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Abstract

Computing systems, ranging from small battery-operated
embedded systems to more complex general purpose sys-
tems, are designed to satisfy various computation demands
in some acceptable time. In doing so, the system is respon-
sible for scheduling jobs/requests in a dynamic fashion. In
addition, with power consumption recently becoming a crit-
ical issue, most systems are also responsible for their own
power management. In some rare cases, the exact arrival
time and execution time of jobs/requests is known, leading
to precise scheduling algorithms and power management
schemes. However, more often than not, there is no a-priori
knowledge of the workload. This work evaluates dynamic
voltage scaling (DVS) policies for power management in
systems with unpredictable workloads. A clear winner is
identified, a policy that reduces the energy consumption one
order of magnitude compared to no power management and
up to 40% (in real-life traces) and 50% (in synthetic work-
loads) compared to the second-best evaluated scheme.

1 Introduction

From portable battery-operated computing systems to
server farms in data centers, power consumption is rapidly
becoming the key design issue. Based on the observation
that the system, while designed for a peak load, is rarely
fully utilized, power management schemes can successfully
trade performance for power without causing the software
to miss its deadlines.

Current power-efficient systems have management func-
tions that can be invoked to turn off system components, or
to choose among different power states for each component.
Dynamic voltage scaling (DVS) is a technique that allows
performance-setting algorithms to dynamically adjust the
performance level of the processor. An increasing number
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of processors implement DVS, which can yield quadratic
energy savings for systems in which the dominant power
consumer is the processing unit [14, 24].

In the presence of real-time constraints, DVS
performance-setting algorithms attempt to lower the oper-
ating frequency while still meeting request deadlines. For
real-time systems with predictable (or known) workloads,
DVS algorithms can fully explore power-performance
tradeoffs. Unfortunately, in most real-life situations, there
is no such a-priori knowledge. The workload is rather un-
predictable in a variety of systems, from simple cell phones
and PDA devices to more complex personal computers,
servers and systems-on-a-chip [16, 21].

The example that prompted our investigation comes from
our industrial research partners, dealing with satellite-based
signal processing. Signal data collected through an external
sensor is disseminated to several processing units for fur-
ther analysis. A signal processing application is responsible
for timely analysis of the signal data (also referred to as re-
quests, or events). Currently we are investigating two such
applications, known as Event Extraction and CAF, each pro-
vided with several realistic traces. For example, the Com-
plex Ambiguity Function (or CAF for short) is an applica-
tion that collects data in low orbiting satellites, correlates
it with data collected from geo-stationary satellites, for ob-
ject recognition. This object may be on Earth’s surface or
may be flying. The CAF application can determine an ob-
ject’s location with an accuracy from 4 to 7 significant digits
(corresponding to 1K to 16K data point correlation, respec-
tively).

In general, the average load is far less than the peak load
that the system can handle, which brings about the oppor-
tunity for DVS algorithms to conserve energy. Thus, the
major goal of the power-management policy is to keep up
with the rate of request arrivals, while minimizing the en-
ergy consumption. In addition, requests are expected not to
exceed a maximum response time (soft deadline).

This work evaluates DVS algorithms for systems with
such unpredictable workloads. We first present related work
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in Section 2. The system under consideration is described
in Section 3. Prediction-based and stochastic DVS schemes
are presented in Section 4. The schemes are compared in
Section 5, using both synthetic and real-life traces. We con-
clude the paper in Section 6.

2 Related Work

Dynamic voltage-scaling (DVS), which involves dynam-
ically adjusting the voltage and frequency of the CPU,
has become a major research area. Quadratic energy sav-
ings [14, 24] can be achieved at the expense of just linear
performance loss. For real-time systems, DVS schemes fo-
cus on minimizing energy consumption in the system while
still meeting the deadlines. The seminal work by Yao et
al. [24] provided a static off-line scheduling algorithm and a
number of on-line algorithms with good competitive perfor-
mance, for aperiodic tasks and continuous power functions.
Heuristics for on-line scheduling of aperiodic tasks while
not hurting the feasibility of off-line periodic requests are
proposed in [13]. Non-preemptive power aware schedul-
ing is investigated in [12]. All the above works assume
and schedule for worst case task execution times (WCET).
Automatic DVS for Linux with distinction between back-
ground and interactive jobs was presented in [9]. The goal
in [9] is to minimize the energy consumption while main-
taining peak system performance (thus, task deadlines are
not considered).

