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Abstract

Managing power consumption while simultane-
ously delivering acceptable levels of performance
is becoming a critical issue in several applica-
tion domains such as wireless computing. We in-
tegrate compiler-assisted techniques with power-
aware operating system services and present
scheduling techniques to reduce energy consump-
tion of applications that have deadlines. We show
by simulation that our dynamic power manage-
ment schemes dramatically decrease energy con-
sumption.

1 Introduction

The ubiquitous nature of mobile computing and
more stringent demands for smaller devices, with
longer battery life, has brought power manage-
ment to the forefront of embedded systems re-
search in recent years. Hardware manufacturers
have introduced standards such as the ACPI (Ad-
vanced Configuration and Power Interface) [6] for
power management of laptop computers that al-
lows several power modes of operation; e.g., pow-
ering down some parts of the computer such as
the disk drive, reducing the voltage of the CPU,

*This work has been supported by the Defense Ad-
vanced Research Projects Agency through the PARTS
(Power-Aware Real-Time Systems) project under Contract

F33615-00-C-1736.

Handheld de-

vices such as Personal Digital Assistants and cel-

and adjusting screen brightness.

lular telephones will have even more stringent
battery requirements in the future due to smaller
size and increased functionality. Battery man-
agement is therefore one of the most important
design issues since it determines to a large extent
mission duration, quality of service (QoS), bat-
tery size, device weight, etc.

To increase the capabilities of power manage-
ment, we enlist both compiler and power-aware
The
problem to be solved is to extend battery life to

operating system scheduling techniques.

enable system integrators to enhance the mix of
jobs and/or the quality of the results of the cur-
rent set of applications running in the device.

These applications will initially be a “fixed” set
loaded on the processor for the lifetime of the
system. The timings are also “fixed” for the set
of applications. Examples include audio trans-
mission, reception, and play-back, web-page load-
ing, video transmission and display, among oth-
ers. We use the compiler to annotate an applica-
tion’s source code with temporal information and
to insert power management points in the pro-
gram that invoke the operating system to adap-
tively alter processor supply voltage (and conse-
quently, the clock speed is also reduced). Reduc-
ing the voltage to the CPU has a linear impact on
the speed of the applications, but has a quadratic

effect on energy savings [13].
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We show how to reuse time not used by other
tasks (with information gathered from compiler
annotations) to reduce processor clock speed.
Such time reclaiming may either reduce aver-
age battery size or increase average mission life
and/or QoS.

We first describe related work in the next sec-
tion, and present our system model in Section 3.
Our power-aware scheduling algorithms are pre-
sented in Section 4. Section 5 gives simulation
results that show energy reductions possible with
our techniques for synthetic workloads. We close
the paper in Section 6 with concluding remarks
and future work directions.

2 Related Work

In the last decade, there has been consider-
able research effort in low-power system de-
sign, as exemplified by new techniques in VLSI,
Code/Algorithm/Compiler transformations, use
of hierarchical memory systems and application-
specific software modules. On-going research
has had an important effect in embedded real-
time systems design, simply because many of
the applications running on power-limited sys-
tems have tight temporal constraints (e.g., real-
time satellite communication and control tasks
for unmanned autonomous vehicles-UAVs). As
a simple approach, the predictive system shut-
down technique [10] is usually used to turn off
the power supply when the processor is idle and
is likely to remain idle for a considerable amount
of time. However, due to the convex dependence
between supply voltage and power consumption,
this technique is clearly sub-optimal, even for a
system with perfect knowledge of idle intervals.
On the other hand, the variable voltage schedul-
ing (VVS) framework, which involves dynami-
cally adjusting the voltage and frequency of CPUs
(and hence the CPU speed), has recently become
a major research area. Reducing the voltage usu-

ally results in considerable power savings, but
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also in a delay in response time. Thus, VVS re-
search focuses on minimizing energy consumption
of the system, while still meeting deadlines.

Although it is a relatively new research field,
there is already a large body of literature on VVS,
addressing various aspects of the problem such
as aperiodic and/or periodic models, off-line or
on-line scheduling, static or dynamic priority as-
signments [13, 4, 5, 8].

scheduling schemes presented in these studies,

However, most of the

while using exclusively worst-case execution time
(WCET) to guarantee the timeliness of the sys-
tem, lack the ability to dynamically take advan-
tage of unused computation time. In fact, an ap-
plication with timing constraints usually exhibits
a large variation in actual execution times; for ex-
ample [2] reports that the ratio of the best-case
execution time to the worst-case execution time

can be as low as 0.1.

