
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004 879

Node Delay Assignment Strategies to Support
End-to-End Delay Requirements in Heterogeneous

Networks
Taieb F. Znati, Associate Member, IEEE, and Rami Melhem, Fellow, IEEE

Abstract—In a complex, heterogeneous network environment,
such as the Internet, packets traversing different networks may
be subjected to different treatments and may face different traffic
loads across the routing path. This paper addresses the key issue of
how to assign delay budgets to each network node along the routing
path so that the end-to-end delay requirements of the supported
applications are met.

First, we describe a methodology to compute for a given flow a
set of feasible per-node delays for the class of delay-based servers.
We then formalize an optimal per-node delay assignment problem
which takes into consideration the workload across the routing
path. The solution, for homogeneous and heterogeneous networks,
is provided. The resulting solution is optimal, but its implemen-
tation overhead is relatively high. To overcome this shortcoming,
we propose two heuristics, EPH() and LBH(), to approximate the
optimal strategy. EPH() uses the equi-partition concept to compute
initial delay values and adjust these delay values to meet the
end-to-end delay requirements. LBH() uses a relaxation factor to
distribute the load proportionally across all nodes on the routing
path. A simulation-based comparative analysis shows that the
heuristics perform closely to the optimal schemes.

Index Terms—End-to-end delay, packet scheduling, quality of
service (QoS).

I. INTRODUCTION

WITH the ever increasing growth of the Internet, in scale
and heterogeneity, the main challenge faced by current

networks is to overcome the lack of service flexibility of tra-
ditional communication protocols and offer efficient solutions
for quality of service (QoS) guarantees. To this end, two QoS
models, namely IntServ and DiffServ, have been proposed and
extensively studied in the literature. The ability to efficiently
manage networks resources is critical in order to effectively ad-
dress network congestion and end-to-end QoS guarantees. Net-
works must determine appropriate delay bounds, for each router
within the networks, in order to guarantee the end-to-end delay
requirements of the traffic flows. Furthermore, routers must be
able to re-negotiate delays when, due to congestion or node
failure along the flow’s routing path, the network is no longer
able to continue supporting the requested service.

Manuscript received September 15, 2000; revised June 21, 2002; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor E. Knightly. This work
was supported in part under a National Science Foundation (NSF) award MIP
96-33729 to the University of Pittsburgh.

The authors are with the Computer Science Department, University
of Pittsburgh, Pittsburgh, PA 15260 USA (e-mail: znati@cs.pitt.edu;
melhem@cs.pitt.edu).

Digital Object Identifier 10.1109/TNET.2004.836141

In most scheduling policies used to service packets, service
provisioning and traffic conditioning policies are sufficiently de-
coupled from the forwarding behaviors within the core network
[5], [13]. The direct implication of this network design choice
is the ability to implement a wide variety of service behaviors.
Consequently, several scheduling schemes can be used to en-
force a desired “per-hop behaviors” for different classes of ser-
vices. These scheduling schemes differ in the strategies they
employ to enforce rate control, the policies they use to service
packets, and the types of delay guarantees they provide. In gen-
eral, the mechanisms used to verify the feasibility of supporting
the QoS requirements of a real-time application on a given path
is based on a set of node feasibility tests. These tests integrate a
packet based workload characterization into the feasibility equa-
tion of the scheduling discipline used to verify the possibility of
supporting the delay requirement by each node on the routing
path such that the end-to-end delay requirement of the applica-
tion is met. Very few of these schemes, however, describe the
mechanisms used to assign either the per-node delay or the ser-
vice rate required across the routing path in order to meet the
end-to-end delay requirements.

The main objective of this paper is to address the question
of how to efficiently assign per-node delays to a new ses-
sion, or equivalently how to assign ’s values to a general
processor sharing (GPS) session along the routing path, so
that the end-to-end delay requirement of the new session are
met without violating the delay requirements of currently
supported sessions. It is worth noting that the paper does not
propose a new packet scheduling algorithm, nor does it seek
to introduce a new calculus to derive delay bounds for a given
packet service discipline. Rather, the paper addresses the delay
budget assignment problem first described in [18], and proposes
a framework within which an optimal, load-based per-node
delay strategy can be developed. To this end, we first propose
a methodology to compute a range of feasible delay budgets
for each node on the routing path, given the flow’s end-to-end
delay requirement and the resources currently available at the
routing node. Based on the computed range of feasible delays,
an optimal, load-based strategy, along with heuristics on how to
assign per-node delays across the routing path, are described.
Both homogeneous as well as heterogeneous networks are
considered.

The rest of the paper is organized as follows. In Section II, we
review the related work. In Section III, a methodology for com-
puting per-node delays is presented. In Section IV, three per-
node delay assignment strategies are described. In Section V,

1063-6692/04$20.00 © 2004 IEEE

880 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004

the performances of the strategies are discussed and compared
for different types of network environments. The last section
provides the conclusion of this work.

II. RELATED WORK

Several scheduling schemes have been proposed to service
traffic and achieve a desired level of QoS Support [3], [10], [22],
[25]. Some of these schemes seek to maintain a high level of
fairness while reducing the complexity of emulating the GPS
policy [11], [20]. A class of these schemes seeks to simplify
the scheduling algorithm by employing improved data struc-
tures for storing the set of flow priorities [21], [24]. A second
class of these schemes attempts to reduce the complexity of
their emulation by improving upon the virtual time computation
used to simulate the ideal server’s behavior [2]. A third class of
scheduling disciplines, referred to as fair airport scheduling al-
gorithms, maintains an auxiliary and a guaranteed service queue
to dynamically control the level of fairness in order to provide a
flow with differing worst-case delay bounds given without ex-
ceeding the delay bounds by more than what the application can
tolerate [4], [8].

The above schemes are based on the idealized GPS sched-
uling policy and, in most cases, seek to generalize this policy
based on some form of service definition. Very few of these
schemes, however, address the question of how to assign
the proper weight to a new session in a way such that, after
accepting the new session, every session currently supported
by the server is guaranteed its average rate and worst-case
end-to-end delay. An approach, proposed by Parekh [18], com-
putes the largest and smallest values of that would ensure the
worst case delay for the new session and selects the midpoint
of the interval resulting from these extreme points. It is clear,
however, that this strategy may not be efficient.

A class of servers based on the concept of universal curves,
or a derivative thereof, have been introduced [9], [19]. These
schemes seek to support large schedulability regions, given a
set of delay-bound requirements and traffic burstiness specifi-
cations. In this case also the proposed schemes do not specifi-
cally address issues related to per-node delay assignment across
a routing path.

A closely related work to the work presented in this paper pro-
vides algorithms for flow admission control in the context of a
rate-controlled model based on the earliest deadline first (EDF)
scheduling policy [7]. The framework assumes a homogeneous
set of EDF-based servers and derives the minimum delay that
can be guaranteed by a flow. Here again, the scheme does not ad-
dress the issue of how to assign efficiently per-node delays along
a routing path so that a network defined performance metric is
enforced.

III. PER-NODE DELAY COMPUTATION

Based on the traffic specification and the current excess
buffering and processing capacities of a node, the feasibility of
supporting a new flow, without violating the delay bounds of
currently supported flows, can be assessed. In the following,
we first present the flow workload model and the processing

and buffer capacity model. We then proceed to describe the
methodology used to compute feasible delays at a given node.
It is worth noting that the methodology does not seek to pro-
duce exact delay bounds for specific scheduling policies, as
described in [14] and [23]. Rather, the framework seeks to
determine a range of feasible per-node delay budgets which
can then be used to assign per-node delays in a way such that
the load remains balanced across the routing path.