Real-time applications exhibit a large variation in actual
execution times [8] and WCET is too pessimistic. Thus, a
lot of research was directed at dynamic slack-management
techniques [1, 11, 18, 22]. If a task’s computational require-
ment is known, it was shown that one can safely commit
to a constant optimal CPU speed during the execution of a
task without increasing the energy consumption [1] assum-
ing continuous speeds. If a CPU only offers a fixed, lim-
ited set of valid speeds, using the two speeds which are im-
mediate neighbors to the optimal speed will minimize the
energy consumption [15]. When the task’s computational
requirement is known probabilistically, there is no constant
optimal speed and the expected energy consumption is min-
imized by gradually increasing the speed as the task pro-
gresses [17]. However, the optimal speed schedule com-
puted in [17] assumes continuous speeds. Three solutions
have been proposed for the case where the CPU only offers
a limited set of valid speeds, namely, rounding to the clos-
est discrete speed [17], rounding to the next higher available
speed [25] and converting to the combinations of two imme-
diate available speeds [11]. All the above solutions are in-
tended for deterministic arrival times (such as periodic). In
this work we are investigating non-deterministic workloads.

The area of online prediction and distribution estimation
is closely related to our work. For rate-based systems, es-

timating arrival rates and request processing requirements
are two important issues. Chandra et al. [4] applied a first-
order autoregressive process to predict arrival rates and a
histogram method to estimate the service demand. They
observed that using service demand values from the recent
past does not seem to be indicative of the demands of future
requests. Generally there are two ways of estimating the dis-
tribution from a sample: parametric and nonparametric [6].
Nonparametric methods are more suitable for unpredictable
workloads than parametric methods. Govil et al. [10] did
a comparative study of several predictive algorithms for dy-
namic speed-setting of low-power CPUs and concluded that
simple algorithms based on rational smoothing rather than
”smart” predicting may be most effective.

Power management has traditionally focused on portable
and handheld devices. IBM Research broke with tradition
and presented a case for managing power consumption in
web servers [3]. Elnozahy et al. evaluated five policies
which employ various combinations of DVS and node vary-
on/vary-off for cluster-wide power management in server
farms [7]. Sharma et al. [20] investigates adaptive algo-
rithms for dynamic voltage scaling in QoS-enabled web
servers to minimize energy consumption subject to service
delay constraints. Aydin et al. [2] attempted to incorporate
variable voltage scheduling of periodic task sets to parti-
tioned multiprocessor real-time systems.

3 System Model

Requests are processed on a DVS processor, with M dis-
crete operating frequencies, f�� f�� � � � � fM . We assume
the average power consumption of the system is known at
each operating frequency. We denote the average power
consumption at frequency fi by Pi. Using IBM’s Mambo
cycle-accurate and power-accurate simulator [19], we ob-
served very little variation in power when running appli-
cations at a constant frequency. Thus, describing energy
consumption using average power values results in a pre-
cise estimation. The system power when idle is denoted by
Pidle.

Requests are generated externally and buffered in the
system memory for further processing. Once arrived, a re-
quest must finish processing by its deadline D (different re-
quests may have different deadlines). Deadlines are soft,
meaning that occasional deadline misses, while undesired,
do not result in system failure. To reduce the number of
deadlines missed, a good DVS policy typically chooses the
maximum speed whenever it is possible that a request may
miss its deadline (Section 4.2).

Arrival times and computation times for requests are not
known beforehand. However, in the applications we use, in
addition to the deadline, the system can determine, immedi-
ately upon request arrival, a request type. For example, the
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Event Extraction application can determine solely from pro-
cessing the header of a request if its computation is expected
to be relatively short, or if there is a possibility that it may
take much longer (thus, two types). For the CAF application
there are three types: the first time an event occurs, the sec-
ond time and all times after that (typically resulting in long,
short to medium, and relatively short events, respectively).
Request types are the sort of semantic information that helps
improving the predictions about the workload. In general,
types can be associated with the application processing the
request. Moreover, requests of the same application may
have several types, as in the case of Event Extraction and
CAF.

