
An Incremental Server for Scheduling
Overloaded Real-Time Systems

Pedro Mejı́a-Alvarez, Member, IEEE Computer Society, Rami Melhem, Fellow, IEEE,

Daniel Mossé, Member, IEEE Computer Society, and Hakan Aydin

Abstract—The need for supporting dynamic real-time environments where changes in workloads occur frequently requires a

scheduling framework that: 1) explicitly addresses overload conditions, 2) allows the system to achieve graceful degradation while

guaranteeing the deadlines of the most critical tasks in the system, and 3) supports an efficient runtime selection mechanism capable

of determining the load to be shed from the system to handle the overload. In this paper, we propose a novel scheduling framework for

a real-time environment that experiences dynamic workload changes. This framework is capable of adjusting the system workload in

incremental steps under overloaded conditions such that the most critical tasks in the system are always scheduled and the total value

of the system is maximized. Each task has an assigned criticality value and consists of two parts, a mandatory part and an optional

part. A timely answer is available after the mandatory part completes execution and its value may be improved by executing the entire

optional part. The process of selecting tasks (mandatory or optional parts) to discard while maximizing the value of the system requires

the exploration of a potentially large number of combinations. Since an optimal solution is too time-consuming to be computed online,

an approximate algorithm is executed incrementally whenever the processor would otherwise be idle, progressively refining the quality

of the solution. This scheme allows the scheduler to handle overloads with low cost while maximizing the use of the available resources

and without jeopardizing the temporal constraints of the most critical tasks in the system. Simulation results show that few stages of the

algorithm need to be executed for achieving a performance with near-optimal results.

Index Terms—Real-time systems scheduling, incremental processing, approximate algorithms.

æ

1 INTRODUCTION

THE use of complex and dynamic real-time systems is
nowadays becoming common for the management and

control of a variety of applications such as manufacturing,
industrial automation systems, space, avionics, and tele-
communications systems. In such real-time systems, each
task must complete and produce correct results by the
specified deadline. In order to guarantee that deadlines will
be satisfied, it is necessary that the resource requirements
for all tasks in the system be known and that resources be
available in a timely manner. Therefore, the resources must
be reserved for worst-case execution time of tasks to
provide absolute guarantees. Traditionally, the resource
scheduling problem for real-time tasks is to generate a
feasible schedule or to verify if a given scheduling policy
can meet the timing requirements of a specific set of tasks.
In practice, however, real-time environments experience
frequent changes in workloads, caused by new task arrivals
or tasks that leave the system after finishing their execution.
The problem with accepting new tasks in the system is that
they may result in an overload and cause some of the tasks
already in the system to miss their deadlines.

In this paper, we study the problem of scheduling
dynamic tasks in an overloaded single processor environ-
ment, where new tasks arrive or leave the system at
arbitrary instants of time. A framework is proposed for
adjusting the system workload incrementally by relating the
criticality value [5], [6] of the tasks to the resource allocation
problem. The selection of a set of tasks that maximize an
optimality criteria (expressed as the total value of the
system) requires the exploration of a potentially large
combinatorial space of solutions. In general, heuristics must
be used, but, in particular, the overload mandates that
heuristics with minimum overhead be used. Our approach
to solve this problem is based on an online Incremental
Server (INCA), which searches feasible solutions by execut-
ing a sequence of approximate algorithms. At each
approximate algorithm execution, the load is adjusted and
the quality of the solution is refined. The minimum number
of approximate algorithms executed produces a feasible but
suboptimal solution that can be incrementally improved if
more approximate algorithms can be executed. Functions
with this property are called incremental processes [4] or
progressive processing tasks [24].

We consider real-time tasks that consist of mandatory
parts and optional parts for refining the result of the
mandatory parts. Systems exhibiting this behavior include
1) multimedia systems that receive, enhance, or transmit
audio, video, or still images, and process this information
during specific intervals of time; 2) process control systems
with sensors and actuators that are activated by changing
environmental conditions; and 3) real-time database query
processing systems. For systems such as these, our

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 10, OCTOBER 2003 1347

. P. Mejı́a-Alvarez is with CINVESTAV-IPN, Sección de Computación, Av.
IPN. 2508, México D.F. E-mail: pmejia@cs.cinvestav.mx.

. R. Melhem and D. Mossé are with the Computer Science Department,
University of Pittsburgh, Pittsburgh, PA 15260.
E-mail: {melhem, mosse}@cs.pitt.edu.

. H. Aydin is with the Computer Science Department, George Mason
University, Fairfax, VA 22030. E-mail: aydin@cs.gmu.edu.

Manuscript received 9 Jan. 2002; revised 25 Oct. 2002; accepted 8 Jan. 2003.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 115670.

0018-9340/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

approach is to produce approximate solutions that can be
progressively refined when the optimal solutions cannot be
produced in time due to overloaded conditions.

The remainder of this paper is organized as follows: In
Section 2, related models and related previous work are
reviewed. In Section 3, the task model used in this paper is
defined. In Section 4, the overload scheduling problem is
formulated and, in Section 5, the INCA server is described. In
Section 6, we analyze the merit of the incremental execution of
the INCA server by performing simulation experiments.
Also, analytical results are presented to show the perfor-
mance of the INCA Server when compared to a nonincre-
mental server and to give insight into its effectiveness in
handling overload conditions. In Section 7, we discuss how
the INCA Server can be extended to enhance its applicability.
Finally, Section 8 presents concluding remarks.

2 RELATED WORK

In a dynamic real-time environment, even when the system
is properly designed and sized, a transient overload can
occur for different reasons, such as changes in the
environment, simultaneous arrivals of asynchronous
events, faults of peripheral devices, or system exceptions
[9]. The worst consequence that may happen is that some
critical tasks in the system miss their deadlines, jeopardiz-
ing the correct/safe behavior of the system. As all systems
have finite resources, their ability to execute a set of
periodic and aperiodic tasks while meeting the temporal
requirements is limited. Clearly, overload conditions arise if
the system has to process more new tasks than the available
set of resources can handle.

In the real-time literature, several scheduling algorithms
have been proposed to deal with overloaded systems. The
development of the Best-Effort algorithm [20] introduced a
rejection policy for overloaded systems based on removing
tasks with the minimum value density. The Best-Effort
approach basically behaves as the Earliest Deadline First
[18] when the system is underloaded and chooses the subset
of tasks that maximize the value of the computation per unit
of time (value density) when the system is overloaded. The
Alpha effort [13] introduced the concept of time-valued
functions which associate a value according to the task
finishing time. Typically, the function presents a drop in
value after the deadline has passed and, beyond a certain
time, the value drops to zero.

The problem of selecting tasks for rejection in an
overloaded system is also considered in [12], where random
criticality values are assigned to tasks. An approximate
algorithm incorporates simulated annealing to deal with the
problem of selecting a feasible solution within the large
combinatorial space of permutations. The RED (Robust
Earliest Deadline) algorithm [7] deals with aperiodic tasks
in overloaded environments, combining criticality-based
scheduling, deadline tolerance (the amount of time by
which a task is permitted to be late), and resource
reclaiming. It is able to predict not only deadline misses,
but also the size of the overload, its duration, and its impact
on the system; the strategy for handling the overload is to
reject the least-valued task.

Other approaches for handling overload focus on
providing less stringent guarantees for temporal con-
straints. In [15], some instances of a task are allowed to be
skipped entirely. The skip factor determines how often
instances of a given task may be left unexecuted. A best
effort approach is introduced in [11], aiming at meeting
k deadlines out of n instances of a given task. However, it is
assumed that the value of the tasks in the system is
proportional to their computation time, provided that they
complete by their deadlines. The elastic task model (ETM) is
introduced by [8] aiming at increasing task periods to
handle overloads in adaptive real-time control systems.
Under ETM, periodic tasks are able to change their
execution rate to provide different quality of service as a
function of the current workload to keep the system
underloaded.

Many of these techniques (e.g., [15], [11]) assume that a
task’s output is of no value if it is not executed completely.
In contrast, in the Imprecise Computation (IC) model, the
task’s output has some value even if a partial or approx-
imate result is produced [2], [19]. In the IC model, every
real-time task is composed of a mandatory part and an
optional part. A timely answer is available after the
mandatory part completes execution; moreover, the longer
the optional part executes, the higher the value of the task
(i.e., the higher the quality of the result). However, the
IC model uses an error function as a metric to evaluate the
performance of the system. In [19], an error function is
defined to be inversely proportional to the total amount of
time that the optional parts execute. An optimal schedule
corresponds to the one where the total error of the system is
minimized. In the IC model, the shape of the error functions
and policies for scheduling optional parts are crucial in
maximizing the performance of the system.