A. Flow Workload Model

The capability of a node to produce a range of feasible delay
values for a given network flow requires a mechanism by which
a node can determine the amount of service time required by
a network flow over a given time interval. Consider a routing
node, , and a real-time flow, , characterized by its maximum
end-to-end delay value, , and its Linear Bounded Arrival
Process traffic rate specification vector, , where is
the number of packets generated over and is the maximum
packet burst size over any time interval, so that the application’s
long-term packet rate is .

The maximum number of packets, , generated by over
a time interval of size can be expressed as

(1)

Let represent the maximum amount of ser-
vice time required to process a packet from flow at node ,
where is the packet size of flow , and is the service rate
at node . Furthermore, given the traffic rate specified by , the
maximum amount of service time required by over an interval
of size can be expressed as .

In the above, s workload is specified by computing the max-
imum number of intervals of size that can fit in and mul-
tiplying this value by the number of packets that can be gener-
ated per interval. This load characterization provides an upper
bound on the amount of traffic generated by flow over a time
interval .

B. Resource Capacity Models

To accommodate a rich mixture of network services and ap-
plications and achieve efficient use of the network resources,
different packet scheduling policies are likely to be widely de-
ployed. In this paper, we consider three classes of scheduling
policies, namely deadline-based, delay-based and first-in-first-
out.

The deadline-based scheduling policy dynamically assigns
priorities to packets based on their deadlines. The packet with
the closest deadline is assigned the highest priority. This policy
has been shown to have a maximum schedulability region for a
given set of delay vectors [12]. The delay-based scheme assigns
priorities to flows so that flows with shorter delays have higher
priorities than those with longer delays. It has been shown
that this policy is optimal among fixed-priority scheduling
algorithms [15]. The first-in-first-out policy, on the other hand,
is simple to implement and widely used among Internet routers.
Its capability to support adequate delay bounds, however, is
limited.

ZNATI AND MELHEM: NODE DELAY ASSIGNMENT STRATEGIES 881

A closer look at the delay bound characteristics supported
by delay-based network servers reveals that the minimum
and maximum feasible delays are correlated with the amount
of processing and buffer capacities available at intermediate
nodes [6]. Smaller per-node delays reduce the effective buffer
requirements of the network flow but increase its effective
processing requirements. Larger per-node delays, however,
result in increased buffer holding times, which in turn increases
the effective buffer requirements of the flow. Based on the
above observation, the characterization of the smallest feasible
delay bound , of flow at node for a fixed amount of
buffers, becomes a factor of node s excess processing capacity.
Consequently, given a sufficient amount of buffers to hold
flow ’s traffic, can be exclusively determined based on
the amount of processing capacity that can be allocated to

without violating the traffic requirements of the remaining
flows currently supported by node .

On the other hand, the characterization of the largest feasible
delay bound of flow at node , is directly correlated to
the buffering capacity of the node. Assuming that a sufficient
amount of processing capacity is available, the largest delay
value that can be supported by node is exclusively de-
pendent on the amount of buffering capacity that can be allo-
cated to flow without violating the traffic requirements of the
currently supported flows. Consequently, the characterization of

can be achieved based exclusively on node ’s excess buffer
capacity.

In the following, we present models to characterize the pro-
cessing and buffer capacity of a network server. We then show
how these models can be used to derive the smallest and largest
feasible delay bounds, and , respectively.

1) Processing Capacity Service Model: For a given class of
delay-based servers, one can derive a collection of practical and
theoretically sound quantitative methods which can be used by
the server to assess the feasibility of supporting the real-time re-
quirements of a new flow while continuing to guarantee the re-
quirements of currently supported flows. This can be achieved
by computing the utilization of the scheduled activities and com-
paring it to a schedulable bound which depends on the sched-
uling policy used by the server.

Let be a network node which uses a nonpreemptive dead-
line-based scheduling policy to service packets from different
flows, and consider a set of flows, , traveling
through . Each flow is characterized by its traffic specification
vector, and its end-to-end delay . Furthermore,
packets from flow encounter a delay, at node . The sup-
port of flows are feasible at node if

(2)

where is the maximum amount of service time
required by flow over its assigned delay, , at node . The
term accounts for the
nonpreemptive aspect of the packet service at node . It repre-
sents the maximum amount of time a higher priority packet,
arriving just at the instant a lower priority packet gained access
to the server, may be forced to wait before being serviced.

For a nonpreemptive delay-based scheduling policy, the fea-
sibility test to support a set of flows, , at node
can be expressed as

(3)

Note that, the first-in-first-out scheduling policy can be
viewed as a special case where the server can only support a
constant delay value for all flows.

For a given routing node and a set of flows, with de-
lays, , and processing requirements,

, respectively,
the feasibility test for the above nonpreemptive, delay-based
servers can be expressed in a general form as

(4)

where and .
The term denotes the total percentage of ser-

vice capacity which can be allocated to provide
guaranteed service to real-time flows at node , and

represents the
amount of service rate required to account for the nonpre-
emptive nature of the server at node . For a deadline-based
scheduler, the value of equals 1, while for a delay-based
scheduler is .

An amount of the total capacity, , is allocated to support
the real-time requirements of the currently supported flows at
node , while an amount is reserved to account for potential
nonpreemptiveness. The excess capacity, , is the percentage
of node ’s total processing capacity which can be allocated to
support new network flows. At any instant, satisfies

.
2) Buffer Capacity Model: In order to accommodate dif-

ferent types of servers, the buffer capacity model proposed in
this paper considers both work-conserving and nonwork-con-
serving servers. A work-conserving server is idle only when
no packets are awaiting servers, while a nonwork-conserving
server may suspend service even if the traffic queues are not
empty.

In this model, each node is configured with memory to buffer
packets as they are queued for service. The total buffering ca-
pacity determines the total number of packets which can be
queued either in the waiting rooms or service queues at node .
The waiting room is used to absorb the jitter introduced upon a
flow’s packets at the previous upstream node. A packet is con-
sidered early at a given node if the actual time spent at the
upstream node is less than the original delay assigned to the
packet. The earliness of a packet determines the amount of time
a packet is held in the waiting room before it is considered eli-
gible for service and moved to its appropriate service queue. By
absorbing the jitter, the traffic pattern of a flow can effectively
be reconstructed at each switching node to the form it had when
it entered the network.

At any time, an amount of node ’s total capacity is
allocated to accept flows such that no packets are dropped due

882 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004

to lack of buffer space. Furthermore, at any time, denotes
the number of excess buffers which can be allocated to handle
packets from future network flows. Consequently,

holds.
The processing and buffer capacity models described above

can be used by a given routing node to derive the smallest and
largest feasible delay bounds, and , for a flow , charac-
terized by its rate specification vector, . These delay
bounds provide a range of feasible delays that can be supported
by the node .

C. Smallest Feasible Delay Value

The characterization of the processing excess capacity is
the basis for the computation of the smallest per-node delay
bound that can be supported by a node. More specifically, let

represent the maximum workload required by a
new flow at node over a potential delay bound . As
described above, the exact criterion for the new flow to be
accepted by a delay-based server at node , without violating
the requirements of the flows currently supported by , can be
expressed as

Substituting by its packet workload-based value,
results in

The term in the above equation denotes node excess
processing capacity, while represents the
processing requirements of flow over a delay . The value

, for which the equality holds, specifies a lower bound
on the delay values node can offer to , based on ’s
current excess capacity and ’s requirements. This value is
achieved by dedicating all node ’s excess processing capacity
to flow .