Requests are scheduled on the processor in a first-come
first-served (FCFS) fashion, without preemption, as sub-
sequent requests may depend on results from previous re-
quests. The DVS algorithm is invoked in one of two situa-
tions: when a timeout expires, or when an event specifically
requests a speed change. The timeout mechanism can spec-
ify exactly at which moment in time to recompute the DVS
schedule. Since we consider a non-preemptive system, only
two events may trigger a speed change: the arrival of a new
request, or the completion of the current request. The goal
of the DVS algorithm is to select the minimum speed (i.e.,
minimum energy) that will not cause requests to miss their
deadlines.

4 Performance-setting DVS Policies

This section describes the DVS algorithms under consid-
eration in this work, with a brief discussion on their main
advantages and drawbacks. The algorithms are divided in
two categories: prediction-based and stochastic. Prediction-
based algorithms adjust the performance based on workload
estimations, which, in turn, are based on the execution his-
tory. Stochastic algorithms rely on statistical information
about the workload (collected a-priori or on-line) in an at-
tempt to minimize the expected energy consumption. The
schemes are evaluated in Section 5.

4.1 Prediction-based Schemes

The schemes described in this section adjust the CPU speed
based on predicted resource requirements. Thus, the suc-
cess of such schemes depends on how accurately the future
workload can be predicted. We classify the schemes in three
broad categories: application-oblivious (AO), application-
aware (AA) and reinforcement learning (RL) schemes.

4.1.1 Application-oblivious prediction (AO)

The simplest form of prediction we are considering is one
that only monitors system utilization, unaware of the ap-

plication running on the system. Typically, the monitored
resource is the CPU itself. CPU utilization (monitored pe-
riodically and defined as busy time over a certain interval)
is a great indicator of past resource usage. The CPU speed
for the immediate future is then increased or reduced based
on utilization trends. Without a complex prediction scheme,
the underlying assumption is that the immediate future re-
sembles the immediate past.

Our application-oblivious prediction scheme works as
follows: the system utilization is monitored periodically,
every p time units. If the system was fully utilized dur-
ing the last monitored period, the speed is increased to the
next higher discrete frequency. If the utilization u is less
than 100%, the CPU speed s is updated as s � ds � uef ,
where dxef is the function that returns the smallest discrete
frequency higher than x.

We experimented with many other variations on this
scheme, such as using utilization thresholds to determine
when to increase or reduce the CPU speed. An example
of such a scheme for saving energy in web servers is men-
tioned in [3], where utilization was monitored every 20 mil-
liseconds. Whenever the CPU utilization exceeds 95%, the
CPU speed is increased to the next higher level. Similarly,
when utilization falls below 80%, the speed is decreased one
level. Another example of the utilization policy is Trans-
meta’s firmware implementation (LongRun) [5]. CPU uti-
lization is frequently monitored, resulting in performance
speed-up/slow-down by one performance level.

From our experience, the main problem with the
utilization-based policies is that they use a fixed monitor-
ing period for the system lifetime. For workloads with large
variations, this results in the system being either too aggres-
sive or too slow to react. When the monitoring period is too
small, the system may set the speed higher than necessary.
If the utilization is monitored too infrequently, requests may
have large response times. Whenever the monitoring pe-
riod does not correspond to the workload, utilization-based
schemes may not be efficient. Accordingly, a software DVS
algorithm was shown to achieve 11%-35% more perfor-
mance reduction over LongRun [9]. Another disadvantage
is that request deadlines are not considered. On the other
hand, the main advantage is simplicity. The policy does
not require anything more than a timeout mechanism and a
way of monitoring the system utilization. Even better, some
CPUs already provide this functionality.

