
An Improved Rate-Monotonic Admission
Control and Its Applications

Sylvain Lauzac, Rami Melhem, Fellow, IEEE, and

Daniel Mossé, Member, IEEE Computer Society

Abstract—Rate-monotonic scheduling (RMS) is a widely used real-time scheduling technique. This paper proposes RBound, a new

admission control for RMS. RBound has two interesting properties. First, it achieves high processor utilization under certain conditions.

We show how to obtain these conditions in a multiprocessor environment and propose a multiprocessor scheduling algorithm that

achieves a near optimal processor utilization. Second, the framework developed for RBound remains close to the original RMS

framework (that is, task dispatching is still done via a fixed-priority scheme based on the task periods). In particular, we show how

RBound can be used to guarantee a timely recovery in the presence of faults and still achieve high processor utilization. We also show

how RBound can be used to increase the processor utilization when aperiodic tasks are serviced by a priority exchange server or a

deferrable server.

Index Terms—Real-time, scheduling, rate monotonic, operating systems.

æ

1 INTRODUCTION

TASKS in a real-time system must produce functionally
correct results in a timely manner. This implies that the

tasks submitted to the system have known timing require-
ments. Many of these real-time tasks (such as in process
control systems) are periodic and modeled as follows: At
the beginning of each period, a new instance of the task is
generated and is immediately available for processing. The
processing of each task instance must be completed by the
end of the task’s period, called the deadline of the instance.
Typically, the requirements of a periodic real-time task �i
are characterized by a period Ti and a worst-case computa-
tion time Ci [16].

Given this task model, a real-time system must ensure

that each task instance will complete before its deadline.

This is done by using an admission control and a scheduling

policy for the real-time system. The admission control is an

algorithm that depends on the scheduling policy and

ensures that only tasks that will meet their deadlines are

accepted into the system. The scheduling policy determines

which task instance is to be processed next.

One of the most widely used uniprocessor scheduling

policies for preemptive periodic real-time tasks is the rate-

monotonic scheduling (RMS), proposed by Liu and Layland

in [16]. RMS associates each task �i with a fixed priority

pi ¼ 1=Ti. At any time, the available task with the highest

priority is processed. It is assumed that preemption time is

negligible. An admission control for RMS based on

processor utilization is also given in [16]. The utilization of

task �i is defined to be Ci=Ti and the utilization of a task set

is the sum of the utilizations of all tasks in the task set. This

admission control compares the utilization of the task set to

a bound that depends only on the number of tasks in the set

and shows that a set of m tasks will not miss any deadline if

Xm
i¼1

Ci
Ti
� ULLðmÞ ¼ mð21=m ÿ 1Þ: ð1Þ

Until recently, rate-monotonic scheduling theory has

been mainly developed for uniprocessor environments.

However, multiprocessor systems are increasingly being

used for real-time applications because of their capability

for high performance, reliability, and extensibility [22]. As

more real-time systems are now deployed for common

application domains, such as the aerospace and automotive

industries, efficiency requirements become a prime concern.

Unfortunately, the problem of optimally scheduling a set of

preemptive periodic tasks on a multiprocessor system using

fixed priorities is known to be NP-complete [15]. Therefore,

we address the problem of designing an efficient multi-

processor rate-monotonic scheduling algorithm.
Section 2 proposes RBound, a uniprocessor schedulabil-

ity condition for RMS. Section 3 shows why RBound is well
adapted to multiprocessor environments. The efficiency of
RBound is measured by the average processor utilization
achieved and is compared with other multiprocessor
scheduling algorithms. When RMS is implemented on
real-life systems, several issues must be addressed, such
as aperiodic task servicing and shared resources access. A
large body of work has been developed to provide solutions
to these problems for uniprocessor RMS. To benefit from
these solutions in the multiprocessor context, it is important
to develop a multiprocessor RMS solution that remains
close to the uniprocessor problem. In order to illustrate the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003 337

. S. Lauzac is with Akamai Technologies, 1011 Western Ave., Seattle, WA
98104. E-mail: slauzac@akamai.com.

. R. Melhem and D. Mossé are with the Department of Computer Science,
University of Pittsburgh, Pittsburgh, PA 15260.
E-mail: {melhem, mosse}@cs.pitt.edu.

Manuscript received 9 Apr. 1999; revised 2 Mar. 2001; accepted 21 Sept.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 109569.

0018-9340/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

portability of our approach, we consider the following two
problems: error recovery and aperiodic task servicing.1

Section 4 shows how RBound can be used to provide
timeliness guarantees in the presence of faults and analyzes
the performance of the proposed algorithms. Section 5
shows how RBound can improve the efficiency of aperiodic
task servicing. The conclusion is presented in Section 6.

2 UNIPROCESSOR ADMISSION CONTROL

This section describes RBound, a utilization bound for RMS
that uses information about the tasks periods to obtain high
processor utilization, while keeping the execution model
the same as RMS (that is, task dispatching is still done via a
fixed-priority scheme based on the task periods).
ULL, given in (1), is a general bound used for admission

control of RMS-based systems that only requires informa-
tion about the number of tasks to be admitted in the system.
If more information about the tasks characteristics is used, a
better admission control can be obtained. For example, the
exact characterization described by Lehoczky et al. in [13]
uses Ci and Ti values for admission control. In [2], Burchard
et al. use knowledge about the periods of the tasks to obtain
better admission control for RMS tasks. Clearly, using more
information increases the complexity of the admission
control since there are more variables to take into con-
sideration during admission control. The complexity of an
admission control is particularly important in real-time
systems with dynamically arriving tasks where the sche-
duling overhead must remain low. This is even more
relevant in multiprocessor systems, where the admission
control may be evaluated several times per task (until a
suitable processor is found). On the other hand, using more
information during the admission control may help elevate
the processor utilization since a more accurate procedure
can be used. As we can see, there may be a tradeoff between
the overheads of an admission control scheme and its
accuracy; we intend to investigate this tradeoff, for
uniprocessor systems in this section and for multiprocessor
systems in the next section.

To keep the complexity of RBound low, instead of using
information about all the tasks periods, this information is
captured in a single value r called period ratio, which is
equal to the ratio of the largest to the smallest period among
all tasks in the system.