Consequently, dynamically reclaiming ’slack-
time’ can be (and as we show later in this pa-
per, is) a powerful approach to obtaining con-
siderable power savings and to minimizing the
effects of designing the system with WCET in-
formation, which is usually a very conservative
prediction of actual execution time. It goes with-
out saying that dynamic slack-management tech-
niques should preserve the feasibility of the task
system (i.e. no deadline should be missed), even
under a worst-case scenario that may take place
The only
practical approach in the seminal work presented

after any speed adjustment decision.

in weiser:0sdi94 only takes into consideration the
past interval energy consumption in order to set
the future interval.

A recent study [7] addressed slack reclaiming
issues in power-aware scheduling, but only in the
context of systems with two (discrete) voltage lev-
els. Systems which are able to operate on a (more
or less) continuous voltage spectrum are rapidly
becoming a reality thanks to advances in power-
supply electronics and CPU design [3, 9]. For ex-

ample, the recently announced Crusoe processor
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is able to dynamically adjust clock frequency in
33 MHz steps [11]. This trend is likely to have a
major impact on the design of power-aware com-

puter systems.

3 Model

Our techniques are targeted to embedded systems
with a fixed set of applications, each of which is
assigned a specific amount of time for complet-
ing its computations. This type of situation can
occur in a system that has a single periodic appli-
cation that must complete each iteration during
its period, or a system that assigns an amount
of time for each application (in the classical real-
time systems literature, this is called the worst-
case execution time of the application). Another
example is an event-triggered system, in which an
application request arrives with a fixed deadline.
The system must carry out the computation in a
non-preemptive way for that period of time. The
schemes that we propose show how to slow down
the processor and extend the time the application
executes to reduce energy consumption.

For simplicity of presentation, in this paper we
consider an embedded system with a single ap-
plication with the following characteristics. An
application is divided into n sections or tasks,
75, 1 <4 < n. We assume that each section (e.g., a
loop or a procedure call) has an average execution
time (c.avg;), and a WCET (¢;).
inserts power management points (PMPs) at the

The compiler

beginning and end of a section to test whether
the processor clock speed can be changed. The
check at the beginning of the section records the
current time, and the check at the end of the sec-
tion computes the actual execution time for the
section. Based on how the actual execution time
compares to the WCET, processor speed may be
adjusted either up or down.

We are currently developing the hardware and
software interfaces to support compiler-assisted

adjustment of processor voltage. We are also

Oct 2000

developing the optimizations necessary to intel-
ligently insert the PMPs in the code to minimize
their overhead. Selecting the locations at which
to place PMPs relates to how code sections are
determined in a program. Loop boundaries and
procedure call sites are natural locations to in-
sert PMPs. Inserting a PMP also relates to how
close the WCET is to the average execution time
for a given piece of code. If the compiler can
determine that a WCET is close to actual execu-
tion time (e.g., a tight loop with no cache misses
and high branch prediction accuracy will have a
WCET that closely corresponds to the actual exe-
cution time), then it may be possible to statically
determine how fast to run a given code section.

We can also use profiling information to find
the locations in a program’s dynamic execution
trace where the speed is most likely to change.
For instance, assume that PMPs are inserted at
loop boundaries and call sites. After profiling the
application, we may discover that the processor’s
speed never changes at particular PMPs. It may
be possible to remove such PMPs since they only
contribute to performance overhead and do not
affect processor speed. When removing a PMP,
the code section controlled by that PMP needs to
be merged with an adjacent section to ensure its
deadlines will be met. In this paper, we assume
fixed code sections and restrict ourselves to de-
scribing several schemes for determining the best
execution speed (voltage) for a code section.