Noting that if packets can be
processed on time by the server, then
can also be processed on time by the server, the smallest feasible
delay, can thus be expressed as

if

otherwise.
(5)

D. Largest Feasible Delay Value

The upper bound delay, , represents the maximum
total delay a packet from flow can be delayed at node

without causing flow to loose any of its packets and
without violating the buffer requirements of the remaining
flows which are currently supported by node . This delay

encompasses the total time a packet from flow may wait
in ’s waiting rooms and service queues, and can be computed
based on the current excess buffer capacity of node . Taking
into consideration the requirements of currently supported
flows, the buffer capacity constraint at node can be expressed
as

(6)

where denotes the number of buffers allocated to flows
to guarantee that none of their packets are

dropped. Since packets from may be queued in their asso-
ciated waiting room for up to units of time and in the
packet service queue for no more than units of time, the
maximum amount of time a packet from can be queued at
is . Consequently, the number of buffers,

, required to ensure a loss-free service to must
be sufficient to hold the maximum number of packets generated
by over . This number can be ex-
pressed as

(7)

Combining (6) and (7) and isolating the term results in

The above equation holds if

Solving for results in

Let specify an upper bound on delay values node can
offer to , based on ’s current buffer capacity and ’s
requirements. This value is obtained by equating the amount
of buffers, ,
necessary to satisfy the requirements of over a delay

, to the excess buffer capacity, , at
node . Therefore, if , a feasible
value for can be expressed as follows:

(8)

IV. DELAY ASSIGNMENT STRATEGIES

Given a request to establish a new flow characterized by
its traffic rate specification vector and its
maximum end-to-end delay value the methodology presented
above leads to a range of feasible delay values, ,
that can be supported by a given routing node . The objec-
tive is to assign, from within the range of feasible delays, a
per-node delay value for each node along the routing
path, such that the maximum end-to-end delay of flow
is not exceeded. It is clear, that assigning the smallest feasible
delay value at a node along the routing path is not advisable as
it exhausts the entire processing capacity of the node, thereby

ZNATI AND MELHEM: NODE DELAY ASSIGNMENT STRATEGIES 883

causing the rejection of any subsequent flows. The same obser-
vation can be made with respect to assigning the feasible largest
delay value to the flow, since such an assignment is likely to ex-
haust the buffer capacity of the routing node. Sections IV-A–D,
we propose and discuss more efficient strategies for flexible
delay assignment along a flow’s routing path.1

A. Optimal Load-Based Strategy

Requests for flow establishment arrive to the network and are
processed sequentially. Assume the network receives a request
to establish a new flow characterized by its rate specification
vector and its maximum end-to-end delay value . Fur-
thermore, assume that the routing path is composed of nodes

. A load-based, per-node delay assignment strategy is
said to be optimal if: 1) the per-node delay assignments are fea-
sible across the routing path; 2) the end-to-end delay require-
ments of the new flow are enforced without violating the delay
requirements of the existing flows; and 3) the load at each node
along the routing path is balanced. This assignment will guar-
antee that, for the same workload, heavily loaded nodes will
be assigned larger per-node delays than lightly loaded nodes,
thereby reducing the likelihood of bottlenecks across a routing
path.

The “optimal” delay assignment problem can be formalized
as follows. Find such that
is minimum, subject to and for

. In this formulation, is the current workload at
node just before the new flow request arrives, and is the
workload requested by the new flow over the time period .

Noting that the maximum workload that a node can observe
over an interval of time is , the objective
function of the delay assignment problem becomes

. Furthermore, since
is independent of , the optimization problem simpli-

fies to: Find such that is minimum,
subject to: and for .

In the following, we first solve the optimization problem in
the case of homogeneous networks, where the service rate
for all nodes across the routing path, is the same.
We then describe the more elaborate solution for the case of a
heterogeneous network of servers.

B. Case of Homogeneous Networks

In the case of a homogeneous network, since ,
, the optimal per-node delay assignment problem re-

duces to
Find such that is minimum, sub-

ject to

and (9)

where is the maximum end-to-end delay value of the new
flow, and and represent the lower and upper bound per-node
delay values at node , respectively. It is clear that if

1For notational simplicity, the indexN+1 denoting the flow is dropped when
no ambiguity ensues.

does not hold true then no solution exists to the above problem
and the flow must be rejected. A feasible solution to this problem
is the one that satisfies both constraints of (9) without neces-
sarily minimizing the objective function. A solution is optimal
if it minimizes the objective function in addition to satisfying the
constraints of (9). To arrive at the optimal solution, we initially
disregard the objective function and consider the set of possible
feasible solutions. This set can then be used to determine the
optimal solution.

The optimal solution for the unbounded problem, which does
not necessarily satisfy the constraints of (9), can be obtained
using partial differentiation and solving the resulting linear
equations in variables. The solution can be shown to be the
one in which the delays s are all equal to , a varying
value which we refer to in this paper as the equi-partitioned
value. It is worth noting that this solution is also optimal for the
bounded problem in the trivial case when the equi-partitioned
value lies between all the s and s. It is also clear that any
member of a set of feasible solutions is a solution in which all
the nodes on the routing path of the new flow belong to one
of three disjoint sets, , , and , depending on whether
the node assigns to the new request the smallest delay value, ,
the largest delay value, , or a value in between the smallest
and largest delay values. These observations provide the basic
intuition to arrive at the optimal solution. Prior to deriving the
optimal solution, we prove a theorem that states the conditions
which must be met in order for the solution to be optimal.

Theorem 1: Optimality Theorem: Consider a solution,
, which satisfies the constraints of (9) by

partitioning the nodes into three disjoint sets ,
, and , of sizes , and , respectively,

and assigning values to as follows:

• nodes , ;
• nodes , ;
• nodes ,

.

The above solution minimizes the objective function if

• nodes , ;
• nodes , ;
• nodes , .

Proof: The proof follows from Kuhn–Tucker necessary
and sufficient conditions for a global optimal solution to a
problem with inequality and equality constraints [16]. We first
rewrite the optimization problem in a form more suited to the
application of Kuhn–Tucker conditions

for

for

Given that the functions , , , and are
all convex, the Kuhn–Tucker’s optimality conditions state that a
solution to the above problem is globally optimal if and only if

884 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004

there exist a scalar for every ,
and a scaler such that [16]

(10)

We will prove that the solution given by Theorem 1 satisfies
the above conditions, and thus is optimal. Without loss of gener-
ality, assume that ,
and . Hence, the equi-partitioned

value, . For

, we have

Based on the above, we have

From the definition of , we have

Moreover, since for and for
, hence

. This leads to (11).
We also have . There-

fore, (10) can be rewritten as

...

...

...

...

...

...

...

...

...

Using the above, we derive the following:

(12)

(13)

(14)

Fig. 1. Optimal delay assignment.

From (14), we obtain . Thus, for , (12)
implies that

. Given that the solution satisfies for , we
conclude that for .

Similarly, for , (13) implies that
. Given

that the solution satisfies for , we conclude
that for , which proves that
satisfies the Kuhn–Tucker conditions.

1) Optimal Delay Assignment Algorithm: In order to find a
solution to the optimization problem, we first note that a new
flow request is rejected if . The algorithm Opt(),
outlined in Fig. 1, ensures that whenever the new flow request
can be accepted by the network, it is accepted with the smallest
possible increase in the network load.

The input parameters of the algorithm are the delay bounds
and , for each node , along the routing path,

and the maximum end-to-end delay requirement of the new
flow. Using these values, the algorithm distributes optimally
such that the delay, , at each node starting with the source
node minimizes , while satisfying the constraints

and for .
The following three lemmas, which can be proven by simple

algebraic manipulation, capture the variations and bounds on the
value of in the Opt() algorithm.