From previous work we have learned that: 1) Many
scheduling algorithms have been developed to handle
overloaded conditions, but few research works studied, in
practice, how far from optimal the performance of their
algorithms and their complexity is ([16] provided a measure
for the performance of their D-over algorithm using a
metric called competitive factor); 2) in most developed
algorithms, the criteria for rejection in overloaded condi-
tions is to select the lesser-valued tasks, a strategy that
clearly yields low cost solutions but may lead to a situation
with underutilized resources and a resulting system with
poor performance; and 3) the time-value function of [13] or
the error functions of the IC model [19] are difficult to
obtain and performance may be degraded if the system
designers are not familiar with the functions that represent
the applications at hand. Although our model is similar to
the IC model, we do not use error functions; instead, we use
performance metrics that are largely available, such as
utilization and criticality [5], [6].

3 MODEL

In our framework, we consider periodic preemptive tasks
running on one processor. Tasks are independent (do not
share resources) and have no precedence constraints. We
assume a dynamic system in which each task �i arrives in
the system at time ai. Clearly, if one needs to ensure that all

1348 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 10, OCTOBER 2003

tasks that may be submitted to the system are guaranteed to
execute within their deadlines, one needs to provision the
system to allow for the worst-case combination of tasks.
This is NOT our goal: We consider dynamic systems in
which an admission control procedure is executed to admit
or reject tasks that are submitted. We assume that there is a
contingency plan to take care of rejected tasks.

The lifetime of each task �i consists of a fixed number of
instances ri. After the execution of ri instances, the task
leaves the system. The time interval between the arrival of
the first instances of two consecutive tasks �x and �y is
defined as lxy ¼ ay ÿ ax. Each task �i is composed of a
mandatory part Mi followed by an optional part Pi. Note
that this model is general in the sense that each task may
have only an optional part and no mandatory part, or vice
versa. The deadline of task �i is di, which is equal to the
period, Ti, and Ci is its worst case computation time. Each
execution time Ci consists of a mandatory part of length mi

and an optional part of length pi (i.e., Ci ¼ mi þ pi). The
mandatory part Mi must execute to completion in order to
produce an acceptable and usable result. The optional part
Pi can execute only after the completion of the mandatory
part Mi. However, a partially executed optional part or an
optional part that misses its deadline is of no value to the
system (so-called 0/1 constraint). We say the task �i meets its
deadline if its mandatory part completes by its deadline. Further,
in our model, once a task passes the admission control, it is
guaranteed to meet the deadlines of all ri instances until it
leaves the system.

In our framework, we first will assume that the set of
mandatory parts can never cause an overload in the system
and only optional parts are subject to being rejected for
execution. In Section 7, we relax this assumption and extend
the framework to consider the more general case where
mandatory parts can also cause overloads in the system and
some tasks in the system will be denied execution. This is an
extension that is appropriate for soft real-time systems.

Each task has an associated criticality value, vi, which
denotes its importance within the system. Methods to
derive this criticality values are proposed in [5], [6], [20].

We assume that the tasks’ characteristics (e.g., computa-
tion time, period, deadline, and criticality) are known at
arrival time. Although the work in this paper focuses on
Earliest Deadline First [18] and dynamic-priority schedu-
lers, a more conservative fixed-priority scheduler can also
be used [14], [18]. This is the subject of future work.

4 FORMULATION OF THE PROBLEM

In overloaded conditions, the scheduler should be able to
guarantee the timing constraints of all mandatory parts at
every periodic task invocation and to select optional parts
for exclusion from the schedule while maximizing the
performance of the system. If the criticality of each task is
proportional to its computation time, the decision of
excluding optional parts must be based only on maximizing
the usage of the resources (e.g., CPU time). In the more
general case, where criticality and computation time are not
directly related, we would like to exclude the less critical
optional parts and maximize the total value of the system.
Therefore, the problem can be formulated as follows: If a

new task �i that arrives in the system at time ai causes an
overload, the problem is to determine:

1. whether or not �i can be accepted in the system
without interfering with the deadlines of the
mandatory parts of any task already in the system;

2. the time that �i should be dispatched, if it is
accepted;

3. the optional parts (if any) that should be excluded
such that an optimality criteria is satisfied;

4. how to maximize the usage of the resources and the
performance of the system with a reasonably low
computation time while searching for a solution; and

5. how to take into account CPU time taken to compute
the solution itself.

Each task in the system accrues an accumulated value
upon executing a number of optional parts during its
lifetime. Our objective is to maximize the accumulated
value obtained after scheduling the set of optional parts for
the complete duration of the schedule. The accumulated
value will be evaluated in terms of utilization or criticality
as follows: Let us define CUðIÞ and CV ðIÞ as the
cumulative utilization and cumulative criticality potentially
achieved by the set of optional parts that execute during the
interval of time I ¼ ½ta; tb�.

The cumulative utilization achieved is computed by:

CUðta; tbÞ ¼
Xn
i¼1

eiðta; tbÞ � pi: ð1Þ

The cumulative criticality achieved is computed by:

CV ðta; tbÞ ¼
Xn
i¼1

eiðta; tbÞ � vi; ð2Þ

where eiðta; tbÞ ¼ btbÿtaTi
c denotes the number of instances

that Pi is scheduled for execution during the interval of time

½ta; tb� and 0 � ta < tb. For the interval of time between two

consecutive arrivals, ax and ay, the accumulated value can

be formulated as CUðax; ayÞ and CV ðax; ayÞ for utilization

and criticality, respectively. At ax, the goal is to select the

optional parts that maximize CUðax; ayÞ or CV ðax; ayÞ. This

selection requires the searching of a usually large search

space, as shown below. Note that the next arrival, ay, may

not be known and, therefore, the goal is to maximize CU or

CV for the current set of tasks. The interval ½ax; ay� is

defined to facilitate reasoning.

4.1 Definition of the Search Space

Consider n tasks, �1; . . . ; �n, such that
Pn

i¼1
mi

Ti
� 1 andPn

i¼1
miþpi
Ti

> 1. That is, all mandatory parts can be accepted
for execution, but not all optional parts can be accepted for
execution.

Let S be the search space containing all combinations

(both feasible and nonfeasible) of optional parts. More

specifically, a search space is defined as S ¼ [nk¼0Sk,

where Sk ¼ fðx1; . . . ; xnÞ;
Pn

i¼1 xi ¼ kg, xi ¼ 0 means that

the optional part of �i is discarded, and xi ¼ 1 means that

the optional part of �i is chosen for execution. Note that,

for any k 2 f0; ::; ng, Sk is a set of elements containing all

MEJ�IIA-ALVAREZ ET AL.: AN INCREMENTAL SERVER FOR SCHEDULING OVERLOADED REAL-TIME SYSTEMS 1349

(feasible and nonfeasible) combinations resulting from

including k optional parts for execution and that

jSkj ¼ n!
k!ðnÿkÞ! . Any element in Sk includes for execution

exactly k optional parts.
The structure of the search space S is shown in Table 1

through an example with three tasks. For example, f1; 1; 0g
is the element in which p1 and p2 are executed and p3 is
discarded. Note that, since the search space is the power set
of the tasks in the system, it is clearly exponential in size.

4.2 Definition of the Objective Functions

Each element in the search space will be evaluated in terms
of utilization or criticality, using the objective functions �ðsÞ
and ðsÞ, respectively, where s ¼ fx1; . . . ; xng 2 S.

The objective functions are defined as follows:

. �ðsÞ: In this function, we add the utilization of the set
of optional parts in an element s 2 S to the total
utilization of all mandatory parts.

�ðsÞ ¼
Xn
i¼1

mi þ ðxi � piÞ
Ti:

ð3Þ

�ðsÞ denotes the utilization of the system after
choosing some optional parts for execution. For
example, for s ¼ f0; 1; 1g, �ðsÞ ¼

P3
i¼1ðmi

Ti
Þ þ p2

T2
þ p3

T3
.

. ðsÞ: In this function, we compute the criticality per
period achieved after including for execution a set of
optional parts in an element s 2 S, recalling that vi is
the criticality of task �i.

ðsÞ ¼
Xn
i¼1

xi
vi
Ti

� �
: ð4Þ

For example, for s ¼ f0; 1; 1g, ðsÞ ¼ v2

T2
þ v3

T3
.

Note that if the tasks f�1; . . . ; �ng are to execute during an

interval I, the choice of s that maximizes �ðsÞ and ðsÞ also
maximizes CU(I) and CV(I), respectively.

4.3 Feasibility Test

To evaluate the feasibility of each element in the search

space, we apply a utilization-based test (UBT). The
utilization-based test has been chosen because of its
simplicity and because it can be used for scheduling
policies such as EDF.

For each element s ¼ fx1; . . . ; xng of the search space S,
the utilization-based test is defined by

UBT ðsÞ ¼ false if �ðsÞ > 1 ðoverloadÞ
true otherwise:

�

Note that, when choosing a feasible solution, the

utilization of the optional parts (Up ¼
Pn

i¼1 xi
pi
Ti

) must

satisfy: Up � 1:0ÿ Um, where Um ¼
Pn

i¼1
mi

Ti
. Clearly, any

single optional part with utilization pi
Ti

greater than 1:0ÿ Um
can be immediately discarded.