The processor has a maximum speed, Sy,qz, at
which it can execute; without loss of generality,
we assume that S,,4, = 1. Further, it is possible
to lower the speed of the processor by adjusting
the voltage levels of the hardware (consequently
slowing down the clock frequency that drives the
processor). We will denote the CPU speed set-
tings of each section by s;,1 <12 < n,s; < Spaz-
Note that the {¢;} and {cavg;} values are given
with respect to a system which uses the maximum

speed (Spmaz)-

Processor power consumption is inversely pro-
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portional to the square of supply voltage. In
CMOS technology, the dominant component of
energy consumption is the dynamic power dissi-
pation Py, which is given by: Py = Ces - V2 - f,
where V4 is the supply voltage, Cey is the effec-
tive switched capacitance and f is the frequency
of the clock. The gate delay D is inversely re-
lated to the supply voltage Vg (D =k - (Vd:%’
where &k is a constant, and V; is the threshold
voltage). Hence, the gate delay increases roughly
linearly with the decrease in the supply voltage.
From these equations, it is apparent that one can
reduce quadratically or even cubically the power
consumption, at the expense of linearly increased
delay (reduced speed) [5].

Because every code section in a program has a
WCET, it is possible to derive the nominal worst
case load of the system. Moreover, the applica-
tion has a deadline, d, by which it must com-
plete execution. Given the deadline and applica-
tion characteristics, we can compute a slack factor
SF in the system, which represents the amount
of free time there is in the system with respect
to the computational requirements of an appli-
cation. Formally, SF = ﬁ, where n is the

i=1 ¢

number of sections in the application. In other
words, the application deadlines and the slack in
the system are interdependent, since the amount
of computation to be carried out is fixed. One
can interpret the slack factor as being the inverse
of the load imposed in the system; for example, if
the application consumes 10ms at maximal speed,
and the deadline is 50ms, then the load in the sys-
tem is 20% and the slack factor is 5.

4 Voltage Adjustment Schemes

In this section, we describe techniques that

change processor speed (i.e., slow down) based
on the natural slack of the system and time re-
claimed from code sections that finish before their
We assume that the CPU goes into

idle mode and consumes no power when there is

deadlines.
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no application to execute. The schemes we study

are:

e NPM: No Power Management. That is, all

n sections execute at S,,qz.

SPM: Static Power Management. This con-
servative scheme uses only WCET and dead-
line information (i.e., the existing slack fac-
tor or load of the system). This scheme dis-
tributes the slack proportionally among all
program sections, prior to run time. In other
words, each section is executed with speed
s; = 1/SF. For example, if the load on the
system is 80%, then the slack factor is 1.25
and the speed of the processor is 0.8.

This conservative scheme is based on the
principle that in a minimization problem
with quadratic objective functions, the best
solution is to increase the time given to
each section proportionally. This scheme
also guarantees that all sections finish before

their deadlines.

On the other hand, SPM does not take ad-
vantage of the fact that often sections do
not execute as much as their WCETSs, and
that the system can reclaim the unused re-
source/time. Below we describe DPM (Dy-
namic Power Management) schemes which
reclaim unused CPU time whenever a section
finishes earlier than its predicted WCET.

DPM-P: Dynamic Power Management—
Proportional. The reclaimed slack is dis-
tributed proportionally to each section in an
application. In this scheme, every time a
section finishes, the system computes the re-
claimed time, and allows other sections to
slow down proportionally. In other words,
when the first section finishes execution at

time #|, the processor speed will be set to

_ Z?=2(C") )

/
S2 T Td-r
their execution at #},

If 7 sections have finished
-, t%, the speed of the
Ei:j+1 Ci ]

-] ! —
processor 1s set to 57, = PR
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¢ DPM-G: Dynamic Power Management—
Greedy. This is a more aggressive technique,
because it gives all the reclaimed slack to the
next section. In addition, DPM-G allows the
next section to use the maximum possible
amount of natural slack in the system, while
guaranteeing the feasibility of the remaining
sections. In this case, if 7 sections have fin-

ished their execution at ¢{, ..., t;«’, the speed of
the processor is set to s”, ;, = — Citl
+1 1 g A
7 d—tj - E imjpn Ci

e DPM-S: Dynamic Power Management—
Statistical. A very aggressive scheme would
distribute the reclaimed slack, and the nat-
ural slack, and the slack that would appear
in the system if other sections were to fin-

That is,

if 7 sections have finished their execution at
n 1

ish early (base it on the c_avg).

the speed of the processor is set to

1oty
n
Ei:j+1(c—‘wgl)
d—t'"

Clearly, this would not guarantee the dead-
lines of any sections, since it consumes time
that will perhaps be needed for other sec-
tions after 7; executes under worst-case sce-
nario. To take advantage of the predic-
tions embedded in the c_avg, while strik-
ing a balance between DPM-P and DPM-G,
DPM-S limits the speed setting to a level
that would enforce the guarantees needed

. ) . s
in the frame-based system: that is s7}; =

s W} Note that DPM-

S as described s is less aggressive than

maz{s

DMP-G, because it never slows the processor
more than the latter.