(11)

ZNATI AND MELHEM: NODE DELAY ASSIGNMENT STRATEGIES 885

Lemma 1: If and ,
then . That is, when a node is added to in step 2,
the value of increases.

Lemma 2: If and , then
. That is, when a node is added to in step 3, the

value of decreases.
Lemma 3: If and , then

. That is, when a node is removed from in
step 3, the value of increases but stays smaller than

Next, we prove in Lemma 4 that step 2 of algorithm Opt()
adds to every node with smaller than or equal to the
equi-partitioned value of the nodes that are not in . We then
prove in Lemma 5 that, after each iteration of step 3 in Opt(),

contains exactly every node with smaller than or equal
to the equi-partitioned value, and that every node, in has a
value larger or equal to the equi-partitioned value. We finally
use Lemma 6 to prove that at the end of step 3, contains
exactly every node with a value larger than or equal to the
equi-partitioned value. The complexity of the Opt() algorithm is
proven in Theorem 2.

Lemma 4: If the “while” loop in step 2 of Opt() terminates
with , then a node is in if and only if . In
other words, and any with
is in .

Proof: First, note that in step 2. Consider a node
which is added to when . Hence . From

Lemma 1, the addition of any node to at any step leads
to . That is the addition of a node to increases the
value of . Hence, which leads to . This is true
for any node that is added to and thus

. Moreover, the while loop in step 2 does not stop until every
node with is added to . Hence, any with
is in .

After constructing in step 2, the algorithm Opt() con-
structs in step 3. In each iteration of step 3, a node, , with

larger or equal to the equi-partitioned value is added to .
After each node is added to , the equi-partitioned value be-
comes smaller (see Lemma 2) and thus some nodes that are in

may have their upper bound larger than the equi-partitioned
value. The inner loop in step 3 (the Repeat loop) removes such
nodes from .

Lemma 5: Assume that a given iteration of the while loop in
step 3 is entered with and terminates with , where

, then the following holds:

• a node is in if and only if ,
• for any node , .

Proof: Assume that the conditions of the Lemma are sat-
isfied at . That is the following hypotheses are satisfied:

and

any with is in

In an iteration of step 3, a node with is added to
. From Lemma 2, this leads to . Moreover, in

the Repeat loop in step 3, when a node is removed from

for some , we have by Lemma 3 .
But from . Hence, we obtain

Based on the above, and using and , we obtain
the following:

Given that the Repeat loop in each iteration of step 3 does not
stop unless every node in has , we have

Finally, assume that for some node , and yet
. Given that then . Hence, should

have been removed from in the Repeat loop. Assume that
is removed from for some . Because

, then for any other node which
is removed from for . From Lemma 3, the re-
moval of leads to . In other words,
which is a contradiction with the assumption that .
Hence, we obtain the following:

any with is in

We have shown that if the conditions of the Lemma are satis-
fied when an iteration of step 3 starts (, , and) then
the conditions are satisfied when the iteration ends (, ,
and). Clearly, for the first iteration of step 3, where

is the value of at the end of step 2. Lemma 4 and the fact
that at the end of step 2 proves that , , and

are satisfied at the start of the first iteration of step 3. More-
over, if , , and are satisfied at the end of an iteration
of step 3, then , , and are satisfied at the beginning
of the next iteration. Hence, by induction, , , and are
satisfied at the end of each iteration of step 3.

Lemma 6: At the end of the second loop (the end of the al-
gorithm), a node is in if and only if and a node
is in if and only if .

Proof: The proof is straight forward from Lemma 5 and
the fact that step 3 of the algorithm does not stop until all nodes
with are included in .

Theorem 2: Algorithm Opt() finds a solution which satisfies
the conditions of Theorem 1 in time~complexity

Proof: By construction, the algorithm always updates
such that and always
maintains . Hence by including in the nodes
that are not in , and from Lemma 6, we conclude that
the algorithm finds a solution which satisfies the condition of
Theorem 1.

The first loop (step 2) executes at most times since at most
nodes can be added to . The second loop (step 3) also ex-

ecutes at most times since at most nodes can be added to
. Moreover, each iteration of the inner loop in step 3 (the Re-

peat loop) removes at most one node from , while no nodes

886 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004

are added to after the first loop (step 2). Hence, during step
3, at most nodes are removed from . The total algorithm
complexity is thus .

C. Case of Heterogeneous Networks

In the case of a heterogeneous network, the routing nodes op-
erate at different rates, ,: . Consequently,
the per-node delay assignment problem can be expressed as:
Minimize Subject to , , and

.
Note that if no per-node delay assignment is

feasible and the connection request should be rejected. It can
also be noted that if then the optimal solution is

for all nodes , across the routing path,
since increasing for any node causes an end-to-end delay
violation. In the following, we assume that , and
we proceed to derive a solution to the per-node delay assignment
problem in a heterogeneous network.

It should be noted that the requested maximum end-to-end
delay, , should be used in its entirety in order to optimize the
objective function. In other words, assume that there exists a
set of values , which verify the constraints

and . Then it is easy to show that
there exist a set of and a set of , such that ,

; and further minimize the objec-
tive function, thereby negating the optimality of s. This is due
to the decreasing nature of . Based on this
observation and using the fact that , for all ,
the per-node delay optimization problem can be expressed as:
Minimize , subject to: ,
and , where , ,
and .

To solve the above problem, referred to as Opt_LU, we adopt
a technique similar to the one described in [1]. More specifically,
we first introduce and solve two auxiliary optimization prob-
lems: the first, referred to as Opt_E, considers only the equality
constraint, while the second, referred to as Opt_L, takes into
consideration the equality and lower bound constraints, but ig-
nores the upper bound constraints. The solutions of these two
problems will be used to solve the original per-node delay as-
signment problem formalized above.

1) Opt_E Solution: The Opt_E problem does not take into
account the boundary constraints, and thus can be expressed as:
Minimize , subject to .

The application of Lagrange multipliers technique to the
above problem yields

(15)

where is the Lagrange multiplier. Using the fact that
, , and (15), results in

(16)

2) Opt_L Solution: The Opt_L problem can be expressed as

(17)

(18)

(19)

To solve Opt_L, we first evaluate the solution set
to the corresponding problem Opt_E and check whether all
inequality constraints are automatically satisfied. If this is the
case, the solution set of the Opt_L problem reduces to
the solution set, . Otherwise, will be constructed
iteratively as described below.

A well-known result of nonlinear optimization theory states
that the solution of Opt_L must satisfies Kuhn–Tucker
conditions [17]. Furthermore, Kuhn–Tucker conditions are also
sufficient due to the properties of the objective function. For
Problem Opt_L, Kuhn–Tucker conditions can be derived from
(18) and (19) as

(20)

(21)

(22)

where , are Lagrange multipliers. The necessary
and sufficient character of Kuhn–Tucker conditions indicates
that any tuple which satis-
fies conditions (18)–(22) provides optimal values for Opt_L.

One method for solving the optimization problem Opt_L is to
find a solution to the (18), (20), and (21) which satisfies
constraint sets (19) and (22). Iteratively solving the non-
linear equations is a complex process which is not guaranteed
to converge. A more efficient approach to the solution uses the
Kuhn–Tucker conditions (20)–(22) to prove some useful prop-
erties of the optimal solution. The properties derived are then
used to refine the solution of the optimization problem Opt_E.
These properties are captured in the following lemmas.

Lemma 7: If violates some inequality constraints
given by (19), then such that .