As a final remark, note that utilization need not refer only
to the CPU. Other resources (hardware or conceptual) can
be monitored. For example, we experimented with monitor-
ing the number of requests buffered for processing in mem-
ory. An increasing/decreasing number of waiting requests
indicates that there may be a need for higher/lower speeds.
Monitoring these other resources allows optimization of the
system based on those resources. Another example is when
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Table 1: Request execution times (in millions of cycles)
Event Extraction CAF
Type 1 Type 2 Type 1 Type 2 Type 3

Min 2.9 2.0 8.2 4.1 1.3
Max 82.6 753.6 5045 210.2 32.9
Avg 9.7 123.2 820.2 45.0 5.8
Stdev 7.2 153.8 1251 78.5 6.2

% 79% 21% 5.4% 2.9% 91.7%

Table 2: Request inter-arrival times (in seconds)
Event Extraction CAF
81 min 1030 sec 1800 sec

Min 0.13 0.1 0
Max 6.7 11 5
Avg 0.37 0.44 0.7
Stdev 0.62 0.77 1.74

events 13045 2307 2564

memory banks can be turned off: we would like to limit the
number of requests that can fit (most of the time) in a sin-
gle memory bank, and so monitoring memory usage may be
useful.

4.1.2 Application-aware prediction (AA)

Rather than simply reacting to observed resource require-
ments, AA schemes attempt to predict future performance
needs by monitoring request inter-arrivals and processing
requirements. As with utilization-based schemes, the CPU
speed is adjusted periodically, with a pre-specified period
(or timeout) p. Every p time units, the number of requests
(of each type) arriving in the next period is predicted based
on recent such information. The average execution time of
each request is similarly predicted. We also studied schemes
that adjust the speed at irregular intervals corresponding to
request completion times and to the arrival of a certain num-
ber of requests in the system. From our experience, a peri-
odic adjustment scheme results in more energy savings.

Let Ni denote the predicted number of requests of type i
arriving in the next period, each of which has average execu-
tion time (at maximum speed) ai. Further, let Li denote the
number of requests of type i unfinished from the previous
period.

P
i �Li � Ni�ai represents the predicted amount of

work for the next period p. The speed s is recomputed as

s � d

P
i
�Li�Ni�ai

p
fMe

f
, where dxef is as defined in Sec-

tion 4.1.1.
Li is known and Ni is predicted as the number of re-

quests in the last period. ai is predicted in one of three ways:
the average for the whole trace (from offline profiling), the
average of the last period, or a combination of the two (such

as exponential decay). Tables 1 and 2 present statistical in-
formation about request execution and inter-arrival times for
Event Extraction and CAF traces. As it turns out, the request
execution times, as well as request inter-arrivals, are rather
unpredictable, with large deviations from averages. Still,
the above formula guarantees that the system will keep up
with the rate, as it attempts to complete all waiting requests
in the next period. However, since these schemes ignore the
deadlines, the penalty incurred in missing deadlines may be
very large. As expected, considering semantic information
(i.e., request types) generally improves the quality of the
prediction.

The efficiency of prediction-based DVS schemes greatly
depends on the prediction accuracy. For unpredictable
workloads, the schemes may be too aggressive or too slow
to react, depending on the period p. As with utilization-
based schemes, no request deadlines are considered. More-
over, implementation of the prediction policy is required.

4.1.3 Reinforcement learning schemes (RL)

RL schemes take a different approach to workload predic-
tions. Rather than using specific formulas, they rely on more
complex machine learning techniques to directly learn the
DVS policy. The state of the system is first described by
several parameters. The choice of such parameters is en-
tirely up to the designer. However, note that the number of
states exponentially increases with the number of parame-
ters. For our system, we experimented with describing the
system state by parameters such as: the current CPU speed,
the number of requests waiting and average delays.

After dividing the system into states, an action is associ-
ated with each state. For our system, the action is the CPU
speed adjustment. The goal of any machine learning scheme
is to determine the policy (i.e., the mapping from states to
actions) that results in minimizing or maximizing some met-
ric that describes the system goal (in our case, minimize
energy). Thus, a learning scheme has a third component,
namely, an evaluation function that can be used to compare
actions. The learning process works as follows: in a state
never seen before a random action is taken. Later, the sys-
tem can evaluate the consequences of the action. Next time
the system finds itself in that state, it will hopefully avoid
the incorrect actions.