4.4 The Optimization Problems

Our first optimization problem is related to shedding a
number of optional parts that maximize the utilization of
the system. This objective favors a solution in which the
utilization of the workload is maximized without consider-
ing the number of optional parts to be shed. Our second
optimization problem assumes that different criticality
values are associated with optional parts, therefore we are
interested in maximizing the total value obtained after a
number of optional parts are shed.

The optimization problems are formally described as
follows:

. Maximize the utilization. The aim of this objective is
to find a feasible element s 2 S such that the
utilization in the system is maximized. That is,

maximize �ðsÞ
subject to UBTðsÞ:

Let Umax be the value of �ðsÞ obtained by solving this
optimization problem.

. Maximize the value. Maximizing the value requires
finding a feasible element s 2 S such that ðsÞ is
maximized. That is,

maximize ðsÞ
subject to UBTðsÞ:

Let V max be the value of ðsÞ obtained by solving this
optimization problem.

The optimization problems consist of maximizing the
value of the system at the instant of time at which a new
arrival causes an overload in the system. By achieving the
optimality criteria, whenever a new task arrives or departs
from the system, we intend to maximize the accumulated
value (CU(I) or CV(I)) obtained after scheduling tasks for
the complete duration of the schedule.

5 THE INCREMENTAL SCHEDULING SERVER: INCA

The incremental scheduling server is an extension of the
earliest deadline first scheduling algorithm (EDF [18]). In
response to transient overload requests, the INCA Server
adjusts the load of the system by executing a sequence of
approximate algorithms, AP ð0Þ; . . . ; AP ðnÞ, to determine
which optional parts to shed in order to satisfy our
optimality criteria. The algorithms are such that AP ðiÞ
may obtain a solution closer to optimal than AP ðiÿ 1Þ but
with longer execution time. The INCA Server is activated
whenever the feasibility test (UBT) detects an overload
caused by the arrival of a new task in the system. Before the
new task is scheduled, the INCA Server executes the
approximate algorithm AP(0) to eliminate the overload. The
solution provided by AP(0) allows the scheduler to
temporarily disable the execution of some optional parts,

1350 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 10, OCTOBER 2003

TABLE 1
Search Space for Three Tasks

while providing a low cost nonoptimal solution. The slack-
time1 introduced in the system by the removal of the
overload is used by the scheduler to execute approximate
algorithms AP(k) (for k ¼ 1; . . . ; n), progressively refining
the quality of the solution. If, during the execution of the
INCA Server, a new task arrives or a task leaves the system,
the INCA server will restart, taking into account the
modified load of the system. The INCA Server stops its
execution when 1) there is no more slack in the schedule to
execute additional AP(k) algorithms or 2) the result of AP(k)
is not better than the result of AP(k-1). The INCA Server is
described in Fig. 1. We detail the INCA server operation in
the next section, followed by details on the algorithmAP ðkÞ.

5.1 Operation of the INCA Server

In this section, we detail the operation of the INCA Server.

1. Activating the Incremental Server. The conditions
for activating the INCA server are:

. Task arrival: The INCA server is activated if a
new task, �new, arrives in the system and causes
an overload. Our feasibility test (UBT) detects
this condition. After detecting the overload (and
before �new is scheduled), AP(0) is executed2 and
a set of optional parts are chosen to be discarded
for removing the overload. For now, it is
assumed that mandatory parts cannot be dis-
carded, therefore, if the sum of mandatory parts,
including that of the newly arrived task �new,
cause an overload (

P
i
mi

Ti
> 1), then the new task

is rejected (see line 3 in Fig. 1). In Section 7, we
will discuss the more general case in which the
task with least value in the system (rather than
the newest task) may be rejected to solve the
overload situation.

. Task departure: In this case, clearly there is no
overload of mandatory parts (that is, UBT is
vacuously true). Then, we execute the approx-
imate algorithms AP(k) (for k = 0, ..., n)
incrementally to satisfy the optimality criteria
for the set of optional parts remaining in the
system.

2. Scheduling the new task. After removing the
overload from the system (i.e., after AP(0)), the
newly arrived task can be scheduled. However,
regardless of its priority, the newly accepted task
cannot be safely immediately scheduled because it
may cause some other tasks to miss their deadlines,
even after executing AP(0). This is because, unlike
systems with only mandatory tasks, at the instant of
the new arrival, we may choose to disable optional
parts that a) already finished their current execution
or b) have been preempted during the current
execution. The resulting utilization cannot be im-
mediately subtracted from the total processor load
because the discarded optional parts could already
have delayed the execution of other tasks. To see
how this happens, consider the following example.

Example 1. Let there be three tasks, �1, �2, and �3. Let a1 ¼ 0,

m1 ¼ 0, p1 ¼ 2:5, T1 ¼ 5, v1 ¼ 10, a2 ¼ 0, m2 ¼ 2:5, p2 ¼ 0,

T2 ¼ 5:01, v2 ¼ 1, and a3 ¼ 3, m3 ¼ 3, p3 ¼ 0, T3 ¼ 6,

v3 ¼ 10. Consequently, U1 ¼ 50%, U2 � 50%, and

U3 ¼ 50%. Note that, at time a1, U1 þ U2 < 1 and, at time

a3, U1 þ U2 þ U3 > 1 and, thus, a task must be removed.

Because there is only one optional part, �1 becomes the

victim. However, �1 executed in interval ½0; 2:5� (due to

the EDF dispatching discipline) and �2 executes in

interval ½2:5; 5�. At a3 ¼ 3, �1 is removed and �2 resumes

execution, completing at time 5 (on time). �3 executes in

interval ½5; 8� (because it has the smallest deadline),

consequently making �2 miss its second deadline.

MEJ�IIA-ALVAREZ ET AL.: AN INCREMENTAL SERVER FOR SCHEDULING OVERLOADED REAL-TIME SYSTEMS 1351

Fig. 1. Incremental Server (INCA).

1. Slack-time is defined as the time at which the processor is not
executing any task.

2. We assume that the execution times of UBT and AP(0) are negligible.

Clearly, the tasks that have not already started the
execution of their optional parts allow the utilization to
be subtracted immediately. But, there is no guarantee
when a new task will arrive in the system and there is no
guarantee that all optional parts will be unexecuted at
that time. As a consequence, to keep the feasibility test
consistent, the utilization of a discarded optional part can
be subtracted from the total load only at the end of its
current period. Thus, the new task should wait until the
end of the longest deadline of all active tasks.3

Other criteria for scheduling tasks and enhancing their

response time will be discussed in Section 7.

3. Execution of AP(1), ..., AP(n). After removing the
overload through AP ð0Þ, an increase in the slack
available in the system is expected. If there is such
slack, AP ð1Þ is then executed during this slack.
Analogously, AP ðkÞ (for k ¼ 2; . . . ; n) is executed on
the slack existing in the system after the execution of
the previous AP ðkÿ 1Þ. The INCA Server executes
the approximate algorithms AP ð1Þ; . . . ; AP ðnÞ incre-
mentally. That is, after AP ðkÞ ends, the workload of
the system is adjusted by enabling and disabling
some optional parts. After this, AP ðkþ 1Þ is exe-
cuted and the process repeats.

The following rules are applied by the INCA server for

the execution of optional parts:

Rule 1. All optional parts of tasks not selected by AP(k) (for

k=0, ..., n) will finish the execution of the current instance

and will be discarded after that. Therefore, there will be

no partial execution of any optional part.

Rule 2. A new task will only start after the largest deadline

of currently active tasks.

Note that an optional part that is discarded by AP(k) can

be selected for execution by AP(k + 1). The reason for this is

that, at each approximate algorithm, we may find different

solutions involving a different set of optional parts to

execute.
Algorithm AP(k) yields better (or at least equal)

solutions, in terms of �ðsÞ or ðsÞ, than AP(k - 1), but at

the cost of higher execution times. However, the optional

parts selected by the execution of each AP(k) may increase

the utilization and thus decrease the amount of available

slack. This can eventually exhaust all the available slack in

the system. If this condition occurs, the execution of

AP(k + 1) will not be possible, therefore, the INCA Server

will not be invoked further (see line 8 of Fig. 1). If, during

the execution of AP(k), a new task arrives in or departs from

the system, the INCA Server will restart its execution,

taking into account the modified set of tasks in the system.

If the incremental server is invoked when a task leaves the

system, lines 3, 4, 5, 6 (from Fig. 1) are not executed.

Since the INCA Server executes on the slack available in
the system, it will execute as many approximate algorithms
as possible.

4. Stopping the execution of the server. The condi-
tions for stopping the execution of the server are
a) there is no more slack in the schedule to execute
some AP(k) algorithm; b) the result of AP(k) is not
better than the result of AP(k - 1); or c) after AP(n) is
executed.

5.2 The Approximate Algorithm: AP ðkÞ
In this section, we describe the approximate algorithm used

by the INCA Server. The approximate algorithm makes use

of a greedy-like procedure [22] which finds a heuristic

solution by selecting for execution optional parts in order of

decreasing utilization pi
Ti

if the objective function is �ðsÞ or
vi

pi=Ti
if the objective function is ðsÞ [22]. This heuristic

attempts to get the most value as a function of processor

utilization; moreover, this heuristic has been shown to

produce better results than considering only utilization or

value [21], [22].

