
Parallel Computing 4 (1987) 339-343 339
North-Holland

Short Communication

Parallel Gauss-Jordan elimination for
the solution of dense linear systems *

Rami MELHEM
Department of Computer Science, The University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.

Received September 1986

Abstract. Any factorization/back substitution scheme for the solution of linear systems consists of two phases
which are different in nature, and hence may be inefficient for parallel implementation on a single computa-
tional network. The Gauss-Jordan elimination scheme unifies the nature of the two phases of the solution
process and thus seems to be more suitable for parallel architectures, especially if reconfiguration of the
communication pattern is not permitted. In this communication, a computational network for the Gauss-Jordan
algorithm is presented. This network compares favorably with optimal implementations of the Gauss elimina-
tion/back substitution algorithm.

Keywords. Gauss-Jordan elimination, linear algebra, computational network, parallel solution of dense linear
systems.

1. Introduction

Many researchers have considered the parallel solution of dense linear systems of equations
on special purpose computational arrays [1-6]. A typical solution process consists of two
phases: a factorization and partial solution phase and a back substitution phase. More
specifically, given an n x n matrix .4 and an n-dimensional vector b. the solution of A x = b
begins with (1) the decomposition of A into the product of, say, a lower triangular matrix L
and an upper triangular matrix U and the simultaneous solution of L y - b, which is then
followed by (2) the solution of Ux = y by back substitution.

Any attempt to execute these two phases on processor arrays will require either the use of
two different arrays with a possible need for a form of interface between the arrays [5], or the
use of a single array with reconfiguration capabilities [1]. In this latter case. only part of the
array is doing actual computation during the second phase.

We suggest to unify the nature of the two phases by applying a Gauss-Jordan elimination
scheme. For this, a network similar to the one suggested by Chert and Wu [1] is used without

* This work is, in part, supported under ONR contract N00014-85-K-0339.

0167-8191/87/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

340 R. Melhem / Parallel Gauss-Jordan elimination

any reconfiguration of the communication pattern. Of course the Gauss-Jordan scheme
requires more computation than the factorization/back substitution scheme. But the additional
work is performed ;~y cells that would be otherwise idle [1], and hence no additional resources
are required.

The idea of applying the Gauss-Jordan algorithm to the solution of dense linear systems on
mesh-connected arrays was introduced by Kimura in [4]. However, the network suggested here
is more efficient th"'~ the one in [4]. Namely, it is faster and it u.,'es about half the number of
cell,.~. A brief quantitative comparison of the two networks is given in Section 4.

2. The Gauss-Jordan algorithm

In the following algorithm, no pivoting is used and each diagonal element in the matrix A is
used to eliminate all the elements in the corresponding column. The right side vector b is
considered as the column n + 1 of A, and upon completion of the elimination, the solution
vector x is stored in this last column.

Step 1. For i = 1 , n Do
1.1. a~,j = a~.Ja~.~, j = i + 1 , . . . , n + 1
1.2. For k = 1 , . . . , i - 1 And k = i ÷ 1, . . . , n Do

1.2.1. ak, ~ -- ak, j - ak,~a~,j, j = i + 1 , . . . , n + 1

If the matrix A is a banded matrix w~ , half-bardwidth/L then it is possible to replace the
loop bound k -- i + 1 , . . . , n in Step 1.2 by k - i + 1, . . . , i + ,8. However, the bound k - 1 , . . . , i
- 1 may not be changed because of the fill-in introduced in the upper triangle of A. This fill-in
makes the Oauss-,Iordan algorithm relatively unattractive for banded systems.

Assuming that the matrix A is dense, we denote by Dr the n - i + 1 operations in Step 1.1 ,

and by U~, k the n - i + 1 operations in Step 1.2.1. In other words, U~.~ represents the update of
row k caused by contributions from row i, during the elimination of ak,~.