Largely inspired from the work in [23] (QoS selection for
each frame in a MPEG movie), we experimented with states
described by the current CPU speed and the trace progress,
defined in terms of average delays or number of requests
queued. The QoS-setting in [23] is equivalent to our speed-
setting goal, with the main difference that we can adjust the
speed several times for a request, whereas the QoS level
in [23] can be selected only once for each frame. However,
while many MPEG traces have known arrival times and sim-
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ilar execution times for frames of certain types, our traces
are far more unpredictable, as shown in Tables 1 and 2. So
far, our attempts to implement a RL scheme resulted in in-
conclusive results and thus we do not consider RL in the rest
of this paper.

4.2 Stochastic DVS algorithms (S)

While still collecting statistical information about the
workload (a-priori or online), these schemes differ from
prediction-based schemes in the fact that they do not at-
tempt to predict request processing requirements and inter-
arrival times. The data collected is the probability distribu-
tion of request CPU cycles. Requests are classified based on
their number of cycles, with any desired granularity. For ex-
ample, with a granularity S (expressed in cycles), class C�

would contain all requests whose cycles are up to S, class
C� contains all requests with cycles in the range �S� �S�
and class Ci represents requests with cycles in the range
�iS� �i � ��S�. Counting the number of requests belonging
to each class results in a histogram with B � dWC

S
e bins,

where WC denotes the worst-case number of cycles of a
request. We store the histogram as an array H of size B,
where H�i� denotes the number of request in class (bin, or
position) i.

The probability distribution can be obtained from profil-
ing or through on-line monitoring, as follows: every time
a request finishes processing, its exact number of cycles e
is known. To include the request in the histogram, its cor-
responding class count is updated as follows: H�de�Se� �
H�de�Se���. Of course, separate histograms can be main-
tained for each request type.

The cumulative density of probability function CDF
associated with a histogram is defined as CDF �k� �P

k

i��
H�i�

P
B

i��
H�i�

(i.e., the probability that a request requires less

than kS cycles, or the probability that a request belongs to
one of the first k bins). When a new request enters the sys-
tem, the function � � CDF �k� represents the probability
that bin k will be executed (i.e., the request will probably
execute for at least kS cycles).

We start by showing how to use DVS to minimize the
expected energy consumption of a single request with a
known histogram and deadline. It was previously shown
that an optimal DVS schedule would gradually increase the
speed [17, 11, 25]. While the work in [17] is only intended
for continuous speeds, an exact solution for specific power
functions is proposed in [11] and [25]. Since we are inter-
ested in systems with more general power functions (e.g.,
those that include other components beside the CPU), we
are proposing a simple, novel DVS scheme that selects just
two speeds among M possible speeds for each request: a
primary and a secondary speed.

Using the notation introduced in Section 3, the scheme
chooses a primary speed fi and a secondary speed fj so that
to minimize the expected energy consumption. IfWC is the
worst-case execution time and D is the request deadline,
and WC�D � fM (i.e., the worst-case number of cycles
cannot be satisfied within the deadline even at maximum
speed), the scheme selects fi � fj � fM . If WC�D �
f�, then fi � fj � f�. Otherwise, the expected energy
for all combinations of primary and secondary speeds fi �
WC�D and fj � WC�D is computed as follows.

The time spent at the primary and secondary speeds, ti
and tj , is first determined by solving the linear system de-
scribed by the equations tifi�tjfj � WC and ti�tj � D,
as in [15]. The first tifi cycles are executed at the primary
speed, and the remaining cycles (up to WC) are executed
at the secondary speed. The expected energy consumption
of bin k is Ek � Pi