The algorithm AP(k) considers all possible subsets in the

search space with at least k optional parts chosen for

execution. It first chooses for inclusion in the schedule a

subset of k optional parts and, if this subset does not satisfy

our feasibility condition UBT (i.e., UBT = false), it is

discarded and a new subset with k optional parts is

selected. If the subset passes the UBT (i.e., UBT = true),

the remaining optional parts in this subset are also included

in decreasing order of pi
Ti

or vi
pi=Ti

, while the UBT is satisfied.

The solutions obtained from all feasible subsets are

compared and the solution with higher value is chosen to

be the solution generated by the AP(k) algorithm; if no

subset satisfies UBT, AP(k) will return the value returned

by AP(k-1) and exit.
The algorithm is described in Fig. 2. The outputs of

algorithm AP(k) are Xk that denotes the set of optional parts
chosen for execution and the output variable value that
denotes the optimal solution found by AP(k). Note that
value approximates Umax or V max depending on the
objective function used.

The time complexity of procedure SEQ (in Fig. 2) is OðnÞ:
There is a loop for each task and the UBT can be computed
incrementally inOð1Þ for each task. Since the number of times
SEQ is executed is OðnkÞ, the time complexity of AP(k) is
Oðnkþ1Þ. Even for a small number of tasks (e.g., n ¼ 10 tasks),
this complexity seems rather high. In fact, the quality of the
solution (or performance) and the complexity are two
conflicting forces in the determination of k. It has been shown
in [22] that the worst-case performance ratio of AP(k) is kþ1

kþ2 ,
which directs us to a solution with large k. On the other hand,
the complexity of the AP(k) algorithm is high for large k,
which leads us to attempt to find the smallest value of k such
that AP(k) reaches a near-optimal solution. However, we will
show that, for k ¼ 2, the value of the system is very close to
optimal. In the following example, we will measure the real
performance of the AP(k) algorithm in terms of complexity
and runtime overhead.

1352 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 10, OCTOBER 2003

3. Computing analytically the best time at which it is possible to accept
the new task may involve some additional runtime overhead [10].
Therefore, we have decided to use a low-cost solution and to schedule
the new task at the end of the last period of the instances running in the
system when the new task arrives.

Example 2. Consider the set of tasks with its associated

timing constraints and criticality values described in

Table 2. The total utilization of the set of tasks in Table 2

creates an overload of 20 percent (that is, total utilization

of 120 percent). The utilization of the mandatory and

optional parts is 54 percent and 66 percent, respectively.

The problem to be solved is to handle the overload using

the AP(k) algorithms such that our optimality criteria is

satisfied.
Tables 3 and 4 show the results from algorithm AP(k),

for k ¼ 0; . . . ; 5 for maximizing utilization (CU) and for
maximizing critically (CV), respectively.

The results shown in the tables are:

1. valuek: the result from algorithm AP(k);
2. Ck: the complexity of algorithm AP(k), that is, the

number of subsets in the search space explored
before a solution is found;

3. the runtime of AP(k), which denotes the physical
time in microseconds, using a PC Intel 233 MHz
running Linux with 48MB of RAM; and

4. the result set Xk: the set of optional parts chosen
for execution.

Note that, for k > 3, UBT = false and, therefore, AP(k)
does not update valuek or Xk (it keeps the values for
AP(3), in this example).

It is possible to observe that, for the goals of
maximizing utilization and criticality, AP ðkÞ with k ¼ 3
yields optimal results.

5.3 The Performance and Complexity Trade Off

To measure the performance of our proposed algorithm, an
experiment with 1,000 randomly generated task sets has
been conducted. For each experiment, a workload of 10 tasks
has been generated with an overload (120 percent utiliza-
tion for each task set). Results shown in Table 5 indicate the
number of solutions within a certain percent close to
optimal. For the two optimality criteria, a near optimal
solution (more than 91 percent) is obtained using AP ð2Þ.
For maximizing utilization, results for AP ð2Þ indicate that
951 experiments yield a near optimal solution (within
0-0.1 percent of optimal) and the remaining 49 yield a
1-5 percent near optimal solution. For maximizing criti-
cality, results show that, for AP ð2Þ, 911 experiments yield a
solution within 0-0.1 percent of optimal. This shows the
excellent performance of the approximate algorithm AP ðkÞ.

Further reductions in complexity (the number of elements
to be searched before a solution is found) could be obtained
by relaxing the feasibility bound. As presented above, an
element s 2 S is feasible if UBT is met (i.e., UBT = true).
However, a result less than 100 percent (e.g., 95 percent)
could be sufficient for some applications, which would cause

MEJ�IIA-ALVAREZ ET AL.: AN INCREMENTAL SERVER FOR SCHEDULING OVERLOADED REAL-TIME SYSTEMS 1353

Fig. 2. Approximate Algorithm: AP(k).

TABLE 2
Example Real-Time Workload: Mandatory and Optional Parts

and Criticality Values

TABLE 3
Results for Maximizing Utilization, for k > 3, UBT = False

TABLE 4
Results for Maximizing Criticality, for k > 3, UBT = False

an earlier end to the search for feasible solutions. Let us

define �, 0 < � < 1:0, as the feasibility error which indicates a

relaxation on the feasibility condition. The feasibility test

shown in (5) indicates a sufficient feasibility condition.

Xn
i¼1

mi

Ti
þ xipi

Ti
� 1:0ÿ �: ð5Þ

Note that increasing the value of � may reduce the

number of elements to be searched in S, but at the cost of

reduced CPU usage.
We are interested in measuring the complexity of the

AP(k) algorithm using the sufficient feasibility condition for

different values of �. We have conducted 1,000 experiments

comprising 10 tasks in each experiment whose total

utilization (mandatory + optional) is 120 percent. The

average number of subsets examined during the AP(5)

algorithm is shown in Fig. 3 as a curve for each value of �

ð10ÿ5 � � � 0:05Þ. The complexity of the algorithm (shown

in the Y axis of Fig. 3) denotes the number of subsets in the

search space explored before a solution is found. Note that

big reductions in complexity can be achieved by increasing

the value of �. For example, for � ¼ 0:02 and k ¼ 5, the

complexity achieved is 47 and 240 for maximizing utiliza-

tion and criticality, respectively.
From Fig. 3, it can be noted that keeping � between the

values of 0:01 and 0:03 is reasonable for achieving low

complexity; clearly, these values maintain high quality

results.

6 EVALUATION OF INCA SERVER

In this section, we start by presenting an empirical

evaluation of the INCA server, achieved through extensive

simulations. We then provide an intuitive analytical

comparison of incremental and nonincremental servers,

which is the basis for why the incremental server is

preferable in overloaded situations.

6.1 Simulation Experiments

The following simulation experiments have been designed
to test the performance of the INCA Server and its ability to
achieve our optimality criteria using synthetic workloads.
From the results obtained in Section 5.2, we need to execute
no more that three stages to achieve near-optimal results.
For this reason, we measure the performance of the INCA
Server using up to five stages of execution.

Our goals in this simulation study are the following:

. to measure the quality of the results over a large set
of dynamic tasks that arrive and leave the system at
arbitrary instants of time,

. to measure and compare the performance among
several stages for our different optimality criteria.

Each plot on the graphs represents the average of a set of
100 independent simulations. Up to the first five stages of
the INCA server are executed in each simulation. Each
curve, INCA-k in the graphs, denotes the execution of the
INCA server in which only the first k stages are executed.
That is, only the incremental execution of AP ðjÞ, for j ¼
0; . . . ; k is considered.

For each simulation, 5,000 tasks are generated dynami-
cally. Each task has a lifetime (ri) that follows a uniform
distribution between 400 and 600 instances (periods). At the
end of its lifetime, the task leaves the system. The utilization
of task �i, Ui, is chosen as a random variable with uniform
distribution between 5 percent and 20 percent. An average
utilization Uav is computed for all tasks currently executing
in the system. The period Ti of each task is chosen as a
random variable with uniform distribution between 30 and
100 time units. The computation time of task �i is
Ci ¼ Ti � Ui. The experiments were conducted considering
an average number of tasks in the system (nt) executing at
any time, nt ¼ UT

Uav
, where UT denotes the total utilization of

the tasks executing at any time, UT ¼
P

i
Ci
Ti

, which varies
between 80 percent and 180 percent.

The arrival time of task �iþ1 is computed by aiþ1 ¼ Tiþ1�riþ1

nt

and a1 ¼ 0. The computation time of the optional part pi is a
random variable that follows a uniform distribution4

between 40 percent and 60 percent of the total computation
time of task �i.

The execution time of AP(k), �k, used in the experiments
was obtained from actual experiments described by Fig. 3,
using a value of � ¼ 0:001. Throughout these simulation
experiments, we considered randomly generated correlated

tasks sets, which means that the criticality is a linear function
of the utilization.5 The value vi of each task is randomly
distributed in ½Ui ÿ 0:10; Ui þ 0:10� such that vi > 0.