3. The computational network

The network used here is composed of n stages, say s ffi 1 , . . . , n , each composed of n - s + 2

cells, The network is shown in Fig. 1 where each cell is labeled by a pair (r, s) indicating its
position with respect to the shown axes. Column s in Fig. 1 corresponds to stage s.

For simplicity, we assume that any diagonal cell (s, s) may broadcast data to the other cells
in the same stage. However, it should be clear that this broadcast may be easily replaced by
local vertical interconnections if the input data are skewed properly.

The. elements of a row i of the matrix A enters the network at cycle i and crosses stages
s ffi 1 , . . . , i - 1, where at each stage s the operation/J,.~ takes place. When row i arrives at stage
i (at cycle 2 i - 1), cell (i, i) broadcasts a~.~ to the other cells and the operation D~ is executed.
The updated elements of row i are then stored in stage i for n - 1 cycles during which rows
k - - i + 1, . . , , n followed by rows k ffi 1 , . . . , i - 1 cross stage i. The operation U~. k is executed
when row k crosses row i. At the end of cycle 2i + n - 1, row i leaves stage .; and crosses stages
i + 1, . . . , n where at each stage s, ~.~ ~s executed. Clearly, row i comes out of stage n after
2n + i - 1 cycles with a~,~ ffi 1, a~.~ ffi 0 for j = 1, . . . , n, j ~ i and a~.n+ 1 ffi x~. In other words,
the outputs x l , . . . , x,, are produced at cycles 2n , . . . , 3n - 1.

Figure 2 shows the operation performed by each stage at consecutive time units for the case
s ; - 6. The arrows indicate the flow of data (rows of A) between stages, with a vertical arrow

R. Meihem / Parallel Gauss-Jordan elimination 341

I
I

I
I
I
I
I
I
I
I

_ _ _

"iii
Fig. 1. The computational network.

indicating data that resides in the same stage. Note that row i resides in stage i during the
cycles 2i - 1 , . . . , 2i + n - 1. Note also that the solution of different problems may be pipelined
(as shown in the figure) at a rate of one problem every n + 1 cycles. In general, this is not
possible in networks which require a reconfiguration of the communication pattern.

In order to describe the operation of the individual cells, we give names to the ports
connected to cells. Namely, WEST, EAST and BC, where BC is the port connected to the
broadcast link. We also assume that each cell (i, j) , i ~ j , contains a register R. The notation
[port] and [R] is used to denote the content of 'port ' and 'R' , respectively, and 'port *-- x ' and
'R *--x' is used to indicate that x is written on 'port ' and on 'R ' , respectively. With this
notation, the operation of the individual cells may be expressed by the following algorithms,
where the statement SYNC means 'wait until the end of the time unit'.

For cell (i, i), 1 <~ i <~ n. / . Start at time 2i - 1 * /
Step 1. For cycle = 1 , . . . , n Do

1.1. BC ~- [WEST]; SYNC;
Step 2. SYNC; / * sit idle for one cycle • /

For cell (i, j) , 1 <~ i <~ n, i + 1 <~j <~ n + 1. ,/ • Start at time 2i - 1 * /
Step 1. R *-- [WESTI/IBC]; SYNC; / . [W E S T] - aj,,, [BC] "-- a,., * /
Step 2. For cycle -- 2 , . . . , n Do / . for k -- i + 1, . . . , n, then k -- 1, . . . , i - 1 • /

2.1. E A S T , - - [W E S T] - [B C] , [R] ; / * [WEST] -- ak,j, [BC] = ak,i * /
2.2. SYNC;

Step 3. EAST *-- JR]; SYNC; / , row i leaves stage i • /

342 R. Melhem / Parallel Gauss-Jordan elimination

Time S ~ e 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

1 r o w 1 D1

row2 i i
2 ~ v2,1

1,"%
" Us,1 D2

row4 . , ~ " , l
4 ~ v4,1 . v3,2

rows U" "~U" "~ D3 5 -~ 5,1 4,2

row6 , ," " *~ I I v ~ 1 1 v
6 ~-- qJ6,1 V5,2 V4,3 .