Given an input task set T , RBound first transforms T
into T 0 according to algorithm ScaleTaskSet given in Fig. 1.
ScaleTaskSet finds an equivalent task set where the ratio
between maximum and minimum periods is less than 2. An
admission control based on RBound is then applied to T 0.
We will show in Lemma 2 that if T 0 is schedulable (that is,
there exists a RM schedule in which no task misses any
deadline), then T is also schedulable. To prove Lemma 2,
we use Lemma 1 stated below and proven in [2].

Lemma 1. Given a task set T ¼ fðC1; T1Þ; ðC2; T2Þ; . . . ;
ðCm; TmÞg, ordered by increasing periods if T cannot be

scheduled on one processor with RMS, the task set

fð2C1; 2T1Þ; ðC2; T2Þ; . . . ; ðCm; TmÞg cannot be scheduled on

one processor with RMS either.

Lemma 2. Given a task set T , let T 0 be the task set resulting from

the application of the algorithm ScaleTaskSet to T . If T 0 is

schedulable on one processor using RMS, then T is

schedulable on one processor with RMS.

Proof. The intuition behind this proof is that, for each task �i,

Ci and Ti are modified in lines 5 and 6. This modification

can be viewed as doubling Ci and Ti blog Tm
Ti
c times. Each

time Ci and Ti are doubled, the converse of Lemma 1

ensures that, if the modified task set is schedulable, then

the input task set is also schedulable.
Formally, we use the auxiliary algorithm in Fig. 2,

which computes the same function as the algorithm in
Fig. 1. Note that, at the end of this algorithm, all tasks
have Tm=2 < Ti � Tm because the loop ends when the
smallest period is larger than Tm=2. Therefore, at each
iteration of the algorithm, T1 < Tm=2) 2T1 < Tm.

The proof proceeds by induction: For the base case,
note that the first iteration of the algorithm is immedi-
ately proven by the converse of Lemma 1. For the
induction step, assume that the lemma holds for the
resulting task set after the first k iterations of the loop.
This means that 9ijTi < Tm=2 (if not, the algorithm
would have stopped) such that the lemma holds.
Therefore, the converse of Lemma 1 will guarantee that
the lemma holds after one more iteration of the
algorithm, which doubles T1 and C1, for the task with
the smallest Ti.

338 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

1. A systematic methodology that mechanically transforms RBound to
RM is still needed to claim that RBound can actually profit from all the
extensions created for RM. The error recovery and aperiodic task servicing
are intended as illustrative and useful examples.

Fig. 1. Algorithm ScaleTaskSet.

Fig. 2. Auxiliary Algorithm ScaleTaskSet.

At the end of the algorithm, all tasks have Ti > Tm=2.
Clearly, since the algorithm is only executed when T1 �
Tm=2 and only T1 is doubled at each iteration of the
algorithm, it cannot be the case that Ti > Tm. Therefore,
8i; Tm=2 < Ti � Tm. tu

We now focus on the schedulability of the scaled task set

T 0. The proof of Theorem 4 in [16] shows that, if the ratio

between any two tasks period is less than 2, the computa-

tion times that minimize the utilization are

C0i ¼ T 0iþ1 ÿ T 0i ði ¼ 1; . . . ;mÿ 1Þ and C0m ¼ 2T 01 ÿ T 0m:

It is easy to see that rewriting the task set utilization with

these computation times yields

Xm
i¼1

C0i
T 0i
¼
Xmÿ1

i¼1

T 0iþ1

T 0i

� �
þ 2

T 01
T 0m
ÿm: ð2Þ

In order to have an admission control criteria that does not

depend on the periods of all of the tasks, we need to derive

a least upper bound on the processor utilization given by

(2). Given a task set of m tasks, let r ¼ T 0m
T 0

1
, where T 01 and T 0m

are the minimum and maximum periods in T 0 and r < 2.

Let Uðr;mÞ be the utilization rewritten from (2):

Uðr;mÞ ¼
Xmÿ1

i¼1

T 0iþ1

T 0i

� �
þ 2

r
ÿm: ð3Þ

Uðr;mÞ depends on r, m, and the periods T 01; . . . ; T 0m. We

define URBoundðr;mÞ to be the minimum of Uðr;mÞ with

respect to the periods, that is, the least upper bound on the

processor utilization for a given m and r. Lemma 3 gives an

expression for URBoundðr;mÞ.
Lemma 3. Consider a set of m tasks ordered by increasing

periods, where the minimum and maximum periods are fixed

and known and the ratio r of any two periods is less than 2.

The minimum processor utilization for this task set,

URBoundðr;mÞ, is

URBoundðr;mÞ ¼ ðmÿ 1Þðr1=ðmÿ1Þ ÿ 1Þ þ 2=rÿ 1: ð4Þ

Proof. Uðr;mÞ is minimum when its derivative with respect

to T 0i is null for i ¼ 2; . . . ;mÿ 1.

8i j 1 < i < m;
@Uðr;mÞ
@T 0i

¼ 0) ÿ
T 0iþ1

T 02i
þ 1

T 0iÿ1

¼ 0

) T 0i
T 0iÿ1

¼
T 0iþ1

T 0i
:

ð5Þ

This system of equations gives

T 02
T 01
¼ T

0
3

T 02
¼ . . . ¼ T 0m

T 0mÿ1

¼ r1=ðmÿ1Þ

which can be used to rewrite (3) as

URBoundðr;mÞ ¼ ðmÿ 1Þr1=ðmÿ1Þ þ 2=rÿm; ð6Þ

which yields (4) to complete the proof. tu

Corollary 1. When m!1 the minimum achievable processor

utilization URBoundðrÞ approaches ln rþ 2=rÿ 1.

Fig. 3 shows the processor utilization URBound as a function

of r. For a given m, the original RMS utilization bound ULL
((1)) is the minimum of the curve URBoundðr;mÞ. This implies

that RBound always achieves a processor utilization better

than or equal to the original RMS utilization bounds.
We can now state a necessary condition for the schedul-

ability of a rate-monotonic task set on a uniprocessor.

Theorem 1. Given a task set T , let T 0 be the task set resulting

from the application of the algorithm ScaleTaskSet to T . If

Xm
i¼1

Ci
Ti
� ðmÿ 1Þðr1=ðmÿ1Þ ÿ 1Þ þ 2=rÿ 1; ð7Þ

where r ¼ T 0m=T 01, then T is schedulable on one processor

with RMS.