The performance of our algorithms was measured
according to the following metrics:

1354 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 10, OCTOBER 2003

4. Additional experiments were conducted with pi following a uniform
distribution between 20-40 percent and 60-80 percent, obtaining similar
results.

5. It is hard to maximize the criticality value ratio for correlated tasks sets
because many task combinations give similar results, therefore a larger
number of combinations must be computed in order to find an optimal
solution. We do not consider uncorrelated task sets because it is relatively
easier to maximize their criticality value ratio (there is a large variation
between the utilization of the tasks, making it easier to obtain a feasible and
optimal solution) [21].

TABLE 5
Number of Solutions with x Percent Near Optimal

for 1,000 Task Sets

. Utilization Ratio: This metric is computed as
follows:

Utilization Ratio ¼
P

i ei �
pi
Ti

Total Utilization
; ð6Þ

where ei denotes the number of instances where
optional part pi is executed.

The total utilization is computed by:
P

i ri �
pi
Ti

,
where ri denotes the total number of instances of �i
and the sum is over all tasks that arrive to the system
for the complete duration of the schedule.

. Criticality Ratio: This metric is computed as follows:

Criticality Ratio ¼
P

i ei � vi
Total Criticality

: ð7Þ

The total criticality is computed by:
P

i ri � vi.
Two sets of experiments were conducted for our

simulations. The first experiment, whose results are shown
in Figs. 4 and 5, was designed to compare the performance
of INCA-k for different values of k, 0 � k � 5. In the graphs
shown in Figs. 4 and 5, the utilization and the criticality
ratio were measured. The left graph shows the value of the
utilization metric, while the graph on the right shows the
ratio of the value obtained by INCA-k and INCA-5, called
iteration ratio. The second experiment, shown in Fig. 6, was
designed to compare the performance of the INCA-2
algorithm against the NON-INCA-2 algorithm.

The results shown in Figs. 4 and 5 indicate that, for
values of k > 2, there is no significant improvement on the
performance of the INCA server for all load values. Similar
results were obtained on experiments considering
k ¼ 6; . . . ; 10. Such results allow us to conclude that
INCA-5 achieves near-optimal results. The performance
results for the utilization ratio (shown in Fig. 4) indicate that
INCA-0 achieves a performance that varies from 96 percent
of INCA-5 for a load of 80 percent to 78 percent of INCA-5
for a load of 180 percent. The performance of the algorithm
for INCA-2 varies from 99 percent to 98.5 percent of
INCA-5. It is important to note that even INCA-1 achieves a
utilization performance higher than or equal to 95 percent
of INCA-5 for all load values. The performance results for
the criticality ratio (shown in Fig. 5) indicate that INCA-k
(k ¼ 0; . . . ; 5) yields a performance higher than 90 percent of
INCA-5 for all values of the load.

For our second experiment, Fig. 6 shows the utilization
and criticality ratios for the INCA-2 and the Non-INCA-2
servers. In this experiment, the load of the system has a
fixed value of 120 percent and the lifetime ri of each task
varies between 100 and 500.

The comparative behavior of the INCA-2 and Non-
INCA-2 servers can be explained as follows: For low values
of ri (e.g., 100 instances and below), both servers yield
similar values because they are only able to execute AP(0)
(which removes the overload). We observed that, on
average, it takes from 90 to 110 instances for INCA-2 to

MEJ�IIA-ALVAREZ ET AL.: AN INCREMENTAL SERVER FOR SCHEDULING OVERLOADED REAL-TIME SYSTEMS 1355

Fig. 3. Complexity of AP(5) for different values of �. Y axis is in log scale, denoting the number of subsets examined.

Fig. 4. Absolute value of utilization (a) and utilization normalized to INCA-5 performance (b).

commit to AP(1) and from 350 to 380 instances to commit to

AP(2). These results are explained by the fact that the

execution time of AP(k), �k, used was too high. However,

additional experiments were conducted using values of � ¼
0:01 and � ¼ 0:02, with consequent reductions on �k, as

indicated in Fig. 3. For both values of �, graphs were

obtained with similar shapes and similar results (i.e.,

INCA-2 was always better than Non-INCA-2) than those

produced using a value of � ¼ 0:001.
For higher values of ri (200 to 300 instances), the INCA-2

server yields better results because the INCA-2 server is

capable of committing more frequently than Non-INCA-2.

In this situation, the Non-INCA-2 server is able to execute

AP(1) and AP(2) a few times, but is mostly only able to

execute AP(0). Finally, for the highest tested values of ri
(400 to 500 instances), the performance of INCA-2 and Non-

INCA-2 servers get closer because both servers are now able

to commit both AP(1) and AP(2). In any case, the

performance of the INCA-2 server is better than that of

the Non-INCA server for all tested values of ri.
The results obtained in our simulations confirm the

results obtained in Section 5.3 and indicate that the INCA

Server is a low cost and effective mechanism for scheduling

real-time tasks under overloaded conditions.

6.2 Analytical Comparison of the INCA and
Non-INCA Servers

In this section, we carry out an approximate analysis of the

performance of an INCA server when compared against

that of a Non-INCA Server. We are interested in validating

analytically the results obtained in previous simulation

experiments. As explained above, the INCA server is based

on the incremental execution of several stages of approximate

algorithms AP(k). At the end of each stage, information is

available regarding the set of optional parts chosen for

execution, Xk, and the resulting value of the objective

function, valuek, for the set of optional parts chosen. The

approximate algorithms are such that the resulting value of

AP(k+1), valuekþ1, is as least as good as the resulting value

of AP(k), valuek.
The INCA server executes AP(k - 1) which chooses a set

of optional parts to remove and a set to execute (Xk). This

set is passed on to the scheduler (we say AP(k - 1) commits),

which schedule the chosen tasks. After AP(k - 1) commits,

AP(k) can be executed. In contrast, a non-INCA server would

execute a number of stages AP ð0Þ; . . . ; AP ðkÞ before

committing to the system. In what follows, we analyze the

merit of the incremental execution by assuming k ¼ 2 (see

Fig. 7). We denote by Ik the amount of time it takes to

execute algorithm AP(k) while executing the tasks chosen

1356 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 10, OCTOBER 2003

Fig. 5. Absolute value of criticality (a) and criticality normalized to INCA-5 performance (b).

Fig. 6. Utilization (a) and criticality (b) ratios for the INCA-2 and Non-INCA-2 Servers.

by AP(k - 1). Although we present the analysis through a
k ¼ 2 example, the same analysis can be extended to k > 2.

INCA-2: This is the incremental execution sequence used
by the INCA Server considering only the following stages:
AP ð0Þ; commit; AP ð1Þ; commit; AP ð2Þ; commit.

Non-INCA-2: In this case, there is no incremental
execution and three stages are executed back to back before
committing. That is, AP ð0Þ þAP ð1Þ þAP ð2Þ; commit.

In Fig. 7, we illustrate a sequence of n tasks arriving in
the system such that the arrival of task �n (arriving at time
an) causes an overload. After executing AP(0) at time an, X0

and value0 are obtained. The set of optional parts, X0,
selected for execution will execute (given the restrictions
about task start times, as mentioned in Section 5.1, item 2)
until AP(1) commits at time an þ I1. Then, a new set of
optional parts X1 will be chosen for execution and the
process repeats. Recall that the resulting utilization or
criticality values will depend on the objective function used.

After committing at AP(k), let �k (0 � �k � 1) denote the

resulting slack time expressed in a percentage of resource

usage (that is, system utilization is expressed by 1ÿ �k).
This slack time will be used for the execution of AP(k + 1).

Note that �kþ1 � �k if the objective of the AP(k) algorithm is

to maximize utilization. If �k denotes the worst-case

execution time of algorithm AP(k) measured continuously

(i.e., without interference from other tasks), the interval of

time during which AP(k) executes, while also executing the

tasks committed by AP(k-1), is approximately Ik ¼ �k
�kÿ1

.

This is because AP(k) is executed on the slack time resulting

from AP(k - 1); note that computing the time that AP(k)

executes through the slack �kÿ1 is an approximate measure

since the slack is not necessarily uniformly distributed. For

a non-INCA server, the interval of time during which AP(k)

and AP(k + 1) execute is approximately Ik;kþ1 ¼ �kþ�kþ1

�kÿ1
(see

Fig. 7). Note that, during Ik;kþ1, the only tasks being

executed are those committed by AP(k - 1). We also assume

that Ik;kþ1 < Ik þ Ikþ1.
To exemplify the concepts above, consider a new arrival,

�n, causing an overload. Let us consider the associated
timing constraints of the approximate algorithms AP(1) and
AP(2) as follows: �1 ¼ 10, �2 ¼ 15, �0 ¼ 0:2, and �1 ¼ 0:1.
Without loss of generality, assume that AP(0) committed at
time t0 ¼ 0. The intervals of time at which AP ð1Þ, AP ð2Þ,

and AP ð1Þ þAP ð2Þ execute are I1 ¼ 10
0:2 ¼ 50, I2 ¼ 15

0:1 ¼ 150,
and I1;2 ¼ 10þ15

0:2 ¼ 125.