Proof: Assume to the contrary that . In this case,
Kuhn–Tucker conditions reduce to the equality constraint (18),
the set of inequality constraints (19) plus the Lagrangian con-
dition given in (14). On the other hand, the set should
satisfy (18) and the Lagrangian condition (15). In other words,
solving Opt_E is always equivalent to solving a set of non-
linear equations which are identical to Kuhn–Tucker conditions
of Opt_L, except fo the inequality constraints, by setting ,
for all . Hence, if there were a solution to Opt_L
where for all , then the solution will be discovered
by Opt_E algorithm described above without the occurrence of
any inequality constraint violations. This is in contradiction with
the assumption that the solution fails to satisfy all the
inequality constraints. Therefore, there exists at least one La-
grange multiplier that is strictly greater than 0.

Lemma 8: If violates some inequality constraints
given by (19), then such that .

ZNATI AND MELHEM: NODE DELAY ASSIGNMENT STRATEGIES 887

Proof: Assume that , . In this case, (21) implies
that . This implies that is equal to 0, and
the delay budget, , remains totally unused. This violates the
optimality property of the solution.

Let and consider the set
of indices , defined as follows:

(23)

Considering s as reward functions, can be viewed
as the marginal return associated with . The set then
contains the indices of the functions , such as leads
to the smallest marginal returns at the lower bound 0.

Lemma 9: If violates some inequality constraints
then, in , , .

Proof: Assume that such that . In this
case, (21) implies that the corresponding . Based on
Lemma (7), such that . Based on (21), . Using
(20), leads to . Since , the
property of suggests that . But in this
case, we obtain . This contradicts the
assumption that . Hence and by (22) .

The result of Lemma (9) can be used to develop the following
iterative algorithm:

Algorithm
1.

.

2.
;

3. (23)
4.
5.
6.

3) Opt_LU Optimal Solution: Opt_LU is characterized
by the set , the set

of upper bounds, and the end-to-end
delay budget . The optimization problem can be expressed as

(24)

(25)

(26)

(27)

Furthermore, we have and .
Opt_L differs from Opt_LU in the additional set of upper bound
constraints. Consequently, it is easy to show that if sat-
isfies the constraints given by (26), the set is a feasible
solution for Opt_LU, and . However, if an
upper bound constraint is violated, an iterative process, in a way
analogous to the process used to derive , must be used to
remove upper bound constraint violations.

Fig. 2. Opt_LU algorithm.

Let . The set contains
the functions , such that leads to the largest
marginal returns at the upper bounds.

The algorithm Opt_LU(), depicted in Fig. 2, solves the
Opt_LU problem based on successive invocations of Opt_L().
First, we find the solution of the corresponding Opt_L
problem. The solution, if it exists, is optimal for the Opt_L
problem, which does not take into account upper bound
constraints. If the upper bound constraints are automatically
satisfied, is also optimal for the Opt_LU problem.
However, if this is not the case, we first set .
We then update the sets , and the end-to-end delay budget,

, before we proceed with the next iteration.
The correctness of the algorithm can be argued in a sim-

ilar fashion as in the case of the Opt_L problem. Deriving the
necessary and sufficient Kuhn–Tucker conditions for problem
Opt_LU, results in

(28)

(29)

(30)

(31)

(32)

where , , are Lagrange multipliers.
It can easily be shown that if violates upper bound

constraints given by (26) then . A similar argument,
which states that if then , can also be proven.
These two observations can then be used to prove that if the
Lagrange multipliers , , are all nonzero, this implies,
based on (29), that , .

D. Delay Assignments Heuristics

One possible approach to compute suitable per-node delay
values considers the processing capabilities of the node as the
limiting factor, assuming that each node has a relatively large
amount of buffers. These initial values are then adjusted to meet
the buffering requirements of each node along the routing path
without violating the end-to-end delay requirements of the flow.
This policy is likely to achieve a more efficient use of the net-
work resources, which in turn increases the capability of a node
to support future flow requests. The overhead such a policy en-
tails, however, may be prohibitive when the network load is light
and the benefit of reducing the network resource consumption is

888 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004

Fig. 3. Equi-partition heuristic.

small. A different approach would be to balance the load across
the routing path in order to minimize the likelihood bottlenecks.
To achieve this goal, the policy assigns larger per-node delay
budgets to highly loaded nodes than to lightly loaded nodes.
This is based on the observation that assigning a large delay
value to a given flow causes a relatively small load increase to
heavily loaded node. In the following, we describe two heuris-
tics, namely equi-partition heuristic, EPH(), and load balancing
heuristic, LBH(). EPH() aims at reducing the processing load
placed by the new flow over the node, while LBH() attempts to
distribute the load uniformly across the routing path. The perfor-
mance of these two heuristics are then compared to the optimal
policy.

1) Equi-Partition Heuristic: The basic steps of the heuristic
are described in Fig. 3. The input parameters of EPH() include
the delay bounds, and for each node along
the routing path, derived from the new flow traffic rate specifica-
tion and the end-to-end delay requirement of the underlying
application.

The approach used by EPH() is to compute two potential
delay values, and , for each node along the routing
path. The first value, , is computed based on the assumption
that each node has a relatively large amount of excess buffer
capacity, and only the processing capacity needs to be consid-
ered. This is achieved by taking the routing path’s excess delay
and distributing it proportionally across all nodes on the routing
path. Therefore, is set to be equal to . In-
creasing the delay value a routing node would support reduces
the effective processing capacity requirements of the node at the
expense of increasing its buffer requirements. Notice that the
sum over of s does not exceed the new flow’s end-to-end
delay requirement, . It is not always the case, however, that

is feasible at each node along the routing path. Due to the
limited number of buffers currently available, a node may not be
capable to support its assigned value . To address this limita-
tion, EPH() computes a second potential delay value , based
on the assumption that the number of buffers available at node
is small, thereby limiting the range of supportable delay values.
Since node must provide enough buffers to potentially hold the
new flow’s packets for at least units of time in their waiting
room, a potential delay bound for the new flow at node can be
set equal to . Therefore, a potential delay value that can

Fig. 4. Load balancing heuristic.

satisfy both the processing and buffer capacities of a node can
be computed as .

A delay value, , which appropriately addresses the node’s
excess processing and buffer capacities, can be set equal to the
minimum of and . If , is not feasible
along the routing path, the procedure attempts to adjust these
values by considering that and as the end-points of a search
interval and attempting to locate a value in this interval that sat-
isfies the feasibility requirement of each node along the routing
path. The search continues, as described in steps 2 and 3 in
Fig. 3, until a feasible value is determined.

2) Load Balancing Heuristic: LBH() attempts to balance the
load along the routing path when accepting a flow request. It
does so by computing the initial lower bound delay values to be
proportional to the nodes’ respective loads and then adjusting
these values such that they lie within each node’s smallest and
largest feasible delay values, without violating the end-to-end
delay requirement of the flow. Based on this strategy, a lightly
loaded node is assigned a smaller delay value and thus takes on
a higher load, while a highly loaded node is assigned a higher
delay value and sees a smaller increase in its load.

In addition to the smallest and largest delay values, and ,
supported by each node along the routing path and
the maximum end-to-end delay requirement, , of the new flow,
LBH() includes the current load, , at node as input parameter.
The heuristic uses the information about the current workloads
of the nodes to achieve a balanced delay assignment across the
routing path. The basic steps of the heuristic are described in
Fig. 4.