Proof. For each task � 0i (1 � i < m) in T 0, T 0m=2 < T 0i � T 0m
and, therefore, the ratio between any two periods is less

than 2. Since T 0 is also ordered by increasing periods,

Lemma 3 holds and implies the schedulability of T 0.
From Lemma 2, we know that the schedulability of T 0
implies the schedulability of T . tu

It should be noted that RBound is only a necessary

condition for schedulability; in other words, if it is

impossible to schedule T 0 with RBound, we cannot infer

anything about the schedulability of T . In order to evaluate

how good of an approximation RBound is, we compare the

processor utilization given by (4) with the processor

utilization given by (3). We define UMðr;mÞ to be the

maximum of Uðr;mÞwith respect to the periods. If UMðr;mÞ
is close to URBoundðr;mÞ then (4) is a good approximation of

(3) since Uðr;mÞ is between URBoundðr;mÞ and UMðr;mÞ.
Theorem 2 shows that RBound has the highest possible

utilization when all tasks have a period ratio of 2 (i.e., each

task has either a maximal or a minimal period).

Theorem 2. Consider a set of m tasks ordered by increasing

periods, where the minimum and maximum periods are fixed

and known and the ratio r of any two periods is less than 2.

LAUZAC ET AL.: AN IMPROVED RATE-MONOTONIC ADMISSION CONTROL AND ITS APPLICATIONS 339

Fig. 3. Minimum utilization of RBound for different values of m.

The utilization for this task set is maximum when, for any

k ð1 < k < mÞ,

T 0i ¼ T 01 ðfori ¼ 1; . . . ; kÞ and

T 0j ¼ T 0m ðforj ¼ kþ 1; . . . ;mÞ:
ð8Þ

In this case,

UMðr;mÞ ¼ rþ 2=rÿ 2:

Proof. When the periods are given by (8), we have from (3)

UMðr;mÞ ¼
Xkÿ1

i¼1

T 01
T 01

� �
þ T

0
m

T 01
þ
Xmÿ1

j¼kþ1

T 0m
T 0m

� �
þ 2

T 01
T 0m
ÿm

¼ rþ 2=rÿ 2:

ð9Þ

We now show that the utilization for any task set is less

or equal to (9). From (3),

Uðr;mÞ ¼
Xmÿ1

i¼1

T 0iþ1

T 0i

� �
þ 2

r
ÿ ðmÿ 1Þ ÿ 1

¼
Xmÿ1

i¼1

T 0iþ1 ÿ T 0i
T 0i

� �
þ 2

r
ÿ 1:

ð10Þ

Since the tasks are ordered by increasing periods, we

have T 01 � T 0i ð81 � i � mÞ, which implies, from (10),

Uðr;mÞ �
Xmÿ1

i¼1

T 0iþ1 ÿ T 0i
T 01

� �
þ 2

r
ÿ 1

¼
Pmÿ1

i¼1 ½T 0iþ1 ÿ T 0i �
T 01

þ 2

r
ÿ 1

¼ T
0
m ÿ T 01
T 01

þ 2

r
ÿ 1

¼ rþ 2=rÿ 2 ¼ UMðr;mÞ:

ð11Þ

tu

It is worth noting from Fig. 4 that, when r is close to 1,

the difference between UMðr;mÞ and URBoundðr;mÞ is very

small, which means that the period ratio r accurately

captures the information from the tasks periods.

RBound has a complexity of Oðm logmÞ since it takes
OðmÞ to scale the tasks periods and computation times,
Oðm logmÞ to sort the tasks according to their new periods,
OðmÞ to check if the sum of the tasks utilization exceeds the
bound, and OðmÞ to map back to the original task set. This
complexity is only marginally larger than the complexity of
ULL, which is OðmÞ.

3 MULTIPROCESSOR ADMISSION CONTROL

3.1 Related Work on Multiprocessor Real-Time
Scheduling

Two major strategies can be used to schedule real-time tasks
on a multiprocessor: global scheduling or partitioning [6]. In a
global scheduling strategy, all task instances are stored in a
single queue and, at any given time, the processors run the
instances with the highest priority. A partitioning strategy
involves two algorithms: One assigns tasks to processors
and the other one schedules tasks on each processor.
Partitioning strategies have the advantage of reducing the
multiprocessor scheduling problem to scheduling problems
on individual processors for which many results are known.
Furthermore, since tasks do not need to migrate across
processors, partitioning usually has low scheduling over-
head compared to global scheduling. Application specific
constraints (such as memory requirements or dedicated
input lines) can be easily integrated in a partitioning
strategy by modifying the task allocation algorithm.

Most of the proposed multiprocessor algorithms with
RMS priorities are based on partitioning. Global scheduling
with RMS priorities suffers from the fact that it can yield an
arbitrarily low processor utilization. In [6], Dhall and Liu
show a set of mþ 1 tasks that cannot be scheduled on
m processors with global RMS but that can be scheduled on
two processors with a partitioning scheme. This task set
consists of m tasks with computation 2�, for some small �,
and period 1, and one task with computation 1 and period
1þ �. Since the m first tasks have higher priority in global
RMS, they use the m processors first, causing task �mþ1 to
miss its deadline. Not only Global RMS performs poorly in
the worst case, but also its performance in the average case
is mediocre [12].

Partitioning with fixed priorities is a complex problem
since the utilization bound for each processor is not a
constant (e.g., with RMS, it depends on the number of
tasks). The first partitioning strategies with RMS scheduling
were proposed by Dhall and Liu in [6]. Algorithm RMNF
uses a Next-Fit bin-packing as a task assignment algorithm
and RMS as a scheduling algorithm. RMNF tests if a
processor can accept a new task by using the bound ULL
from (1). Other bin-packing algorithms have been used in
conjunction with ULL, including First-Fit in RMFF [6], Best-
Fit in RMBF [18], and Decreasing-Utilization-First-Fit in
FFDUF [5]. Because the utilization bound for RMS depends
on what tasks have already been admitted, the order in
which tasks are assigned to processors affects the utilization
bounds. Several algorithms take advantage of the depen-
dency between the task assignment algorithm and the
scheduling algorithm. In [4], tasks are divided into classes
based on their utilization. Within each class, the constraint
on the tasks utilization yields a utilization bound better than

340 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Fig. 4. Difference between upper and lower bounds for RBound.