6.2.1 Utilization Metric

We will compare the cumulative utilization achieved by
INCA-2 and Non-INCA-2 during the interval of time from
an to the next arrival anþ1. If, during an interval I, the slack
in the system is a constant, �, then the cumulative
utilization given by (1) can be alternatively computed from
CUðIÞ ¼ Ið1ÿ �Þ; strictly speaking, I is the interval, but we
will abuse the notation and let I denote both the interval
and its length when used in a computation (as above).

To see why the utilization achieved by an incremental
server is higher than that achieved by a nonincremental
server, consider the following. Both INCA-2 and Non-
INCA-2 have the same utilization (1ÿ �0) after AP(0)
commits and before AP(1) commits, that is, during the
interval ½an; an þ I1�. Also, both will have the same utiliza-
tion (1ÿ �2) after AP(2) commits, that is, during the interval
½an þ I1 þ I2; anþ1�. Therefore, we only need to compare the
utilization achieved in the interval ½an þ I1; an þ I1 þ I2�.

We denote the cumulative utilization resulting from
INCA-2 and Non-INCA-2 during interval I by CUðIÞ and
CUNðIÞ, respectively.

Result 1. CUð½an; anþ1�Þ � CUNð½an; anþ1�Þ if the objective of
the AP(k) algorithm is to maximize utilization.

Proof. In the Appendix. tu

The proof in the Appendix shows that, minus the
inaccuracies of the intervals Ik, the incremental server
always outperforms the nonincremental server when the
goal is to increase the cumulative utilization of the system.
To see that, first note that, if an þ I1 � anþ1 � an þ I1;2, then
the INCA server is at least as good as the Non-INCA server
since the INCA server had the opportunity to commit at
least one stage. Also, if anþ1 ¼ ðan þ I1;2 þ tÞ (arrival anþ1 ¼
x in Fig. 7), where 0 � t � ðI1 þ I2 ÿ I1;2Þ,

CUð½an; anþ1�Þ ¼ I1ð1ÿ �0Þ þ ðI1;2 ÿ I1 þ tÞð1ÿ �1Þ
CUNð½an; anþ1�Þ ¼ I1;2ð1ÿ �0Þ þ tð1ÿ �2Þ;

where the first term of CU shows the value accrued after
committing AP(0) for I1 and committing AP(1) for the rest
of the interval. Likewise, the first term of CUN shows the
value committed after committing for AP(0) and AP(1 + 2).

MEJ�IIA-ALVAREZ ET AL.: AN INCREMENTAL SERVER FOR SCHEDULING OVERLOADED REAL-TIME SYSTEMS 1357

Fig. 7. INCA-2 and Non-INCA-2 Servers: execution sequences.

Further algebraic manipulations shown in the Appendix
demonstrate that, for all values of t; 0 � ðt � I1;2 ÿ I1 þ tÞ,
the INCA server has better performance with utilization as
the metric.

6.2.2 Criticality Metric

The above result assumes that the objective of the servers is to
maximize the system utilization. If, however, the goal is to
maximize the cumulative criticality, as in (2), then the relative
performance of INCA-2 and Non-INCA-2 depend on the
performance of the incremental algorithms AP(0), AP(1), and
AP(2). Let valuek be the criticality value achieved by AP(k)
when the goal of AP(k) is to maximize criticality and let �k be
the slack of the system after AP(k) commits. As before, we will
use CV ðIÞ and CVNðIÞ to denote the cumulative criticality
obtained by INCA-2 and Non-INCA-2, respectively, during
the period I.

R e s u l t 2 . I f ðanþ1 � I1;2Þ o r ðanþ1 > I1 þ I2Þ, t h e n

CV ð½an; anþ1�Þ � CVNð½an; anþ1�Þ when the objective of

AP(k) is to maximize criticality}.

Proof. We know that

CV ð½an; an þ I1�Þ ¼ CVNð½an; an þ I1�Þ ¼ I1 � value0:

Now, assume that anþ1 ¼ an þ I1 þ t, where
0 � t � I1;2 ÿ I1. In this case,

CV ð½an; anþ1�Þ ¼ ðI1 � value0Þ þ ðt � value1Þ
CVNð½an; anþ1�Þ ¼ ðI1 þ tÞ � value0:

The result follows since value1 � value0.
Now, assume that anþ1 > I1 þ I2. In this case, both

INCA-2 and Non-INCA-2 produce the same criticality,
namely, value2, after the time I1 þ I2 and then
CV ð½an; anþ1�Þ ¼ CVNð½an; anþ1�Þ. tu

Finally, if anþ1 ¼ ðan þ I1;2 þ tÞ, where 0 � t � I1 þ I2 ÿ
I1þ2 we will show next that it is not possible to say that the
condition holds when AP(k) is used to maximize criticality.
In this case,

CV ð½an; anþ1�Þ ¼ I1value0 þ ðI1;2 ÿ I1 þ tÞvalue1

¼ �1

�0
value0 þ

�1 þ �2

�0
ÿ �1

�0
þ t

� �
value1

¼ �1

�0
value0 þ

�2

�0
þ t

� �
value1

CVN ð½an; anþ1�Þ ¼ I1;2value0 þ t � value2

¼ �1 þ �2

�0

� �
value0 þ t � value2:

If CV ð½an; anþ1�Þ � CVNð½an; anþ1�Þ, we get

�1

�0
value0 þ

�2

�0
þ t

� �
value1 �

�1 þ �2

�0

� �
value0

þ ðt � value2Þ)
�2

�0
þ

� �
value1 �

�2

�0

� �
value0 þ ðt � value2Þ)

�2

�0
ðvalue1 ÿ value0Þ � tðvalue2 ÿ value1Þ:

If t ¼ 0, the condition holds. If, however, the value
of t is equal to its maximum possible value,
tmax ¼ I1 þ I2 ÿ I1;2 ¼ ð�2

�1
ÿ �2

�0
Þ, we get

�2

�0
ðvalue1 ÿ value0Þ �

�2

�1
ÿ �2

�0

� �
ðvalue2 ÿ value1Þ)

�2

�0
value1 ÿ

�2

�0
value0 �

�2

�1
value2 ÿ

�2

�1
value1

ÿ �2

�0
value2 þ

�2

�0
value1)

�2

�0
ðvalue2 ÿ value0Þ �

�2

�1
ðvalue2 ÿ value1Þ:

Using the worst-case performance ratio of valuek ¼ kþ1
kþ2 (see

Section 5.2 and reference [22]), we have that ðvalue2 ÿ
value0Þ > ðvalue2 ÿ value1Þ since ð34ÿ 1

2Þ > ð34ÿ 2
3Þ. However,

since �2

�0
� �2

�1
, it is not possible to say analytically that, when

AP(k) is used to maximize criticality rather than utilization,
the INCA server has better performance than the Non-
INCA server. However, as shown in Fig. 6, the performance
of the INCA is typically better than Non-INCA servers.

7 EXTENSIONS

In this section, we discuss four extensions that may be used
to enhance the applicability of the INCA Server. The first is
an extension which extends the Feasibility Test to consider
that mandatory parts may also cause an overload. The
second extension uses the Total Bandwidth Server [23] to
improve the scheduling time of the new tasks. In the third
and fourth extensions, aperiodic tasks and tasks with
resource sharing constraints can be introduced easily in
our framework using the Total Bandwidth Server [23] and
the Stack Resource Policy [3], respectively.

. Feasibility Tests: A more general case. The criteria
for activating the INCA server assumes that the
mandatory parts can never cause an overload.
Therefore, only optional parts must be included into
the search space S.

In general, we should also consider that the
mandatory parts can cause an overload. The new
feasibility test used on the INCA Server for this
general case is as follows:

UBT ðsÞ ¼
false if

P
i
mi

Ti
> 1 ðC1Þ

false if
P

i
miþðxipiÞ

Ti
> 1 ðC2Þ

true otherwise:

8<:
In (C1) only mandatory parts must be included into
S, while, in (C2), only optional parts must be
included into S.

The new condition is used when the utilization of
the mandatory parts exceeds the total capacity of the
system. This condition can only be true when dealing
with soft real-time systems since, if the conditionP

i
mi

Ti
> 1 is met, some mandatory task(s) must be

discarded to avoid the overload.
The INCA Server will consider only mandatory

parts to be included into the search space S, will
discard all optional parts from the system, and will
proceed as described above for AP(k) algorithms

1358 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 10, OCTOBER 2003

(that is, AP(0), commit, AP(1), etc.). The optional
parts discarded will be removed from execution
until the next activation of the INCA Server (where a
new case for the feasibility test may be found), while
a mandatory part that is discarded by AP(k) will
possibly be selected for execution by AP(k + 1). The
INCA Server will not reject the newly arrived task,
as in the INCA Algorithm (see line 3 of Fig. 1),
because the approximate algorithms AP ðkÞ will
select for execution only those mandatory parts with
the most value in the system. However, note that the
selection by different stages of AP(k) may lead to
different mixes of mandatory parts at different
instants of time (tasks complete, arrive, and AP(k)
execute).