S
fi
�� � CDF �k��, if �k � ��S � tifi

or Ek � Pj
S
fj
�� � CDF �k��, if �k � ��S � tifi. The

total expected energy consumption is
PB

k��Ek. Depend-
ing on the probability distribution of request processing re-
quirements, the primary and secondary speeds can differ by
more than one discrete level. Because we consider proba-
bilities, our solution is different from [15] and subsequent
work, which picks adjacent speed levels for fi and fj . This
is precisely the intuition behind the stochastic approach: if
most requests are short enough to finish execution at the
primary speed, a larger gap between the primary and sec-
ondary speeds will result in more savings compared to the
adjacent speeds. The difference is larger for distributions
where the worst-case is much higher than the average case,
such as bimodal distributions. After computing all combi-
nations of primary and secondary speeds (at mostM���, or
four combinations forM � � discrete speeds), the one with
the smallest expected energy consumption is selected as the
final DVS schedule.

A straightforward implementation of the above DVS al-
gorithm has complexity O�BM ��. From our experience,
B � �		 bins results in a good enough representation of
the histogram. Combined with a small number of discrete
speeds M , this leads to a very efficient algorithm. Note that
the complexity can be improved to O�B � M �� if using
O�B� extra space. Furthermore, if the histogram is col-
lected offline (i.e., no need to update the CDF), the com-
plexity becomes just O�M ��. This low complexity can
be accomplished by storing a cumulative CDF, defined as
CCDF �k� �

Pk

i��CDF �i�, which requires O�B� extra
space. Using the CCDF, the summation in

PB

k��Ek can
be transformed into a O��� computation.

The description above considered only a single request.
With multiple requests dynamically entering the system, we
extend our algorithm as follows: aware of all waiting re-
quests and their deadlines, the latest completion time of the
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Table 3: PPC405LP speed settings and voltages
Speed (MHz) 33 100 266 333
Voltage (V) 1.0 1.0 1.8 1.9
Power (mW) 19 72 600 750

first request is first computed, so that no request can miss
its deadline, even in worst-case scenarios (i.e., all requests
take their worst-case number of cycles). That is, with new
requests arriving with their own deadlines, the DVS algo-
rithm may have to consider an artificially-reduced deadline
(to raise the speed) of the current request, to allow enough
time at maximum speed for the waiting requests to meet
their own deadlines. Note that this does not mean that
all subsequent requests will run at maximum speed, as in
practice average processing requirements will be less than
their worst-case. Whenever a request finishes execution, the
slack created can immediately be used by the next request.
The DVS schedule is then computed as described in the sin-
gle request system.

The complexity of computing the latest completion time
of requests is O�N �, where N is the number of requests
queued for execution. The artificially-reduced deadlines are
computed assuming maximum speed and worst-case execu-
tion times, in reverse order of the queued requests, to en-
sure that all deadlines are met. Note that the computed lat-
est completion time may be less than the request deadline,
to accommodate for processing requirements of subsequent
requests.

Speed change overheads are considered when recom-
puting the DVS schedule. Also, whenever a new request
comes, a better estimation is obtained for the current ex-
ecuting request by considering only the remaining cycles
when calculating the expected energy. For each request, the
number of speed changes is at most M . As experimental
results in the next section will show, the number of speed
changes is much less in practice.

5 Experimental Results

Table 3 shows the power model used in the experiments,
indicating the discrete speeds, corresponding voltages and
average power consumption. The model is based on actual
power measurements on IBM’s PPC405LP embedded pro-
cessor. The number of cycles for each request in the Event
Extraction and CAF traces was obtained from the cycle ac-
curate Mambo simulator [19].

To evaluate the schemes described in Section 4, we as-
sume the period for monitoring the system utilization (Sec-
tion 4.1.1) and request inter-arrival and processing times
(Section 4.1.2) is p � � second. We choose this period be-
cause it results in good response times for our traces, with-

out a negative impact on the energy consumption. Increas-
ing the period generally results in higher response times,
without a significant effect on the energy consumption. Re-
ducing p slightly increases the energy consumption, without
a significant effect on the already low response times.

The application-oblivious scheme (AO) updates the
speed as described in Section 4.1.1. We also experimented
with the threshold schemes, including the one used in [3].
Such schemes generally resulted in similar response times
for requests, but significantly higher energy consumption.
For the application-aware scheme (AA), the predicted num-
ber of requests (of each type) arriving in the next period is
the number observed in the most recent period p. The pre-
dicted running times for each request type is the static aver-
age for the whole trace; very similar results were obtained
for a dynamic average prediction (that is, the online average
from the beginning of the trace until the current time). Re-
call that we do not evaluate RL schemes (Section 4.1.3) in
this work.