ULL. This better bound increases the overall system
utilization. Other tasks characteristics can be used to
improve the schedulability bound for RMS. For example,
Burchard et al. [2] present a partitioning scheme, RMGT,
that uses information about the tasks periods. More
recently, Han and Tyan [9] presented a Oðn2Þ uniprocessor
scheme that transforms the task periods to make the task set
harmonic (and therefore the transformed task set takes full
advantage of the CPU).

3.2 Partitioning with RBound

As mentioned before, a partitioning strategy involves two
algorithms; one assigns tasks to processors and the other
one schedules tasks on each processor. These two algo-
rithms are not independent: Tasks should be assigned to
processors such that the resulting schedule on each
processor yields a high processor utilization. A property
of RBound can be used to obtain this high processor
utilization on a multiprocessor: As can be seen in Fig. 3,
when tasks with a period ratio r close to 1 are assigned to
the same processor, the resulting processor utilization is
close to 1, regardless of the value of m. Therefore, the
assignment of tasks to processors should be such that the
period ratio r is close to 1 on each processor. In order to
obtain r close to one, tasks with the closest periods in the
scaled task set T 0 should be assigned to the same processor.
This can easily be achieved by sorting the tasks in T 0 by
increasing periods and assigning tasks to processors in a
Next-Fit fashion. Fig. 5 shows that a Next-Fit partitioning on
T 0 yields a small period ratio on each processor.

It is possible to further improve the performance of the task
assignment algorithm by using a First-Fit packing since First-
Fit searches all processors (starting from the first processor),

even though some processors may have rejected a task in the
past. This leads to algorithm RBound-MP given in Fig. 6. The
First-Fit assignment may lead to a higher value of r, but it will
not be worse than Next-Fit since the former searches a
superset of the processors searched by the latter.

RBound-MP has a complexity of Oðmðpþ logmÞÞ since it
takes Oðm logmÞ to sort the task set and OðmpÞ to assign
tasks to processors.

3.3 Performance Evaluation

The performance of the proposed algorithms is measured
by the average processor utilization achieved. Since there
is no closed formula for the average processor utilization
in multiprocessors, the performance is measured via
simulation.

Tasks are randomly generated according to four para-
meters, minimum and maximum task period (Tmin and
Tmax), minimum and maximum task utilization (Umin and
Umax). For each task, the worst-case computation time C is
randomly drawn from ½1; Tmin� with a uniform distribution
and the period T is randomly drawn from ½Tmin; Tmax� with
a uniform distribution such that Umin � C

T � Umax holds. A
fifth parameter, Utot, is used to generate a task set that spans
several processors. For a given Utot, experiments are
conducted where tasks are generated and added to the
task set until the sum of their utilization exceeds Utot. Once
generated, a task set is given to the scheduling algorithms
and each algorithm returns the number of processors
needed to accept this task set. If an admission control
requires P processors to schedule a task set with total
utilization Utot, then we define the average processor
utilization of this admission control to be Utot=P . Experi-
ments are repeated 1,000 times per algorithm and the
achieved processor utilizations are averaged.

We compare the performance of several partitioning
multiprocessor algorithms: RBound, RMGT [2], SRFF [9],
and RMFF [6]. RMFF and SRFF use a first-fit partitioning with
the utilization boundULL from (1) and the algorithm from [9],
respectively. RMGT is a multiprocessor scheduling technique
developed by Burchard et al. in [2]. RMGT was originally
presented with a next-fit partitioning, but is used here with a
first-fit partitioning to be comparable with the other algo-
rithms.2 We chose RMGT and SRFF as comparison algorithms
for two reasons: 1) These algorithms use information about
the task periods and 2) they are, to date, the most efficient
partitioning schemes available for RMS tasks.

Fig. 7 shows that the performance of all partitioning
schemes improve as task sets get larger since the First-
Fit partitioning becomes more efficient. Furthermore,
techniques developed specifically for multiprocessor

LAUZAC ET AL.: AN IMPROVED RATE-MONOTONIC ADMISSION CONTROL AND ITS APPLICATIONS 341

2. Indeed, we tested RMGT with first-fit and next-fit partitioning and
observed that first-fit always has better performance.

Fig. 5. Next-Fit partitioning on a scaled task set.

Fig. 6. Algorithm RBound-MP.

environments, such as RMGT and RBound, show a sharper
increase in processor utilization for large values of Utot. For
large total utilizations, FFSR reaches about 85 percent
utilization (similar to exact characterization [13], which is
not shown in the graph), whereas FFRBound and Beta are
close to 95 percent. FFSR and FF-exact do not do well in
multiprocessor environments because they use a bin-pack-
ing, with an overhead of approximately 15 percent loss. On
the other hand, RBound and RMGT, which are designed
specifically for multiprocessor environments, do much
better. In the case of RBound, this sharper increase results
from the fact that, as Utot increases, the period ratio r on each
processor decreases and thus increases URBoundðr;mÞ.

Since all experimental results obtained show a similar
behavior as a function of Utot, we will next present only
results for Utot ¼ 4 and Utot ¼ 16. Experiments were also
conducted for Utot ¼ 32 and Utot ¼ 64 and gave the same
types of results as for Utot ¼ 16 and are not presented here.
The value of SRFF is always between that of RMFF and
RBound and, therefore, for the sake of clarity, we do not
further consider this algorithm.

Fig. 8 shows the algorithms performance as a function of
Umax. RBound achieves the highest processor utilization,
although it does not perform significantly better than

RMGT for large task sets. Compared to RMFF, RBound
greatly increases the processor utilization, showing that
using a better uniprocessor admission control and assigning
compatible tasks to the same processor can yield a high
processor utilization (94 percent).

Although RBound achieves a high processor utilization,
it is not optimal. Therefore, we ran another set of
experiments to assess how far RBound is from optimality.
These experiments compare RBound and First-Fit partition-
ing schemes where the exact characterization from Joseph
and Pandya [11] is used to decide if a task can be added to a
processor. The partitioning scheme with exact characteriza-
tion has four algorithms, depending on the task set on
which the admission control is performed: FFE (original
task set), FFES (scaled task set), FFEO (original task ordered
by increasing periods), and FFESO (scaled and ordered task
set). Fig. 9 shows that RBound performs almost as well as
FFESO and outperforms FFES, FFE, and FFEO. This shows
that scaling and ordering the task set (as required by
RBound) does improve the performance of the First-Fit
partitioning. Furthermore, RBound has a lower complexity
than partitioning schemes based on an exact characteriza-
tion. Notice that the performance of RBound increases with
the number of processors. We conducted experiments with
Utot ¼ 32 and Utot ¼ 64 (not shown here), confirming that
the performance of RBound improves with the number of
processors.