Note that Rules 1 and 2 discussed in Section 5.1
will also be applied in this case, with the difference
that only mandatory parts could be discarded.

. Scheduling new tasks. The criteria used by the INCA

server for scheduling newly arriving tasks is that they

cannot be scheduled to execute until the end of the

longest period of all tasks that have been preempted

when the new task arrived. Although this criteria has

low overhead, it may cause new tasks to wait for a long

time before they are scheduled. To mitigate this effect,
one can extend this criteria to enhance the schedul-

ability of the new tasks by including the Total

Bandwidth Server (TB) [23]. The TB Server is a low-

cost scheduling mechanism designed to improve the

response time of soft aperiodic requests in dynamic

environments where tasks are scheduling according

to the EDF [18] policy. This mechanism simply assigns

a suitable deadline to each request such that no task in
the system misses its deadline. When the kth task

arrives at time t ¼ ak, it receives a deadline,

dk ¼ maxðak; dkÿ1Þ þ
Ca
k

Us
, where Ca

k is the execution

time of the new task, Us ¼ ð1ÿ UmÞ is the server

utilization factor, and Um is the utilization of the

mandatory parts in the system. By definition, d0 ¼ 0.

The new task is then inserted into the ready queue of

the system and then scheduled by the INCA Server.
The response time of the new tasks can be further

improved by using the TB� algorithm. The key idea

of the TB� algorithm is to assign to the new task a

deadline shorter than that obtained by the TB

algorithm. The TB� algorithm uses an iterative

procedure to shorten the deadline assigned to the

new tasks. At each iteration, it verifies if the set of

tasks is still schedulable. The TB� algorithm stops
when the deadline assigned at some iteration makes

some of the tasks in the system to miss their

deadlines.
Important features of this extension are that it can

be easily adapted to the INCA Server to schedule
new tasks and that the overhead and the response
time of the new tasks can be controlled by limiting
the number of iterations of the TB� algorithm.

. Scheduling aperiodic tasks. As discussed above,
aperiodic tasks (characterized as tasks with only one

period) can be scheduled in the INCA Server by
using the TB Server. Note that the TB algorithm is
used only for soft aperiodic tasks. In the case of hard
aperiodic tasks we can resort to the Aperiodic Server
[25] and change its capacity (according to the load of
the system) at every new arrival and departure of a
task. This way, we may respond faster when
running the INCA server, while still maintaining
the schedulability of the set of tasks in the system.

. Scheduling tasks with resource requirements.
Tasks with resource sharing constraints can be
introduced easily into our framework using the
Stack Resource Policy [3]. This protocol has several
interesting properties that make it suitable to be
included into our INCA framework. For example, it
applies to a dynamic scheduling environment,
prevents deadlocks, bounds the maximum blocking
times of tasks, reduces the number of context
switches, and, most importantly, its implementation
is straightforward and its overhead is low. This
protocol has been enhanced using the TB and the
TB� server to handle resource requirements for soft
and hard tasks [17]. The analysis described in [17]
can be used to perform online guarantees for
reserving a bandwidth to serve new tasks in the
INCA Server. However, there are several yet
unresolved issues, for example, the SRP will
influence the temporal behavior of the applications
and, therefore, this will influence the UBT. One of
our avenues for future work is precisely how to
design algorithms that take advantage of the inter-
action between the SRP and UBT.

8 CONCLUSION

In this paper, the problem of scheduling an overloaded real-
time system has been studied. As observed by different
research studies [12], [7], [13], [16], a significant perfor-
mance degradation may occur in the system if the overload
is not addressed efficiently. The set of tasks selected for
execution is crucial for the proper operation of an over-
loaded real-time system. In our framework, each task has an
assigned criticality value and an objective function is
evaluated in overloaded conditions such that an optimality
criteria is met. The process of selecting tasks to discard
while meeting the optimality criteria requires the explora-
tion of a potentially large number of combinations. Since
this process is too time consuming to be computed online,
we have developed an Incremental Server (INCA) schedul-
ing paradigm which is based in a sequence of approximate
algorithms. The execution of the approximate algorithms is
conducted in an incremental manner during the time in
which the processor would otherwise be idle (slack time),
progressively refining the quality of the solution. The
computational complexity of the INCA Server is high if
an optimal solution is sought. However, we have shown
that, in practice, only a few stages need to be executed for
achieving near-optimal solutions. An important feature of
the incremental algorithm is that its runtime overhead and
the quality of the solutions are parameters that can be
controlled online. Our simulation results show that our

MEJ�IIA-ALVAREZ ET AL.: AN INCREMENTAL SERVER FOR SCHEDULING OVERLOADED REAL-TIME SYSTEMS 1359

approximate algorithm is efficient, has low overhead, and,

most importantly, generates near-optimal solutions for

overloaded real-time systems. To extend the applicability

of the INCA server, we proposed a more general feasibility

test, where mandatory parts could also cause overloads.

Also, additional criteria was discussed for improving the

response time of new tasks. Finally, aperiodic tasks and

tasks with resource sharing constraints were introduced

into our framework using the Total Bandwidth Server [23]

and the Stack Resource Policy [3], respectively.

APPENDIX

PROOF OF RESULT 1

Proof. If anþ1 � an þ I1, then both servers produce the

same utilization, while, if an þ I1 � anþ1 � an þ I1;2,

then the INCA server is at least as good as the Non-

INCA server since CUð½an þ I1; an þ I1;2�Þ ¼ ðI1;2 ÿ
I1Þð1ÿ �1Þ and CUNð½an þ I1; an þ I1;2�Þ ¼ ðI1;2 ÿ I1Þð1ÿ
�0Þ and �kþ1 � �k. Further, if anþ1 > an þ I1 þ I2 (arrival

anþ1 ¼ y in Fig. 7), then INCA-2 and Non-INCA-2

produce the same utilization, (1ÿ �2), for any time later

than an þ I1 þ I2; thus, CUð½an; anþ1�Þ � CUNð½an; anþ1�Þ
holds.

Now, assume that anþ1 ¼ ðan þ I1;2 þ tÞ (arrival anþ1 ¼
x in Fig. 7), where 0 � t � ðI1 þ I2 ÿ I1;2Þ. In this case,

CUð½an; anþ1�Þ ¼ I1ð1ÿ �0Þ þ ðI1;2 ÿ I1 þ tÞð1ÿ �1Þ
CUNð½an; anþ1�Þ ¼ I1;2ð1ÿ �0Þ þ tð1ÿ �2Þ

using the values of I1, I2, and I1;2 from Section 6.2 and

assuming t0 ¼ 0, we get,

CUð½an; anþ1�Þ ¼ Rþ
�1 þ �2

�0
ÿ �1

�0
þ t

� �
ð1ÿ �1Þ)

CUð½an; anþ1�Þ ¼ Rþ
�2

�0
þ t

� �
ð1ÿ �1Þ;

where R ¼ �1

�0
ð1ÿ �0Þ and

CUNð½an; anþ1�Þ ¼
�1 þ �2

�0

� �
ð1ÿ �0Þ þ tð1ÿ �2Þ)

CUNð½an; anþ1�Þ ¼ Rþ
�2

�0
ð1ÿ �0Þ þ tð1ÿ �2Þ:

Assuming thatCUð½an; anþ1�Þ � CUNð½an; anþ1�Þ, we get

Rþ �2

�0
þ t

� �
ð1ÿ �1Þ � Rþ

�2

�0
ð1ÿ �0Þ þ tð1ÿ �2Þ)

�2

�0
þ t

� �
ð1ÿ �1Þ �

�2

�0
ð1ÿ �0Þ þ tð1ÿ �2Þ:

We are interested in verifying the above condi-
tion for all possible values of t, 0 � t � tmax, where
tmax is the maximum possible value of t and
tmax ¼ ðI1 þ I2 ÿ I1;2Þ ¼ ð�1

�0
þ �2

�1
ÿ �1þ�2

�0
Þ ¼ ð�2

�1
ÿ �2

�0
Þ. Sub-

stituting t in the above equation, we get

�2

�0
þ �ð�2

�1
ÿ �2

�0
Þ

� �
ð1ÿ �1Þ �

�2

�0
ð1ÿ �0Þ þ �

�2

�1
ÿ �2

�0

� �
ð1ÿ �2Þ;

where 0 � � � 1. Therefore,

�2

�0
þ ��2

�1
ÿ ��2

�0
ÿ �2�1

�0
þ ��2�1

�0
ÿ ��2

� �
�

�2

�0
ÿ �2 þ �

�2

�1
ÿ �2

�0
ÿ �2�2

�1
þ �2�2

�0

� �
)

��2�1

�0
ÿ �2�1

�0
ÿ ð��2Þ

� �
�

ÿ�2 þ �
�2�2

�0
ÿ �2�2

�1

� �
)

��2
�1 ÿ �0

�0

� �
þ �2

�0 ÿ �1

�0

� �
���2

�2

�0
ÿ �2

�1

� �
:

Note that both the first term on the left side and the
term on the right side of the condition may be negative
numbers since �0 � �1.

