by comparing the results with simula-

tion results for the Proportional and the Dynamic
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Greedy schemes.

Table 1 shows the number of PMPs determined

by the theoretical model and the simulation for

the Proportional scheme. The table shows the re-

sults for the same programs with di�erent � and

overhead values that might describe di�erent DVS

processors. The overhead values are presented as

a pair of the theoretical overhead h and its cor-

responding simulated overhead F and G. For ex-

ample, (1000/ 300,320) means h is 1000 cycles,

while F and G are equal to 300 and 320 cycles,

respectively. We use these �gures for the two over-

heads (theoretical and simulated) because, from

experiments with SimpleScalar, we observed that,

in the Proportional scheme, the average num-

ber of transitions for the whole programs is 2.2

(300 + 2:2 � 320 � 1000). The table also shows

variations in the theoretical of �2 PMPs from the

simulation. There is a strong matching in the �'s

middle range, which are the most typical values of

�. The variations come from the assumption that

the speed is continuous in the theoretical method

while it is discrete in the simulation. Moreover,

the simulation is limited by a minimum speed.

(1000/ 300,320) (2000/ 600,640) (3000/ 900,960)

� T S T S T S

0.2 10 12 7 7 6 7

0.4 12 12 9 9 7 6

0.6 12 12 9 9 7 6

0.8 11 9 8 6 7 5

Table 1: Theoretical (T) versus Simulation (S)

choice of optimal number of PMPs for the Pro-

portional scheme.

During simulation, we noticed that, on average,

Dynamic Greedy performs step transitions three

times more than the Proportional scheme. Thus

the choice of h = 3000 that corresponds to simu-

lation overhead of F = 300 and G = 320. Table

2 shows that the optimal number of PMPs varies

dramatically with �. For example, this variation

at overhead (3000/ 300,320) ranges from 9 to 29

PMPs, corresponding to �'s range 0.2-0.8. This

higher number of PMPs is in concert with the

higher number of speed changes that are made in

Greedy.

Although not shown, we observed that the the-

oretical results are closer to the simulated results

as the F and G overheads decrease. The di�er-

(3000/ 300,320) (6000/ 600,640) (9000/ 900,960)

� T S T S T S

0.2 29 25 20 15 16 11

0.4 22 19 14 12 11 9

0.6 14 12 10 9 8 6

0.8 9 9 7 6 5 4

Table 2: Theoretical (T) versus Simulation (S)

choice of optimal number of PMPs for the Dy-

namic Greedy scheme.

ence between the simulated and theoretical results

can be seen by comparing Figure 1 with Figures 2

and 3. The di�erence results because the analyt-

ical model does not take overheads into account

when computing the new speeds, only when com-

puting the energy. Further research is needed to

obtained a more tight coupling between the values

of the theoretical and the simulated overheads.

5 Conclusion

For variable voltage systems, the overhead and

selection of a speed setting scheme must be care-

fully considered. There may be cases where the

energy consumption exerted by the overhead of

selecting and setting a new speed overwhelms any

energy savings of a speed setting algorithm. This

implies that system energy can be jeopardized by

employing such speed adjustments.

To minimize the overhead of speed adjustments,

it is critical that for programs with a relatively

small number of segments to know the optimal

number of adjustment points for choosing the best

speed adjustment scheme. However, for programs

with a large number of segments, it is su�cient

to identify the boundary of optimality, as the en-

ergy curve will become 
atter beyond the optimal

number of power management points.

We also saw that Greedy has smaller energy

than Proportional, especially for workloads with

higher variability in the actual execution time, be-

cause Greedy is a more aggressive scheme that im-

plicitly takes advantage of future reclaimed time.
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