In the next section, we evaluate the perfor-
mance of each of these schemes, with respect to
the energy saved when slowing down the process.
We compare the energy consumed by each of the

schemes, including the baseline scheme, NPM.

Oct 2000
parameter name | values assumed
WCET c 5,10,...,25
avg exec time | a_c > %, e ?—8
T 1
slack factor slack | 555, 57+ 1

Table 1: Parameters for Simulations

5 Performance Evaluation

Using our experimental set up, we carried out
over one million simulations. Each result pre-
sented here is an average of 100 data points. The
actual execution times of each section were drawn
from either a uniform or a normal distribution,
using a_c as the average and ¢ as the maximum
(therefore, the normal distribution is cut at the
upper limit).

Let us represent the Y ¢; by o, and the slack
factor is an input parameter ranging from 1 to 20
(i.e., 1.0 > load > 0.05). The deadline of the sys-
tem is defined as d = o/load. For example, if .5,
then d = 20, and if .1, then d = 100. The values
for the variables in the simulations are shown in
Table 1.

In Figure 1 we show the (normalized) energy
consumed by each scheme as a function of the
slack in the system. Schemes SPM, DPM-P, and
DPM-S (which depend on the load) show a large
advantage when the slack is maximal. Scheme
Baseline, which does not depend on the slack in
the system has a flat curve, since the work is per-
formed at maximum speed for all sections (inde-
pendent from the slack in the system).

On the other hand, scheme DPM-G, which also
depends on the deadline, has very stable perfor-
mance (it does comparatively bad when the slack
is large, but better when slack is small). This is
because when there is too much slack, the first
few sections will execute extremely slowly, con-
suming most of the slack available. By the time
the fourth or fifth sections starts executing, the

slack all but vanished, forcing a dramatic increase
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energy by slack, WCET =5, AC = 2.5, uniform dist
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Figure 1: Energy consumed by various schemes as a function of the slack in the system

in processor speed up (even getting to the max-
imum speed at times). This phenomenon makes
about 90% of the sections in the system execute
with almost no slack, causing the energy to be
at the same level for all slack values. The speed
settings and the completion time of each section
can be seen in Figure 2.

Note also that, were we to consider the over-
head of speed changes in our results, DPM-G
would fare even worse: if overhead were high, one
would only consider changing the speeds when the
savings were significant, consequently with larger
speed differentials. Because DPM-S and DPM-P
have vary stable speed settings, the overhead in
these schemes is minimal.

Average computation time also plays an inter-
esting role in the performance of the schemes. We
have observed above that as the load increases,
the performance of the schemes degrades, except
for DPM-G and NPM. This is confirmed in the
graphs shown in Figure 3, where DPM-G has ap-
proximately the same energy consumption, but
the other schemes do not. The interesting point
to observe is that only after slack factor values

SF > 2 (not shown) does the performance of

DMP-P and and SPM become strictly better than
DPM-G. This graph also confirms that DPM-S is
always better than the other schemes.

6 Conclusion

We have shown that when the compiler is used
to assist the operating system in changing CPU
speed, several schemes are possible. Among
these, aggressive schemes usually do better than
non-aggressive schemes. However, our simulation
results indicate that the best scheme is an adap-
tive one that takes an aggressive approach (such
as trusting average-case estimates for execution
time) while providing safeguards that avoid vio-
lating application deadlines.

We are currently modifying our simulator to in-
clude speed-changing overheads and to consider
lowest-speed settings. We note that a single ap-
plication with sections as described here is equiv-
alent to having a frame-based system with a set
of applications, in which all sections must execute
repeatedly with the same frequency. The deadline
of this set of tasks is determined as the inverse of

the frequency (see [1] for examples of applications
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CPU speed settings, slack = 1.333, WCET =5, AC = 2.5, uniform dist
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Figure 2: Speed settings for sections according to different schemes (for 2 representative slacks, 0.05
at the top and 0.75 at the bottom). Note that the DPM-G scheme has a high spike in speed settings,

while other schemes are more uniform.
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