Rearranging terms on the condition, we get

��2
�2

�1
ÿ �2

�0

� �
þ �2

�0 ÿ �1

�0

� �
� ��2

�0 ÿ �1

�0

� �
:

Given that �k � �kþ1, ��2ð�2

�1
ÿ �2

�0
Þ � 0, and

�2ð�0ÿ�1

�0
Þ � ��2ð�0ÿ�1

�0
Þ, we conclude that

CUð½an; anþ1�Þ � CUNð½an; anþ1�Þ:
ut

ACKNOWLEDGMENTS

A shorter version of this paper was presented at the 21st

Real-Time Systems Symposium (RTSS ’00). This work has

been supported by the US Defense Advanced Research

Projects Agency through the FORTS project (Contract

DABT63-96-C-0044).

REFERENCES

[1] L. Abeni and G. Buttazzo, “Integrating Multimedia Applications
in Hard Real-Time Systems,” Proc. IEEE Real Time Systems Symp.,
Dec. 1998.

[2] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez, “Optimal
Reward-Based Scheduling for Periodic Real-Time Tasks,” IEEE
Trans. Computers, vol. 50, no. 2, pp. 111-130, Feb. 2001.

[3] T. Baker, “Stack Based Scheduling of Real-Time Processes,” J. Real-
Time Systems, vol. 3, no. 1, pp. 284-292, 1993.

[4] P. Binns, “Incremental Rate Monotonic Scheduling for Incremen-
tal Control System Performance,” Proc. IEEE Real Time Technology
and Applications Symp., June 1997.

[5] A. Burns, D. Prasad, A. Bondavalli, F. Di Giandomenico, K.
Ramamritham, J. Stankovic, and L. Strigini, “The Meaning and
Role of Value in Scheduling Flexible Real-Time Systems,”
J. Systems Architecture, Jan. 2000.

[6] A. Burns and D. Prasad, “Value-Based Scheduling of Flexible
Real-Time Systems for Intelligent Autonomous Vehicle Control,”
Proc. Third IFAC Symp. Intelligent Autonomous Vehicles, Mar. 1998.

[7] G.C. Buttazzo, “Red: A Robust Earliest Deadline Scheduling
Algorithm,” Proc. Third Int’l Workshop Responsive Computing
Systems, Dec. 1998.

1360 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 10, OCTOBER 2003

[8] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic Task Model for
Adaptive Rate Contro,l” Proc. IEEE Real Time Systems Symp. Dec.
1998.

[9] G.C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic, 1997.

[10] H. Chetto and M. Chetto, “Some Results of the Earliest Deadline
Scheduling Algorithm,” IEEE Trans. Software Eng., Oct. 1989.

[11] M. Hamdaoui and P. Ramanathan, “A Dynamic Priority Assign-
ment Technique for Streams with (m,k)-Firm Deadlines,” IEEE
Trans. Computers, vol. 44, no. 12, pp. 1443-1451, Dec. 1995.

[12] S. Hwang, C.M. Chen, and A.K. Agrawala, “Scheduling an
Overloaded Real-Time System,” Proc. IEEE Conf. Computers and
Comm., 1996.

[13] R.K. Clark, E.D. Jensen, and F.D. Reynolds, “An Architectural
Overview of the Alpha Real-Time Distributed Kernel,” Proc.
USENIX Workshop Microkernels and Other Kernel Architectures,
pp. 200-208, 1993.

[14] M. Joseph and P. Pandya, “Finding Response Times in a Real-
Time System,” Computer J., pp. 390-395, Oct. 1986.

[15] G. Koren and D. Shasha, “Skip-Over: Algorithms and Complexity
for Overloaded Real-Time Systems,” Proc. IEEE Real Time Systems
Symp., Dec. 1995.

[16] G. Koren and D. Shasha, “D-Over: An Optimal Scheduling
Algorithm for Overloaded Real-Time Systems,” Proc. IEEE Real
Time Systems Symp., 1992.

[17] G. Lipari and G. Buttazzo, “Schedulability Analysis of Periodic
and Aperiodic Tasks with Resource Constraints,” J. Systems
Architecture, vol. 46, pp. 327-338, Jan. 2000.

[18] C.L. Liu and J. Layland, “Scheduling Algorithms for Multi-
programming in Hard Real-Time Environments,” J. ACM, vol. 20,
no. 1, pp. 46-61, Jan. 1973.

[19] J.W. Liu, W.-K. Shih, K.-Y. Lin, and R. Bettati, “Imprecise
Computations,” Proc. IEEE, vol. 82, no. 1, Jan. 1994.

[20] C.D. Locke, “Best-Effort Decision Making for Real-Time Schedul-
ing,” PhD thesis, Computer Science Dept., Carnegie Mellon Univ.,
1986.

[21] S. Martello and P. Toth, Knapsack Problems. Wiley, 1990.
[22] S. Sahni, “Approximate Algorithms for the 0/1 Knapsack

Problem,” J. ACM, Jan. 1975.
[23] M. Spuri and G. Buttazzo, “Scheduling Aperiodic Tasks in

Dynamic Priority Systems,” Proc. IEEE Real Time Systems Symp.,
Dec. 1996.

[24] S. Zilberstein and A. Mouaddib, “Optimal Scheduling of
Progressive Processing Tasks,” Int’l J. Approximate Processing,
vol. 25, pp. 169-186, 2000.

[25] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic Task Scheduling for
Hard Real-Time Systems,” J. Real-Time Systems, vol. 1, pp. 27-60,
1989.

Pedro Mejı́a-Alvarez received the BS degree in
computer systems engineering from ITESM,
Queretaro, Mexico, in 1985 and the PhD degree
in informatics from the Universidad Politecnica
de Madrid, Spain, in 1995. He has been an
asisistant professor in the Seccion de Computa-
cion CINVESTAV-IPN Mexico since 1997. In
1999, he held a research faculty position in the
Department of Computer Science at the Uni-
versity of Pittsburgh and, in 2000, a visiting

assistant professor position in the Department of Information Sciences
and Telecommunications at the University of Pittsburgh. He is a fellow of
the National System of Researchers of Mexico (SNI). His main research
interests are real-time systems scheduling, low-power computing,
adaptive fault tolerance, and software engineering. He is member of
the IEEE Computer Society.

Rami Melhem received the BE degree in
electrical engineering from Cairo University in
1976, the MA degree in mathematics and the
MS degree in computer science from the
University of Pittsburgh in 1981, and the PhD
degree in computer science from the University
of Pittsburgh in 1983. He was an assistant
professor at Purdue University prior to joining
the faculty of the University of Pittsburgh in
1986, where he is currently a professor of

computer science and electrical engineering and the chair of the
Computer Science Department. His research interests include real-time
and fault-tolerant systems, optical interconnection networks, high
performance computing, and parallel computer architectures. He has
served on program committees of numerous conferences and work-
shops and was the general chair for the Third International Conference
on Massively Parallel Processing Using Optical Interconnections. He
was on the editorial board of the IEEE Transactions on Computers and
served on the advisory boards of the IEEE Technical Committees on
Parallel Processing and on Computer Architecture. He is the editor for
the Plenum Book Series on Computer Science and is on the editorial
board of the IEEE Transactions on Parallel and Distributed Systems. He
is a fellow of the IEEE and a member of the ACM.

Daniel Mossé received the BS degree in
mathematics from the University of Brasilia in
1986 and the MS and PhD degrees in computer
science from the University of Maryland in 1990
and 1993, respectively. He joined the faculty of
the University of Pittsburgh in 1992, where he is
currently an associate professor. His research
interests include fault-tolerant and real-time
systems, as well as networking. The major
thrust of his research in the new millenium is

power-aware computing and security. He has served on program
committees for all major IEEE-sponsored real-time related conferences
and as and program and general chairs for RTAS and RT Education
Workshop. Typically funded by the US National Science Foundation and
US Defense Advanced Research Projects Agency, his projects combine
theoretical results and implementations. He on the editorial board of the
IEEE Transactions on Computers and is a member of the IEEE
Computer Society and of the ACM.

Hakan Aydin received the BSc and MSc
degrees in control and computer engineering
from Istanbul Technical University in 1991 and
1994, respectively. In 1996, he joined the
University of Pittsburgh Computer Science De-
partment, where he received the PhD degree in
2001. He is currently an assistant professor at
George Mason University, Computer Science
Department. He served on the program commit-
tee of the IEEE Real-Time Technology and

Applications Symposium (RTAS) in 2001 and 2003. His research
interests include real-time systems, low-power computing, and fault
tolerance.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

MEJ�IIA-ALVAREZ ET AL.: AN INCREMENTAL SERVER FOR SCHEDULING OVERLOADED REAL-TIME SYSTEMS 1361

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