4 ADMISSION CONTROL WITH ERROR RECOVERY

One problem with multiprocessor systems is that, as the
number of processors increases, the probability of a fault
increases. In critical real-time systems such as nuclear plant
control and avionics control, the goal of real-time scheduling
is to guarantee the timeliness of the tasks to avoid possible
catastrophic consequences. However, this timeliness is
usually only guaranteed in the absence of faults. Thus, a
natural and important extension of real-time scheduling is to
take into account error recovery in order to guarantee the
timeliness of the system even in the presence of faults. This
section first presents some related work on real-time
scheduling with error recovery. It then extends RBound by
adding provisions for timely error recovery from transient

342 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Fig. 7. Influence of the size of the task on schedulability.

Fig. 8. Performance evaluation of RMS partitioning algorithms.

faults on a uniprocessor. Finally, it presents a multiprocessor
real-time scheduling algorithm that provides timeliness
guarantees in the presence of multiple types of faults.

4.1 Related Work on Real-Time Scheduling with
Error Recovery

In order to recover from faults, some form of redundancy is
usually necessary. This redundancy can consist of spatial
redundancy (resource replication) or temporal redundancy
(executing a recovery procedure). One of the most common
spatial redundancies is triple modular redundancy, which
executes a task on three different resources, votes upon the
generated results, and achieves fault detection and mask-
ing. A less expensive spatial redundancy technique is
duplication, where two copies of each task are executed,
ensuring that if only one fault occurs, one of the two tasks
will complete successfully. Duplication for real-time peri-
odic tasks assumes a fault detection mechanism and has
been studied by Oh and Son in [17] with the restriction that
all tasks have the same period. Adding duplication for error
recovery doubles the amount of resources necessary for
scheduling. In [19], Oh and Son address the problem of
scheduling preemptive periodic real-time tasks on a multi-
processor where tasks can have multiple versions.

Using time redundancy is problematic in real-time
systems since the execution of the recovery procedure must
not hinder the timeliness of the system. Ramos-Thuel and
Strosnider showed how to use a “slack stealing” technique in
[21], where unused computation time is reclaimed to recover
from a fault. Because error recovery using slack-stealing
depends on runtime characteristics, it is not always possible
to guarantee that error recovery will complete by its deadline.
Some other schemes guarantee error-recovery by reserving
enough resources during admission control. In [8], Ghosh et
al. propose an extension to RMS that allows a task to recover
from transient faults by reexecuting the faulty instance. If all
currently executing instances must reexecute after a transient
fault is detected, the admission control presented by Pandya
and Malek in [20] can be used. In [3], Burns et al. describe
several admission controls based on [11] for different
recovery mechanisms. Note that time redundancy and space
redundancy do not exclude each other. Both types of
redundancy are used by Bertossi et al. in [1].

4.2 Error Recovery from Transient Faults

We first consider the problem of adding error recovery from

transient faults to RBound. A transient fault affects only one

instance of one task. We assume that, after task �i is affected

by a transient fault, some recovery action of duration Ri has

to be performed before the deadline of �i. This recovery

model encompasses task reexecution (Ri ¼ Ci), recovery

blocks (Ri ¼ C0i), or restoring a safe state (Ri ¼ C).
It is assumed that faults can be detected at the end of

each instance [10], [25]. The time required by this fault

detection mechanism can be added to the worst case

computation time Ci of the task and does not hinder the

timeliness of the system. We assume that transient faults are

separated by a time interval � such that

� � 2Tm; ð12Þ

where Tm is the largest task period. This assumption

guarantees a fault-free recovery from transient faults [8].
When a fault is detected, the system enters a recovery

mode where some recovery action must be performed before

the task’s deadline. This section considers two possible

dispatchings during recovery mode: Rate-Monotonic Dis-

patching (RMD) or Slack Dispatching (SD). When RMD is

used in recovery mode, each task keeps its priority based on

its period and remains scheduled in the same way after the

fault. When recovery is scheduled using SD, the faulty task

performs its recovery by using the slack scattered in the

schedule. Again, we observe a tradeoff between simplicity

of dispatching and performance.

4.2.1 Using Rate-Monotonic Dispatching: RBound/RMD

In this recovery mode, tasks are scheduled according to

RMS and the faulty task recovers at its RMS priority. This

section gives a condition such that, if task �f fails, it can

execute a recovery procedure of duration Rf before its

deadline. We define the recovery utilization to be

UR ¼ max
i¼1;...;m

Ri

Ti

� �
: ð13Þ

Theorem 3. Given a task set T of m tasks scheduled with RMS,

when one transient fault affects any task �f , �f can execute a

LAUZAC ET AL.: AN IMPROVED RATE-MONOTONIC ADMISSION CONTROL AND ITS APPLICATIONS 343

Fig. 9. Performance comparison of RBound-MP and partitioning with an exact characterization.

recovery action of duration Rf at its original RMS priority
before its deadline if

Xm
i¼1

Ci
Ti

� �
� URBound=RMDðr;mÞ

¼ ðmÿ 1Þr1=ðmÿ1Þ þ 2=rÿmÿ UR;
ð14Þ

where r is the period ratio for T and UR is defined by (13).

Proof. We need to prove that no deadline is missed,
regardless of which task fails. Recovering from a
transient fault for any task �f is equivalent to executing
for Cf þRf during the period Tf when the fault
occurred. Hence, to guarantee schedulability in the
presence of transient faults, it suffices to guarantee that

8f ¼ 1; . . . ;m
Xm
i6¼f
i¼1

Ci
Ti

� �
þ Cf þRf

Tf

� �
� ðmÿ 1Þr1=ðmÿ1Þ þ 2=rÿm

ð15Þ

and (14) implies (15). tu

Corollary 2. When m!1, URBound=RMDðrÞ approaches
ln rþ 2=rÿ 1ÿ UR.