Initially, LBH() computes a lower bound delay value to be
proportional to the load of each node along the routing path. If
this value is not feasible, LBH() attempts to adjust this value to
meet the processing and buffer capacities of each node along
the routing path. The procedure used by LBH() to adjust the
initial lower bound delay value assigned to each node is similar
to the one used in EPH(). An upper bound delay value is
computed based exclusively on the node’s buffer constraints. If
the minimum of the two values and is not feasible, a
search procedure to locate a feasible value within the interval

is initiated. The search continues until a feasible value
is determined.

ZNATI AND MELHEM: NODE DELAY ASSIGNMENT STRATEGIES 889

V. SIMULATION RESULTS AND ANALYSIS

In order to assess the performance of the proposed per-node
delay assignment schemes, several simulation-based studies
were conducted. This is achieved by simulating the behavior of
a general topology composed of switching nodes that are con-
figured with different resource capabilities. The performance
metrics of the simulation include network resource utilization
and the flow acceptance ratio.

In the studies discussed in this paper, the simulated network
was comprised of 20 nodes with identical buffering and pro-
cessing capacities. The network topology was selected so that:
1) it ensures pure randomness in the way the characteristics of
the incoming flows, along with their arrival and their departure
times, were selected; 2) it allows a large number of simulation
runs to be conducted in order to eliminate any probable biased
behavior that could occur during the analysis; and 3) it reduces
the complexity of computing the shortest paths between any two
nodes so the impact of routing on the results is minimized. The
final topology selected can be logically viewed as a bidirectional
ring connecting all nodes in the network.

In all experiments, the profiles of the simulated flows, in
terms of traffic specification, were generated randomly. The
end-to-end delay requirements for each flow was also generated
randomly. However, to accommodate a wide spectrum of flow
requirement specifications, three types of end-to-end delay
ranges were considered. Each range of delays reflects how tight
is the end-to-end delay requirement relative to the range of
delays supported by a node along the routing path. Three cases
where considered, namely stringent, moderate, and relaxed.
In the stringent case, the end-to-end delay requirements of
the flows were randomly generated from within an interval
of . In the moderate case, the delay interval was
extended to , while in the relaxed case, the delay interval
was increased to .

For each new flow request, a source and a destination node
were selected randomly and the shortest path connecting these
two nodes was computed. This path and the profile of the new
flow request were then used by Opt() and the heuristics EPH()
and LBH(), in three different instances of the simulation, to
determine the feasibility of establishing or rejecting the new
flow request. The simulation results have been obtained for two
models, namely Static and Dynamic. In the Static model, the
optimal algorithm and the two heuristics are compared in a sce-
nario where the flows last for the lifetime of the simulation ex-
periment. In the Dynamic model, however, flows are character-
ized by their average inter-arrival rate and their average service
duration. In the following, the results of the optimal algorithm
and the two heuristics are presented and discussed. In order to
nullify biasing, the value of each point in the graphs discussed
below represents the average value of a 100 simulation runs.

A. Static Model Results

Fig. 5 shows the average number of flows accepted against the
number of flows generated for the Opt() algorithm and the two
heuristics. In all three cases, the results show that when the net-
work load is low, the number of accepted flows increases rapidly
with the number of flows generated. As the network reaches

Fig. 5. Average number of successful connections.

Fig. 6. Opt() and EPH() acceptance ratio relative to LBH().

saturation, however, the number stabilizes. As expected, the re-
sults show that the Opt() algorithm outperforms the two heuris-
tics. The performance improvement of the Opt() algorithm over
EPH(), however, is not as significant as its improvement over
LBH().

In order to compare the effectiveness of minimizing the addi-
tional load imposed on the network by the new connection (the
goal of Opt() and EPH()) and the effectiveness of balancing the
load of the new connection among the routing nodes (the goal
of LBH()), we define the relative acceptance ratio of Opt() as
the difference between the number of connections accepted by
Opt() and the number of connections accepted by LBH() relative
to the number of connections accepted by LBH(). The relative
acceptance ratio of EPH() is defined similarly.

Figs. 6 and 7 depict the average relative acceptance ratio of
Opt() and EPH() against the number of flows generated. The
results indicate that when the network load is low, LBH() per-
forms 1% to 4% better than Opt() and 2% to 5% better than
EPH(). This is due to the fact that the processing and buffering
capacities gains Opt() and EPH() achieve is not significant when

890 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004

Fig. 7. Effect of end-to-end delay requirements.

Fig. 8. Effect of end-to-end delay near network saturation.

the network load is low. LBH(), on the other hand, manages to
achieve a more balanced load among the routing nodes, which
results in a higher flow acceptance ratio in comparison to Opt()
and EPH(). However, as the network load becomes high, the
gains of Opt() and EPH() become significant and result in a
higher flow acceptance ratio in comparison to LBH(). These
gains range from 15% to 20% for EPH(), and from 15% to 20%
for LBH.

What also emerges indirectly from these graphs and more ev-
idently from Fig. 8 is that at high network load, the average rel-
ative acceptance ratio of Opt() and EPH() increases with tighter
end-to-end delay requirements of the flows. This is due to the
fact that when the end-to-end delay requirements of the accepted
flows are tight, the load imposed on the network is more strin-
gent than when end-to-end delay requirements are moderate.
Consequently, when the QoS requirements are stringent, the

Fig. 9. Effect of the range of the end-to-end delay.

Fig. 10. Average throughput of the dynamic model.

per-flow intrinsic gains achieved by Opt() and EPH(), in terms
of reducing the network load, is higher than the gain achieved
by it LBH(). This enables Opt() and EPH() to accept a greater
percentage of flows with smaller end-to-end delay requirements
than LBH.

Fig. 9 shows the average relative acceptance ratio against the
range of average end-to-end delay requirement at high network
load (4000 requests). The results indicate that at small ranges,
the load balancing feature is incorporated more in Opt() and
EPH() than at moderate ranges thereby enabling them in ac-
cepting a greater percentage of flows at smaller ranges. How-
ever, as the range of the end-to-end delay requirement increases,
the load balancing feature of LBH() diminishes because of the
larger variation in the end-to-end delay requirements of the in-
coming flows. Thus, at higher ranges, the acceptance rate of
Opt() and LBH increases more than at moderate ranges and re-
mains more or less the same at even higher ranges.

B. Dynamic Model Results

In this case, flows are generated dynamically. Each flow re-
mains active for a certain period of time, after which the flow
terminates and releases all the resources across the routing path.
The results of the this study are depicted in Figs. 10–12, respec-
tively.

ZNATI AND MELHEM: NODE DELAY ASSIGNMENT STRATEGIES 891

Fig. 11. Relative acceptance ratio of the dynamic model.

Fig. 12. Effect of average service time.

Fig. 10 shows the average throughput for Opt(), EPH() and
LBH() against the average arrival rate of the flows. As the figure
indicates, the increase in the average throughput with the av-
erage arrival rate is more pronounced in LBH() than in Opt() and
EPH() at low arrival rate (low network load). Opt() and EPH()
perform better than LBH() at high network loads.

Fig. 11 shows the average relative acceptance ratio of Opt()
and EPH() (over LBH()) against the average arrival rate of the
flows. Similar to the static model, LBH() performs better than
Opt() (by less than 0.5) and EPH() (by less than 1) when the
network load is low. As the arrival rate increases, similar to the
case of a static model, Opt() and EPH() perform better than
LBH() when the network load becomes high. The performance
improvement of Opt() is around 5, while EPH() outperforms it
LBH() by 4.5.