The stochastic scheme (S) does not need a monitoring
period, as it makes no prediction about the workload. In-
stead, a soft deadline is used as the maximum allowed re-
sponse time for requests. Based on the embedded appli-
cations we are dealing with, we are considering the same
deadline for all requests (note that the stochastic scheme
can handle different deadlines for each request with no ex-
tra overhead). Since the worst-case execution time (at maxi-
mum speed) is 2.3 seconds for Event Extraction and 15 sec-
onds for CAF, we show results for deadlines equal to ap-
proximately twice and four times the worst-case. The his-
togram for each request type was obtained statically. We
expect very similar results if the histogram is collected dy-
namically (as described in Section 4.2). However, in the
on-line version, the histogram will only be accurate after a
sufficient number of requests (such as the first 100 seconds
of the trace) finished execution. We used a fixed bin width of
10 million cycles, resulting in 76 bins for Event Extraction
and 505 bins for CAF (worst case execution time is 753 mil-
lion cycles for Event Extraction and 5045 million cycles for
CAF, see Table 1). The corresponding space overhead for
the histograms is 304 bytes for Event Extraction (2 types,
76 bins, 2 bytes for each bin) and 3030 bytes for CAF (3
types, 505 bins, 2 bytes per bin).

In all the schemes (except no-power-management), the
system immediately switches to minimum speed when idle
(i.e., Pidle � P�). A time overhead of 1 millisecond is
added for each speed change. In practice, CPUs that can
adjust the voltage internally have a lower overhead (in the
range of microseconds), but systems that require changing
the voltage externally experience however overheads in the
milliseconds range. We compute the energy overhead of a
speed change as the system power at maximum speed times
the time overhead. We note that both the time and energy
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Table 4: DVS policies evaluation: (noPM) no-power-
management (AO) application-oblivious prediction (AA)
application-aware prediction and (S) stochastic with spec-
ified deadline, for the Event Extraction and CAF traces. SC
means speed changes.

policy Savings (per scale factors) SC Avg - Max
1 2 4 0.8 /s delay

81 min (EE)
noPM 1x 1x 1x 1x 0 0.43 - 5.22

AA 3.8x 7.5x 13.2x 3x 1.27 0.72 - 5.43
AO 4x 8.4x 16x 3.1x 1.77 0.86 - 5.45
S 5s 4.4x 10.5x 21.2x 3.4x 1.05 1.42 - 5.88
S 10s 4.6x 11.7x 26.7x 3.5x 1.08 2.78 - 9.63
1030 sec (EE)
noPM 1x 1x 1x 1x 0 0.36 - 2.51

AA 4.4x 8.5x 14.5 3.5x 1.1 0.67 - 3.00
AO 4.6x 9.7x 17.5x 3.7x 1.46 0.90 - 4.31
S 5s 5.4x 12.5x 23.1x 4.1x 0.95 1.4 - 4.5
S 10s 5.9x 14.8x 28.5x 4.3x 0.91 2.88 - 9.01
1800 sec (CAF)
noPM 1x 1x 1x 1x 0 1.54 - 29.90

AA 4.3x 7.7x 12.9x 3.5x 0.6 1.58 - 29.89
AO 4.7x 8.5x 14.2x 3.8x 0.39 2.37 - 31.68

S 30s 4.9x 9.6x 18.2x 3.9x 0.11 3.06 - 34.41
S 60s 5.2x 11.6x 23.4x 4x 0.07 5.65 - 42.06

overheads do not have a significant effect for our traces,
due to infrequent speed changes. The overhead of the poli-
cies themselves is in the microseconds range for each speed
computation (at most two speed computations per request
are necessary for the stochastic scheme).