4.2.2 Using Slack Dispatching: RBound/SD

It is possible to obtain a better processor utilization by
reserving slack of utilization UR in a way similar to the one
presented by Ghosh et al. in [8]. This slack is distributed
throughout the schedule such that, over an interval of time I
between two period boundaries, the amount of slack
available is URI. Note that slack dispatching differs from
slack stealing in that the slack is always present in the
schedule and thus is guaranteed to be available for error
recovery. The top part of Fig. 10 shows a schedule where a
slack of 10 percent is available between each period
boundary. Before a fault is detected, the available slack is
swapped with executing tasks. After a fault is detected, the
swapped and available slack is used for recovery. The
bottom part of Fig. 10 shows how slack is swapped with
executing tasks from time 0 to 27 and is used for recovery
from time 27 to 33 and 60 to 62.

In Theorem 4, we apply to RBound the same analysis
technique applied in [8] to ULL.

Theorem 4. A set of m tasks with period ratio of r can be

scheduled with RMS on one processor and recover from a

transient fault with SD if

Xm
i¼1

Ci
Ti
� URBound=SDðr;mÞ

¼ ððmÿ 1Þðr1=ðmÿ1Þ ÿ 1Þ þ 2=rÿ 1Þð1ÿ URÞ:
ð16Þ

Proof. The first step is to scale the original task set T with

algorithm ScaleTaskSet. If the schedulability condition

derived for the scaled task set T 0 holds, then T is

schedulable. The analysis used in [8] shows that the

processor utilization is minimum when

for 1 � i � mÿ 1C0i ¼ ðT 0iþ1 ÿ T 0i Þð1ÿ URÞ ð17Þ

and

C0m ¼ ð2T 01 ÿ T 0mÞð1ÿ URÞ ð18Þ

(the factor ð1ÿ URÞ comes from reserving slack of

utilization UR in every interval). From (17) and (18), the

resulting processor utilization is

Xm
i¼1

Ci
Ti
¼
Xm
i¼1

C0i
T 0i
¼

Xmÿ1

i¼1

T 0iþ1

T 0i

� �
þ 2

T 01
T 0m
ÿm

 !
ð1ÿ URÞ: ð19Þ

Following the proof of Theorem 1 with (19) instead of (3),

the least upper bound for the processor utilization is

(16). tu

Corollary 3. When m!1, URBound=SDðrÞ approaches

ðln rþ 2=rÿ 1Þð1ÿ URÞ.

A comparison with the original bound given in [8] shows

that RBound/SD increases the processor utilization. By

reserving slack of utilization UR for recovery, the processor

utilization UGÿFTÿRMS for a set of m tasks has been shown

to be [8]

UGÿFTÿRMS ¼ mð21=m ÿ 1Þð1ÿ URÞ: ð20Þ

Fig. 11 shows the improvement on the processor

utilization when (16) is used (curves RBound/SD) instead

of (20) (curve G-FT-RMS) when m!1. The improvement

344 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Fig. 10. Recovery with SD.

of the processor utilization is larger (up to 20 percent) when
r is close to 1.

The average processor utilization achieved by RBound/
SD and RBound/RMD is compared through simulations in
Section 4.4. The following corollary shows a special case of
the performance of these bounds.

Corollary 4. When r! 1, URBound=SD and URBound=RMD both
converge to 1ÿ UR.

RBound/SD and RBound/RMD have the same complex-
ity as RBound since the only overhead is the computation of
UR in OðmÞ.

4.2.3 Recovery from multiple transient faults

When it is necessary to guarantee recovery from several
transient faults in the time interval � given by (12), it is
possible to increase the amount of reserved utilization UR.
Whenk transient faults must be tolerated within �,UR is set to

UR ¼
Xk
j¼1

max
j

i¼1;...;m

Ri

Ti

� �� �
;

where maxj is the jth largest element of a set. Note that
tolerating multiple transient faults within � reduces the
schedulability of the task set.

Once UR is set to the appropriate value, RBound/RMD
and RBound/SD are used as described above.

4.3 Error Recovery on Multiprocessors

The work presented so far only considered error recovery
from transient faults. This section extends these results to
allow recovery from transient, temporary, and permanent
faults. A temporary fault is of short duration but affects
multiple tasks: Every task executing at the time at which the
fault occurs is affected. For example, a temporary fault can
be caused by a temporary increase in radiation levels. This
increase in radiation levels causes all tasks currently
executing to fail. As a consequence, several tasks may have
to recover concurrently. After a temporary fault is detected,
each task �fi affected by the fault must perform a recovery
action of duration Rfi before its deadline. To ensure a fault-
free recovery, we assume that temporary faults are

separated by a time interval � such that (12) holds. A
permanent fault is of long duration and affects only one
processor. For example, a permanent fault can be caused by
a faulty power supply. All the tasks using the faulty
processor are affected by the fault. Recovery from a
permanent fault requires to relocate the load of the tasks
allocated to the failed processor so that, after relocation, all
tasks are serviced within their deadlines.

4.3.1 Partitioning with Error Recovery from Transient

Faults

To extend RBound/RMD and RBound/SD to multiprocessor
systems, a partitioning scheme similar to the one from
Section 3.2 is used, yielding two algorithms: RBound/
RMD-MP and RBound/SD-MP. Each task is assigned to a
processor according to a First-Fit bin-packing algorithm and
the bounds from (14) or (16) guarantee that a task can
recover from a transient fault by reexecuting on the same
processor. Note that, in this case, UR is not the same for all
processors: UR is equal to the largest task utilization among
all tasks assigned to a given processor. Although RBound/
RMD-MP and RBound/SD-MP use multiple processors,
they do not rely on spatial redundancy to guarantee a
timely error recovery.

4.3.2 Partitioning with Error Recovery from Temporary

Faults

We observe that recovery from temporary faults is very
similar to recovery from transient faults in that it can be
achieved by each processor independently recovering its
faulty task. Since we designed RBound/RMD-MP to
reserve resources for error recovery on each processor, this
makes RBound/RMD-MP able to tolerate temporary faults,
as shown in the following theorem.

Theorem 5. A task set admitted by RBound/RMD-MP can
tolerate temporary faults if each processor independently
recovers its faulty task using RMS dispatching.

