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Abstract. Any factorization/back substitution scheme for the solution of linear systems consists of two phases 
which are different in nature, and hence may be inefficient for parallel implementation on a single computa- 
tional network. The Gauss-Jordan elimination scheme unifies the nature of the two phases of the solution 
process and thus seems to be more suitable for parallel architectures, especially if reconfiguration of the 
communication pattern is not permitted. In this communication, a computational network for the Gauss-Jordan 
algorithm is presented. This network compares favorably with optimal implementations of the Gauss elimina- 
tion/back substitution algorithm. 
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1. Introduction 

Many researchers have considered the parallel solution of dense linear systems of equations 
on special purpose computational arrays [1-6]. A typical solution process consists of two 
phases: a factorization and partial solution phase and a back substitution phase. More 
specifically, given an n x n matrix .4 and an n-dimensional vector b. the solution of A x  = b 
begins with (1) the decomposition of A into the product of, say, a lower triangular matrix L 
and an upper triangular matrix U and the simultaneous solution of L y -  b, which is then 
followed by (2) the solution of Ux = y  by back substitution. 

Any attempt to execute these two phases on processor arrays will require either the use of 
two different arrays with a possible need for a form of interface between the arrays [5], or the 
use of a single array with reconfiguration capabilities [1]. In this latter case. only part of the 
array is doing actual computation during the second phase. 

We suggest to unify the nature of the two phases by applying a Gauss-Jordan elimination 
scheme. For this, a network similar to the one suggested by Chert and Wu [1] is used without 
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any reconfiguration of the communication pattern. Of course the Gauss-Jordan scheme 
requires more computation than the factorization/back substitution scheme. But the additional 
work is performed ;~y cells that would be otherwise idle [1], and hence no additional resources 
are required. 

The idea of applying the Gauss-Jordan algorithm to the solution of dense linear systems on 
mesh-connected arrays was introduced by Kimura in [4]. However, the network suggested here 
is more efficient th"'~ the one in [4]. Namely, it is faster and it u.,'es about half the number of 
cell,.~. A brief quantitative comparison of the two networks is given in Section 4. 

2. The Gauss-Jordan algorithm 

In the following algorithm, no pivoting is used and each diagonal element in the matrix A is 
used to eliminate all the elements in the corresponding column. The right side vector b is 
considered as the column n + 1 of A, and upon completion of the elimination, the solution 
vector x is stored in this last column. 

Step 1. For i = 1 . . . .  , n Do 
1.1. a~,j = a~.Ja~.~, j = i + 1 , . . . ,  n + 1 
1.2. For k = 1 , . . . ,  i -  1 And k = i ÷ 1, . . . ,  n Do 

1.2.1. ak, ~ -- ak, j - ak,~a~,j, j = i + 1 , . . . ,  n + 1 

If the matrix A is a banded matrix w~ ,  half-bardwidth/L then it is possible to replace the 
loop bound k -- i + 1 , . . . ,  n in Step 1.2 by k - i + 1, . . . ,  i + ,8. However, the bound k - 1 , . . . ,  i 
- 1 may not be changed because of the fill-in introduced in the upper triangle of A. This fill-in 
makes the Oauss-,Iordan algorithm relatively unattractive for banded systems. 

Assuming that the matrix A is  dense, we denote by Dr the n - i + 1 operations in Step 1.1 ,  

and by U~, k the n - i + 1 operations in Step 1.2.1. In other words, U~.~ represents the update of 
row k caused by contributions from row i, during the elimination of ak,~. 

3. The computational network 

The network used here is composed of n stages, say s ffi 1 , . . . ,  n ,  each composed of n - s + 2 

cells, The network is shown in Fig. 1 where each cell is labeled by a pair (r, s) indicating its 
position with respect to the shown axes. Column s in Fig. 1 corresponds to stage s. 

For simplicity, we assume that any diagonal cell (s, s) may broadcast data to the other cells 
in the same stage. However, it should be clear that this broadcast may be easily replaced by 
local vertical interconnections if the input data are skewed properly. 

The. elements of a row i of the matrix A enters the network at cycle i and crosses stages 
s ffi 1 , . . . ,  i - 1, where at each stage s the operation/J,.~ takes place. When row i arrives at stage 
i (at cycle 2 i -  1), cell (i, i) broadcasts a~.~ to the other cells and the operation D~ is executed. 
The updated elements of row i are then stored in stage i for n - 1 cycles during which rows 
k - - i  + 1, . . , ,  n followed by rows k ffi 1 , . . . ,  i -  1 cross stage i. The operation U~. k is executed 
when row k crosses row i. At the end of cycle 2i + n - 1, row i leaves stage .; and crosses stages 
i + 1, . . . ,  n where at each stage s, ~.~ ~s executed. Clearly, row i comes out of stage n after 
2n + i - 1 cycles with a~,~ ffi 1, a~.~ ffi 0 for j = 1, . . . ,  n, j ~ i and a~.n+ 1 ffi x~. In other words, 
the outputs x l , . . . ,  x,, are produced at cycles 2n , . . . ,  3n - 1. 