Fig. 12 depicts the average relative acceptance ratio of Opt()
and EPH() over LBH() against the average flow service time,
for an average connection arrival rate of 100 connections per
second. As is expected, the acceptance ratio increases with
the increase in the average service time. This happens because

greater service time of the flows implies that these flows con-
tinue to stay in the network occupying the resources of the
network for longer durations of time. Therefore, before they
depart, more new flows come and are either accepted or rejected
by the network. If accepted, then, they will also be occupying
the network resources for longer periods of time. Consequently,
the network load builds up and as explained before, this favors
Opt() and EPH() to perform increasingly better than LBH()
with increasing network load.

VI. CONCLUSION

In this paper, we proposed a methodology to compute feasible
delay values for different classes of scheduling strategies. We
also described an optimal algorithm and two heuristics which
can be used to assign feasible delay values so that a specific
objective is achieved. A set of simulation experiments were de-
veloped and used to compare the performance of each scheme.

The results show that the optimal algorithm produces higher
flow acceptance ratios than the two other schemes. For lightly
loaded networks, however, the results show that the computa-
tional complexity of the optimal algorithm may not be warranted
and simple heuristics usually lead to highly acceptable results.

ACKNOWLEDGMENT

The authors would like to thank A. Vagish for his help in
conducting the simulation experiments. The authors also wish
to gratefully acknowledge H. Aydin for his useful comments.

REFERENCES

[1] H. Aydin, “Enhancing performance and fault tolerance in reward-based
scheduling,” Ph.D. dissertation, Dept. of Comp. Sci., Univ. Pittsburgh,
Pittsburgh, PA, 2001.

[2] J. C. R. Bennett and H. Zhang, “Why WFQ is not good enough for in-
tegrated services networks?,” in Proc. NOSSDAV’96, April 1996.

[3] D. C. Clark, S. Shenker, and L. Zhang, “Supporting real-time applica-
tions in an integrated services packet network: Architecture and mecha-
nism,” in Proc. SIGCOMM’92, 1992, pp. 14–26.

[4] R. L. Cruz, “Service burstiness and dynamic burstiness measures: A
framework,” J. High Speed Networks, vol. 2, pp. 105–127, 1992.

[5] C. Dovrolis, D. Stiliadis, and P. Ramanathan, “Proportional differenti-
ated services: Delay differentiation and packet scheduling,” IEEE Trans.
Commun., vol. 10, pp. 12–26, Feb. 2002.

[6] B. Field, T. F. Znati, and D. Mosse, “V-net: A framework for a versatile
network architecture to support real-time communication performance
guarantees,” in Proc. IEEE INFOCOM, Apr. 1995, pp. 1188–1196.

[7] V. Firoiu, J. Kurose, and D. Towsley, “Efficient admission control for
edf schedulers,” in Proc. IEEE INFOCOM, Apr. 1997, pp. 310–317.

[8] P. Goyal and H. M. Vin, “Fair airport scheduling algorithms,” in Proc.
NOSSDAV, St. Louis, MO, May 1997.

[9] A. Hung and G. Kesidis, “Bandwidth scheduling for wide-area ATM
networks using virtual finishing times,” IEEE/ACM Trans. Networking,
vol. 4, pp. 49–54, Feb. 1996.

[10] C. R. Kalmanek, H. Kanakia, and S. Keshav, “Rate controlled servers for
very high-speed networks,” in Proc. IEEE GlobeCom, 1990, pp. 12–20.

[11] E. W. Knightly, R. F. Mines, and H. Zhang, “Deterministic characteri-
zation and network utilizations for several distributed real-time applica-
tions,” in Proc. IEEE WORDS, Dana Point, CA, Oct. 1994, pp. 63–70.

[12] R. Guerin, L. Georgiadis, and A. Parekh, “Optimal multiplexing on a
single link,” IEEE Trans. Inform. Theory, vol. 43, pp. 1518–1535, Sept.
1997.

[13] Y.-C. Lai and W.-H. Li, “A novel scheduler for proportional delay dif-
ferentiation by considering packet transmission time,” IEEE Commun.
Lett., vol. 7, pp. 189–191, Apr. 2003.

[14] J. Liebeherr, D. Wrege, and D. Ferrari, “Exact admission control for
networks with bounded delayyservices,” IEEE/ACM Trans. Networking,
vol. 4, pp. 885–901, Dec. 1996.

892 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004

[15] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” J. Assoc. Comput. Machin., vol. 20, pp.
46–61, Jan. 1973.

[16] D. Luenberger, Linear and Nonlinear Programming. Reading, MA:
Addison-Wesley, 1984.

[17] M. J. Panik, Classical Optimization: Foundations and Exten-
sions. Amsterdam, The Netherlands: Elsevier, 1976.

[18] A. Parekh, “A generalized processor sharing approach ti flow control in
integrated services networks,” Ph.D. dissertation, Laboratory for Infor-
mation and Decision Systems, Massachusetts Insititute of Technology,
1992.

[19] H. Sariowan, R. L. Cruz, and G. C. Polyzos, “SCED: A generalized
scheduling policy for guaranteeing quality-of-service,” IEEE/ACM
Trans. Networking, vol. 7, pp. 669–684, Oct. 1999.

[20] I. Stoica, H. Zhang, and T. S. E. Ng, “A hierarchical fair service curve
algorithm for link-sharing, real-time and priority services,” presented at
the Proc. ACM SIGCOMM, Cannes, France, 1997.

[21] S. Suri, G. Varghese, and G. Chandranmenon, “Leap forward vir-
tual clock: A new fair queueing scheme with guaranteed delays and
throughput fairness,” Washington Univ., St. Louis, MO, Tech. Rep.
WUCS-96-10, 1996.

[22] D. Verma, H. Zhang, and D. Ferrari, “Delay jitter control for real-time
communication in a packet switching network,” in Proc. TriComm,
1991, pp. 35–43.

[23] D. E. Wrege, E. W. Knightly, H. Zhang, and J. Liebeherr, “Determin-
istic delay bounds for VBR video in packet-switching networks: Funda-
mental limits and practical trade-offs,” IEEE/ACM Trans. Networking,
vol. 4, pp. 352–362, June 1996.

[24] G. G. Xie and S. S. Lam, “An efficient adaptive search algorithm for
scheduling real-time traffic,” presented at the IEEE ICNP, Columbus,
OH, Oct. 1996.

[25] L. Zhang, “A new architecture for packet switching network protocols,”
Ph.D. dissertation, Dept. of Elect. Eng. and Comp. Sci., Massachusetts
Institute Technology, 1989.

Taieb F. Znati (A’91) received the M.S. degree in
computer science from Purdue University, Lafayette,
IN, in 1984, and the Ph.D. degree in computer science
from Michigan State University, Lansing, in 1988.

He is currently a Professor in the Department
of Computer Science, with a joint appointment in
Telecommunications in the Department of Informa-
tion Science, University of Pittsburgh, Pittsburgh,
PA. His current research interests focus on the
design of network protocols for wired and wireless
communication networks to support applications’

QoS requirements.
Dr. Znati currently serves as General Chair of IEEE INFOCOM 2005, Gen-

eral Chair of SECON 2004, the first IEEE conference on Sensor and Ad Hoc
Communications and Networks, General Chair of the Annual Simulation Sym-
posium, and General Chair of the Communication Networks and Distributed
Systems Modeling and Simulation Conference. He is a member of the Edito-
rial Board of the International Journal of Parallel and Distributed Systems and
Networks, a member of the Editorial Board of the Journal on Wireless Com-
munications and Mobile Computing, the Journal on Ad-Hoc Networks, and a
member of IEEE Transactions of Parallel and Distributed Systems, and Wireless
Networks, the journal of mobile communication, computation and information.
He is currently serving as a Senior Program Director for networking research at
the National Science Foundation.