7 ~ U62 Us 3 D4

[4
row1 ~ '"IL.,, v "~1~" I iv "~' I iv

8 -- ~ V l 2 v6,3 v5,4
| ' 1 6 5

~- ~ ",~ b1 .3 b6,4 D5

10 r o w 3 U - - U U65 2,3 . .

11 -- U2'4 2 U1'5 1 D6

12 row 5 ~6
U34 U2,5 1,6

O p e r a t i o n s for ~ t' ~ 3 / ~ 2 t
. s e c o n d p r o b l e m \ / 4 ~ ~ s ~ ~s x2

13 ' ' " " ~- " ~ . Us,s Ua,6

U U xa 14 % ~ 4,6 3,6 ~-

ls ~ U x4 % . ~ 4,6 m

16 %

T h i r d
xo _

problem
17 % ~ -

Fig. 2. Schedule of operations.

For pipelined operation, the above algorithms may be repeated as many times as desired.
Also, partial or total pivoting may be accomplished in ways similar to those discussed in the
literature (see the survey by Jolmsson [3]).

4. Conduding remarks

The Gauss-Jordan elimination is an inefficient algorithm for the sequential solution of
dense finear systems. However, it is readily seen that the parallel implementation of this
algorithm, which we presented here, is as efficient as the optimal parallel implementation of the
Gauss elimination/back substitution scheme suggested in [1]. Moreover, our implementation
has some additional advantages, namely,

(1) it does not require a reconfiguration of the network,
(2) it does not leave the results inside the network,

R. Melhen. / Parallel Gauss-Jordan elimination 343

(3) it may be pipelined efficiently, and
(4) broadcast may be eliminated with minimal additional costs.
The network which is described here for the Gauss-Jordan algorithm uses ½n(n + 3) cells

and the operation of each cell may be easily controlled by a counter which keeps track of the
cycle number and triggers the switching between the three steps of the algorithm ~ithin each
cell. This network is more efficient than the one suggested in [4], which uses n(n + 1) cells and
uses three local registers per cell to s*~tch between seven possible ~eps. Also our network
completes execution in n 3n - 1 cycles while the one in [4] requires 4n cycles. However, a more
objective comparison of speeds may be obtained if the broadcast is removed from our network,
thus increasing its execution time to 4n - 1 cycles and the preloading of the operands and the
unloading of the results are accounted for in the network of [4], thus increasing its execution
time to 5n + 1 cycles.

Acknowledgment

I would like to thank Robert Voigt for pointing out reference [4] to me.

References

[I] A. Chen and C. Wu, Optimum solution to dense linear systems of equations, Proc. 1984 International Conference on
Parallel Processing (1984)417-424.

[2] K. Hwang and Y. Cheng, VLSI computing structures for solving large-scale linear systems of equations, Proc. 1980
International Conference on Paralle! Processing (1980) 217-227.

[3] L. Johnsson, Highly concurrent e~gorithms for solving linear systems of equations, Monterey Conference on Elliptic
Problem Solvers (1983).

[4] T. Kimura, Gauss-Jordan elimination by VLSI mesh-connected processors, in: C. Josshope and R. Hockney, eds.,
lnfotech State of the Art Report: Supercon.puters, Vol. 2 (Infotech, Maidenhead, United Kingdom, 1979) 271-290.

[5] H.T. Kun8 and C. Leiserson, Systolic arrays for VLSI, in: C. Mead and L. Conway, eds., Introduction to VLSi
Systems (Addison-Wesley, Reading, MA, 1980).

[6] S.Y. Kung, K.S. Arun, R.J. Gab-ezer and B. Rao, Wavefront array processor: Language, architecture and
applications, IEE£ Trans. Con,put. 31 (1982) 1054-106~.