Figure 2 shows the operation performed by each stage at consecutive time units for the case 
s ; -  6. The arrows indicate the flow of data (rows of A) between stages, with a vertical arrow 
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Fig. 1. The computational network. 

indicating data that resides in the same stage. Note that row i resides in stage i during the 
cycles 2i - 1 , . . . ,  2i + n - 1. Note also that the solution of different problems may be pipelined 
(as shown in the figure) at a rate of one problem every n + 1 cycles. In general, this is not 
possible in networks which require a reconfiguration of the communication pattern. 

In order to describe the operation of the individual cells, we give names to the ports 
connected to cells. Namely, WEST, EAST and BC, where BC is the port connected to the 
broadcast link. We also assume that each cell (i, j ) ,  i ~ j ,  contains a register R. The notation 
[port] and [R] is used to denote the content of 'port '  and 'R' ,  respectively, and 'port *-- x '  and 
'R *--x' is used to indicate that x is written on 'port '  and on 'R ' ,  respectively. With this 
notation, the operation of the individual cells may be expressed by the following algorithms, 
where the statement SYNC means 'wait until the end of the time unit'. 

For cell (i, i), 1 <~ i <~ n. / .  Start at time 2i - 1 * / 
Step 1. For cycle = 1 , . . . ,  n Do 

1.1. BC ~- [WEST]; SYNC; 
Step 2. SYNC; / *  sit idle for one cycle • / 

For cell (i, j ) ,  1 <~ i <~ n, i + 1 <~j <~ n + 1. ,/ • Start at time 2i - 1 * / 
Step 1. R *-- [WESTI/IBC]; SYNC; / . [ W E S T ] -  aj,,, [BC] "-- a,., * / 
Step 2. For cycle -- 2 , . . . ,  n Do / .  for k -- i + 1, . . . ,  n, then k -- 1, . . . ,  i - 1 • / 

2.1. E A S T , - - [ W E S T ] - [ B C ] , [ R ] ; / *  [WEST] -- ak,j, [BC] = ak,i * /  
2.2. SYNC; 

Step 3. EAST *-- JR]; SYNC; / ,  row i leaves stage i • / 
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Time S ~ e  1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 

1 r o w 1  D1 

row2 i i 
2 ~ v2,1 

1,"% 
" Us,1 D2 

row4 . ,  ~ " , l  
4 ~ v4,1 . v3,2 

rows U" "~U" "~ D3 5 -~ 5,1 4,2 

row6 , ,"  " *~  I I v ~ 1 1  v 
6 ~-- qJ6,1 V5,2 V4,3 . 

7 ~ U62 Us 3 D4 

[4 
row1 ~ '"IL.,, v "~1~" I iv "~' I iv 

8 -- ~ V l  2 v6,3 v5,4 
| '  1 6 5 

~- ~ ",~ b1 .3  b6,4 D5 

10 r o w 3  U - - U  U65 2,3 . . 

11 -- U2'4 2 U1'5 1 D6 

12 row 5 ~6 
U34 U2,5 1,6 

O p e r a t i o n s  for  ~ t' ~ 3  / ~ 2  t 
. . . . .  s e c o n d  p r o b l e m  \ / 4 ~  ~ s ~  ~s x2 

13 ' ' " "  ~- " ~ .  Us,s Ua,6 

U U xa 14 % ~ 4,6 3,6 ~- 

ls ~ U x4 % . ~ 4,6 m 

16 % 

T h i r d  
xo _ 

problem 
17 % ~ - 

Fig. 2. Schedule of  operations. 

For pipelined operation, the above algorithms may be repeated as many times as desired. 
Also, partial or total pivoting may be accomplished in ways similar to those discussed in the 
literature (see the survey by Jolmsson [3]). 

4. Conduding remarks 

The Gauss-Jordan elimination is an inefficient algorithm for the sequential solution of 
dense finear systems. However, it is readily seen that the parallel implementation of this 
algorithm, which we presented here, is as efficient as the optimal parallel implementation of the 
Gauss elimination/back substitution scheme suggested in [1]. Moreover, our implementation 
has some additional advantages, namely, 

(1) it does not require a reconfiguration of the network, 
(2) it does not leave the results inside the network, 
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(3) it may be pipelined efficiently, and 
(4) broadcast may be eliminated with minimal additional costs. 
The network which is described here for the Gauss-Jordan algorithm uses ½n(n + 3) cells 

and the operation of each cell may be easily controlled by a counter which keeps track of the 
cycle number and triggers the switching between the three steps of the algorithm ~ithin each 
cell. This network is more efficient than the one suggested in [4], which uses n(n + 1) cells and 
uses three local registers per cell to s*~tch between seven possible ~eps. Also our network 
completes execution in n 3n - 1 cycles while the one in [4] requires 4n cycles. However, a more 
objective comparison of speeds may be obtained if the broadcast is removed from our network, 
thus increasing its execution time to 4n - 1 cycles and the preloading of the operands and the 
unloading of the results are accounted for in the network of [4], thus increasing its execution 
time to 5n + 1 cycles. 
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