Proof. By contradiction. Assume that there is an instance of
task �f that cannot perform a recovery action of duration
Rf before its deadline. Since, in RBound/RMD-MP,
processors are treated individually as in RBound/RMD
after partitioning, the same instance would not recover
from a transient fault either, violating Theorem 3. tu

A similar result holds for RBound/SD-MP.
Note that an algorithm that recovers from a temporary

fault also recovers from a transient fault, but the converse is
not true. For example, an algorithm that recovers from a
transient fault by performing the recovery on a spare
processor cannot recover from a temporary fault. Also,
recovery from a temporary fault does not guarantee
recovery from multiple transient faults. For example,
RBound/RMD-MP cannot recover from multiple transient
faults occurring in the same processor within the fault
interval �.

4.3.3 Partitioning with Error Recovery from Transient,

Temporary and Permanent Faults

We present the results of this section based on RBound/
RMD-MP, but a similar work can be based on RBound/

LAUZAC ET AL.: AN IMPROVED RATE-MONOTONIC ADMISSION CONTROL AND ITS APPLICATIONS 345

Fig. 11. Processor utilization as a function of the reserved utilization.

SD-MP. If recovery from multiple transient faults must be
guaranteed, a similar work can be derived based on the
admission control given in Section 4.2.3.

We have established above that RBound/RMD-MP
provides timeliness guarantees in the presence of transient
and temporary faults. What remains to be done is to modify
RBound/RMD-MP to incorporate recovery from permanent
faults. One straightforward solution is to add a spare
processor on which the tasks from a failed processor are
relocated. However, it is often possible to avoid the addition
of a spare processor by noting that each processor already
has some processor utilization available for relocation. This
available processor utilization comes from two sources:
1) Some processors have not reached their maximum
utilization (this is particularly true of the last processor in
a First-Fit partitioning scheme) and 2) each processor has
some reserved utilization for recovery from transient/
temporary faults. Algorithm FT-RBound-MP uses this
observation so that, after a permanent fault occurs, the
available processor utilization from nonfaulty processors is
used to relocate tasks from the faulty processor. After
relocation, each processor dispatches tasks according to
RMS and recovery from faults (transient, temporary or
permanent) is no longer guaranteed. The reserved processor
utilization is said to be overloaded [7] since it is used by
several instances for potential recovery.

Algorithm FT-RBound-MP (Fig. 12) proceeds in two
steps. The first step (line 3) assigns tasks to processors
according to algorithm RBound/RMD-MP and guarantees
recovery from transient and temporary faults. The second
step (lines 5 to 7) guarantees recovery from permanent
faults by calling the procedure Relocate, which starts at
line 10. This procedure looks for a relocation processor for
each task assigned to the failed processor by using a First-Fit

search with RBound as an admission criteria. Note that we do
not use RBound/RMD as an admission criteria after a
permanent fault is detected and therefore cannot guarantee
further error recovery. However, if recovery from transient
and temporary faults must be guaranteed, even after a
permanent fault, it is possible to use RBound/RMD in line 14,
at the expense of a lower schedulability. A relocation table is
built in line 15 giving a relocation processor to each task.
Creating this relocation table offline offers several advan-
tages. First, when a permanent fault occurs, no cycles are
wasted at runtime to decide where tasks should be relocated.
Second, since the set of possibly relocated tasks is known for
each processor, it is possible to have these tasks already in
memory, further reducing the time needed for recovery.
Third, the recovery is distributed since multiple processors
participate in task relocation. Stankovic has shown in [23] that
distributed recovery is more suitable for real-time systems
than centralized recovery.

Hence, algorithm FT-RBound-MP guarantees that, with-
in each processor, the utilization is such that:

1. In the absence of permanent faults, all tasks assigned
to that processor can perform a timely recovery
action in the presence of transient or temporary
faults;

2. After a permanent fault, all tasks assigned to that
processor and all tasks relocated to that processor
meet their deadlines.

Algorithm FT-RBound-MP has a complexity of Oðmðp2 þ
logmÞÞ since it takes Oðmðpþ logmÞÞ to run RBound/RMD-
MP and the function Relocate takes OðmpÞ and is called
OðpÞ times.

4.4 Performance Evaluation

The average processor utilization achieved by the algo-
rithms presented in this section is measured with the
experimental setup described in Section 3.3.

Fig. 13 shows the performance of RBound/RMD-MP and
RBound/SD-MP when faulty tasks �f recover by reexecut-
ing (Rf ¼ Cf). The performance of both algorithms de-
creases when Umax (defined in Section 3.3) increases since
the cost of error recovery (the reserved utilization UR)
increases with Umax. We also observe on the right side of
Fig. 13 that, when Utot is large (i.e., r is small), there is very
little difference in performance3 between RBound/SD-MP
and RBound/RMD-MP since they converge (Corollary 4).
In order to assess the overhead of guaranteeing error
recovery from transien faults, the performance of RBound-
MP is also plotted. We see that the overhead of error
recovery ranges from 5 percent (Umax ¼ 0:05) to 37 percent
(Umax ¼ 0:45), which is a considerable improvement over a
duplication scheme (100 percent overhead). A comparison
with Fig. 8 shows that these algorithms achieve a higher
processor utilization than RMFF (exepct for large values of
Umax), although RMFF does not guarantee error recovery
from transient faults.

Fig. 14 shows the performance of FT-RBound-MP. Using
FT-RBound-MP rather than adding a spare processor to

346 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

3. Context switch times were ignored in these simulations, biasing the
performance of the more complex slack dispatching algorithm.

Fig. 12. FT-RBound-MP.

RBound/RMD-MP (curves RBound/RMD-MP + Spare)

consistently increases the processor utilization (by as much

as 20 percent). The overhead of guaranteeing error recovery

from transient, temporary, and permanent faults ranges

from 24 percent to 38 percent. A closer analysis of the

results (not observable from Fig. 14) shows that, when

Utot ¼ 4, FT-RBound-MP succeeds less often in finding

relocation processors without adding a spare processor than

when Utot ¼ 16 since there are fewer processors to choose

from. However, when FT-RBound-MP succeeds in not

adding a spare processor, the gain in processor utilization

is greater when Utot ¼ 4. These two trends compensate each

other and, as a result, FT-RBound-MP exhibits a similar

behavior for different values of Utot.