Table 4 evaluates the schemes on the Event Extraction
and CAF traces described in Tables 1 and 2. To vary the
system load for the same trace, the original inter-arrival
times between requests are multiplied with a scale factor,
as in [7]. We considered the following values for the scale
factor: 0.8, 1, 2, and 4, where 1 is the original trace. Reduc-
ing the inter-arrival below 0.8 results in a overloaded system
that cannot keep up with the rate even if running at the max-
imum speed at all times.

The savings, shown in columns 2-5 of Table 4 for each
scale factor, are normalized to the no-power-management
scheme. The stochastic approach results in the most energy
savings, up to 28.5x compared to no-power-management
and up to 40% less energy compared to the second-best
DVS scheme (the application-oblivious prediction). The
stochastic scheme also results in the fewest speed changes
per second (SC/s) among the DVS policies (see column 6,
Table 4). This is because many requests do not reach the
point where they switch to the secondary speed. Also, when
the system is overloaded or under-utilized, the primary and
secondary speeds are identical (i.e., f� for a under-utilized
system and fM for an overloaded system).

In most experiments there were no deadline misses (max-
imum and average delays are shown in column 7 of Ta-
ble 4). We also experimented with tighter deadlines and
noted that the maximum delay of the stochastic scheme
closely matches the specified deadlines (unless the work-
loads is so high that the deadlines cannot be met). The
stochastic scheme also resulted in considerably fewer dead-
line misses than the other policies, while still achieving en-
ergy savings over the other DVS policies (although less sig-
nificant savings, depending on the tightness of the deadline).
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Figure 1: Power vs workload for the stochastic and
application-oblivious DVS policies on the Event Extraction
81 minutes trace
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Figure 2: Energy consumed for the Event Extraction 81
minutes trace

As seen in Figure 1 for the 81 minutes Event Extrac-
tion trace, the system power closely matches the workload
(processing cycles arriving every second), with lower power
consumption for the stochastic policy. To see more clearly
how stochastic schemes do better over time, in Figures 2
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Figure 3: Energy consumed for the CAF 1800 seconds trace

and 3 we plot the cumulative energy consumption under the
stochastic and application-oblivious policies for the 81 min-
utes Event Extraction and 1800 seconds CAF traces (for a
scale factor of 2). The cumulative workload is also shown
for comparison. We do not show the arrival rate of requests,
since it has little correspondence with the workload.
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Figure 4: Comparison of the DVS policies using synthetic
traces

Finally, we evaluate the DVS policies on a set of syn-
thetic traces. For the request cycles we artificially generate
three typical distributions, namely, bimodal, normal (Gaus-
sian) and uniform distributions, each with a minimum of
5 million cycles and a worst-case of 200 million cycles (20
bins). We use a uniform random number generator to gener-
ate the arrival rate for each second, which results in a unpre-
dictable workload. The deadline (maximum response time)
for the stochastic scheme is 5 seconds. For each experiment,
the average system load is around 30% of the maximum

load that the system can handle. Figure 4 shows the aver-
age power consumption of the DVS policies (1000 experi-
ments were averaged for each distribution). The stochastic
scheme achieves up to 20x savings compared to no-power-
management and, on average, 50% more savings compared
to the second-best scheme (AO).

6 Conclusions and Future Work

We evaluated several DVS policies for power management
in systems with unpredictable workloads. A stochastic DVS
scheme was proposed that uses a simple, yet effective algo-
rithm to obtain the DVS schedule, based on collected statis-
tical information about the workload.

The scheme has little overhead (in the microsec-
onds range for each request) and was shown to out-
perform prediction-based algorithms, ranging from sim-
ple application-oblivious prediction to more complicated
application-aware prediction. Our experimental results
show that the stochastic scheme achieves one order of
magnitude energy reduction over no-power-management
and up to 50% more savings compared with the best
prediction-based scheme. In general, our observation is that
prediction-based policies are too aggressive, with lower de-
lays and higher energy consumption. Aware of deadlines,
the stochastic policy can better explore power-performance
tradeoffs.

We are currently studying the interplay of DVS policies
with on-off schemes for multiprocessor systems. As part
of this work, we are also investigating request distribution
policies and load balancing mechanisms.
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