Rami Melhem (F’00) received the B.E. degree in
electrical engineering from Cairo University, Cairo,
Egypt, in 1976, the M.A. degree in mathematics and
the M.S. degree in computer science from the Uni-
versity of Pittsburgh in 1981, and the Ph.D. degree in
computer science from the University of Pittsburgh,
Pittsburgh, PA, in 1983.

He was an Assistant Professor at Purdue Univer-
sity, Lafayette, IN, prior to joining the faculty of the
University of Pittsburgh in 1986, where he is cur-
rently a Professor of Computer Science and Electrical

Engineering and the Chair of the Computer Science Department. His research
interest include real-time and fault-tolerant systems, optical networks, high-per-
formance computing, and parallel computer architectures.

Dr. Melhem served on program committees of numerous conferences and
workshops and was the General Chair for the Third International Conference
on Massively Parallel Processing Using Optical Interconnections. He was on
the editorial board of the IEEE TRANSACTIONS ON COMPUTERS and the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. He is serving on the
advisory boards of the IEEE technical committees on parallel processing and
on computer architecture. He is the editor for the Kluwer/Plenum Book Series
in Computer Science and is on the editorial board of the Computer Architecture
Letters, the International Journal of Embedded Systems, and the Journal of Par-
allel and Distributed Computing. He is a member of the ACM.

	toc
	Node Delay Assignment Strategies to Support End-to-End Delay Req
	Taieb F. Znati, Associate Member, IEEE, and Rami Melhem, Fellow,
	I. I NTRODUCTION
	II. R ELATED W ORK
	III. P ER -N ODE D ELAY C OMPUTATION
	A. Flow Workload Model
	B. Resource Capacity Models
	1) Processing Capacity Service Model: For a given class of delay
	2) Buffer Capacity Model: In order to accommodate different type

	C. Smallest Feasible Delay Value
	D. Largest Feasible Delay Value

	IV. D ELAY A SSIGNMENT S TRATEGIES
	A. Optimal Load-Based Strategy
	B. Case of Homogeneous Networks
	Theorem 1: Optimality Theorem: Consider a solution, $\vec {\delt
	Proof: The proof follows from Kuhn Tucker necessary and sufficie
	Fig.€1. Optimal delay assignment.

	1) Optimal Delay Assignment Algorithm: In order to find a soluti
	Lemma 1: If $u_{i} \le {\xi}_{k}$ and ${\xi}_{k+1} = ({\xi}_{k}
	Lemma 2: If $l_{j} \ge {\xi}_{k}$ and ${\xi}_{k+1} = ({\xi}_{k}
	Lemma 3: If $u_{i} > {\xi}_{k}$ and ${\xi}_{k+1} = ({\xi}_{k} n_
	Lemma 4: If the while loop in step 2 of Opt() terminates with $k
	Proof: First, note that $LF = \emptyset$ in step 2. Consider a n

	Lemma 5: Assume that a given iteration of the while loop in step
	Proof: Assume that the conditions of the Lemma are satisfied at

	Lemma 6: At the end of the second loop (the end of the algorithm
	Proof: The proof is straight forward from Lemma 5 and the fact t

	Theorem 2: Algorithm Opt() finds a solution which satisfies the
	Proof: By construction, the algorithm always updates ξ such

	C. Case of Heterogeneous Networks
	1) Opt_E Solution: The Opt_E problem does not take into account
	2) Opt_L Solution: The Opt_L problem can be expressed as $$\eqal
	Lemma 7: If $S_{Opt{_}E}$ violates some inequality constraints
	Proof: Assume to the contrary that $\forall ~i \beta _{i}=0$. I

	Lemma 8: If $S_{Opt{_}E}$ violates some inequality constraints
	Proof: Assume that $\forall ~j$, $\beta _{j} > 0$. In this case

	Lemma 9: If $S_{Opt{_}E}$ violates some inequality constraints
	Proof: Assume that $\exists m \in {\cal I}$ such that ${{\mathha
	1. ${\tt Discard~ the ~inequality}$ ${\tt~ constraints ~and~ sol
	2. ${\tt If~ all ~the ~inequality ~constraints}$ ${\tt ~are~ sat
	3. ${\tt Compute}~ {\cal I} ~{\rm as ~described ~in~}$ (23)
	4. ${\tt Set} ~{{\mathhat \delta}_{m}}=0 ~\forall~ m \in {\cal I
	5. ${\tt Set}~ {\cal F}= {\cal F} - {\cal I}$
	6. ${\tt Go~ to ~step ~1}$

	3) Opt_LU Optimal Solution: Opt_LU is characterized by the set $

	Fig.€2. Opt_LU algorithm.
	D. Delay Assignments Heuristics

	Fig.€3. Equi-partition heuristic.
	1) Equi-Partition Heuristic: The basic steps of the heuristic ar

	Fig.€4. Load balancing heuristic.
	2) Load Balancing Heuristic: LBH() attempts to balance the load
	V. S IMULATION R ESULTS AND A NALYSIS
	A. Static Model Results

	Fig.€5. Average number of successful connections.
	Fig.€6. Opt() and EPH() acceptance ratio relative to LBH() .
	Fig.€7. Effect of end-to-end delay requirements.
	Fig.€8. Effect of end-to-end delay near network saturation.
	Fig.€9. Effect of the range of the end-to-end delay.
	Fig.€10. Average throughput of the dynamic model.
	B. Dynamic Model Results

	Fig.€11. Relative acceptance ratio of the dynamic model.
	Fig.€12. Effect of average service time.
	VI. C ONCLUSION
	H. Aydin, Enhancing performance and fault tolerance in reward-ba
	J. C. R. Bennett and H. Zhang, Why WFQ is not good enough for in
	D. C. Clark, S. Shenker, and L. Zhang, Supporting real-time appl
	R. L. Cruz, Service burstiness and dynamic burstiness measures:
	C. Dovrolis, D. Stiliadis, and P. Ramanathan, Proportional diffe
	B. Field, T. F. Znati, and D. Mosse, V-net: A framework for a ve
	V. Firoiu, J. Kurose, and D. Towsley, Efficient admission contro
	P. Goyal and H. M. Vin, Fair airport scheduling algorithms, in P
	A. Hung and G. Kesidis, Bandwidth scheduling for wide-area ATM n
	C. R. Kalmanek, H. Kanakia, and S. Keshav, Rate controlled serve
	E. W. Knightly, R. F. Mines, and H. Zhang, Deterministic charact
	R. Guerin, L. Georgiadis, and A. Parekh, Optimal multiplexing on
	Y.-C. Lai and W.-H. Li, A novel scheduler for proportional delay
	J. Liebeherr, D. Wrege, and D. Ferrari, Exact admission control
	C. Liu and J. Layland, Scheduling algorithms for multiprogrammin
	D. Luenberger, Linear and Nonlinear Programming . Reading, MA: A
	M. J. Panik, Classical Optimization: Foundations and Extensions
	A. Parekh, A generalized processor sharing approach ti flow cont
	H. Sariowan, R. L. Cruz, and G. C. Polyzos, SCED: A generalized
	I. Stoica, H. Zhang, and T. S. E. Ng, A hierarchical fair servic
	S. Suri, G. Varghese, and G. Chandranmenon, Leap forward virtual
	D. Verma, H. Zhang, and D. Ferrari, Delay jitter control for rea
	D. E. Wrege, E. W. Knightly, H. Zhang, and J. Liebeherr, Determi
	G. G. Xie and S. S. Lam, An efficient adaptive search algorithm
	L. Zhang, A new architecture for packet switching network protoc