5 ADMISSION CONTROL WITH APERIODIC TASK

SERVICING

Although RMS is designed to service periodic tasks, many

systems require servicing for both periodic and aperiodic

tasks. Several solutions have been proposed in order to

guarantee the timeliness of periodic tasks while servicing

aperiodic tasks quickly. We focus on two techniques that

solve this problem by creating an aperiodic server: the priority

exchange server [14] and the deferrable server [24]. For both

cases, we show how RBound can be used to improve the

original utilization bounds.

5.1 Periodic Server with Priority Exchange

The priority exchange technique (PE) adds to the task set an
aperiodic server �s that services the aperiodic requests as
they arrive. �s has the highest priority and executes when an
aperiodic task arrives. When there are no aperiodic tasks to
service, �s exchanges its priority with the task of next
highest priority to allow it to execute. If the periodic server
�s has a utilization of Us, Lehoczky et al. [14] show that,
when m!1, the processor utilization approaches

UPEðUsÞ ¼ Us þ ln
2

Us þ 1
: ð21Þ

In the same way that RBound improves upon the
utilization bound ULL, we can improve upon UPE by using
information about the tasks periods.

Theorem 6. A set of m tasks can be scheduled with RMS on one
processor with a priority exchange server of utilization Us �
2=rÿ 1 if its utilization is such that

Xm
i¼1

Ci
Ti
þ Cs
Ts
� URBoundÿPEðr;m;UsÞ

¼ Us þ ðmÿ 1Þðr1=ðmÿ1Þ ÿ 1Þ þ 2

ðUs þ 1Þrÿ 1;

ð22Þ

where r is the ratio between the largest and the smallest scaled
periods.

LAUZAC ET AL.: AN IMPROVED RATE-MONOTONIC ADMISSION CONTROL AND ITS APPLICATIONS 347

Fig. 13. Performance evaluation of partitioning algorithms with error recovery from transient faults.

Fig. 14. Performance evaluation of partitioning algorithms with error recovery from general faults.

Proof. By using algorithm ScaleTaskSet, the input task set T
is converted into task set T 0 with a period ratio less than

2. A priority exchange server � 0s is then added so that its

period T 0s is smaller than T 01 and larger than T 0m=2, as

shown in Fig. 15. When scheduling the input task set

after admission control, the priority exchange server is

scaled down so that its period is smaller than any other

period in T .
The same analysis as in [14] shows that the computa-

tion times that minimize the processor utilization are

C0s ¼ T 01 ÿ T 0s ð23Þ

ðfor i ¼ 1; . . . ;mÿ 1Þ C0i ¼ T 0iþ1 ÿ T 0i ð24Þ

C0m ¼ 2T 0s ÿ T 0m ð25Þ

Let r ¼ T 0m=T 01 be the period ratio of the task set.
Given the computation times from (23) to (25), the

resulting processor utilization bound is

ðr;m;UsÞ ¼ Us þ
Xmÿ1

i¼1

T 0iþ1

T 0i

� �
þ 2T 0s
T 01

T 01
T 0m
ÿm: ð26Þ

Since, from (23), T 01=T
0
s ¼ Us þ 1, (26) becomes

URBoundÿPEðr;m;UsÞ ¼ Us þ
Xmÿ1

i¼1

T 0iþ1

T 0i

� �
þ 2

ðUs þ 1Þrÿm:

ð27Þ

The same derivation as in (4) in the proof of Lemma 3
shows that URBoundÿPE is minimal when

T 02
T 01
¼ T

0
3

T 02
¼ . . . ¼ T 0m

T 0mÿ1

¼ r1=ðmÿ1Þ;

which can be used to rewrite (27) as

URBoundÿPEðr;m;UsÞ ¼ Us þ ðmÿ 1Þr1=ðmÿ1Þ þ 2

ðUs þ 1Þrÿm

ð28Þ

which yields (22) and completes the proof.
Note that Us and r are not independent variables:

Recall from Fig. 15 that T 0s ranges from T 0m=2 to T 01. Since
Us ¼ T 01=T 0s ÿ 1, this implies that Us ranges from 0 to
2=rÿ 1. tu

Corollary 5. When m!1, the processor utilization

URBoundÿPEðr; UsÞ approaches

Us þ ln rþ 2=ððUs þ 1ÞrÞ ÿ 1;

where Us � 2=rÿ 1.

Fig. 16 compares the processor utilization bounds given
by UPEðUsÞ and URBoundÿPEðr; UsÞ. We observe that RBound-
PE always has a processor utilization larger than or equal to
PE. Furthermore, RBound-PE achieves a large processor

utilization for small values of Us, a domain in which PE
yields little improvement over ULL. As in the previous
sections, the performance of RBound decreases as r

increases and converges to the original case when r ¼ 2.
Note that RBound-PE merges with PE when Us � 2=rÿ 1.

5.2 Aperiodic Servicing with a Deferrable Server

Another technique to service aperiodic requests is to use a
deferrable server (DS) as proposed by Lehoczky et al. in [14].

Unlike PE, DS does not exchange its priority with other
tasks, but rather holds its high priority until the end of its
period. A deferrable server has a faster response time than a
priority exchange server, but a lower schedulability bound:

UDSðUsÞ ¼ Us þ ln
Us þ 2

2Us þ 1
: ð29Þ

We can apply the same derivation technique as in

Theorem 6 to improve the utilization bound for a deferrable
server, based on the analysis of the deferrable server
presented by Strosnider et al. in [24].

Theorem 7. A set of m tasks can be scheduled with RMS on one

processor with a deferrable server of utilization Us �
ð2ÿ rÞ=ð2rÿ 1Þ if

Xm
i¼1

Ci
Ti
þ Cs
Ts
� URBoundÿDSðr;m;UsÞ

¼ Us þ ðmÿ 1Þðr1=ðmÿ1Þ ÿ 1Þ þ Us þ 2

ð2Us þ 1Þrÿ 1;

ð30Þ

where r is the ratio between the largest and the smallest scaled

periods.

Corollary 6. When m!1, the processor utilization

URBoundÿDSðr; UsÞ approaches

Us þ ln rþ ðUs þ 2Þ=ðrð2Us þ 1ÞÞ ÿ 1;

where Us � ð2ÿ rÞ=ð2rÿ 1Þ.

348 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Fig. 15. Task periods after applying ScaleTaskSet.

Fig. 16. Performance evaluation of RBound-PE.

Fig. 17 compares the processor utilization bounds given
by UDSðUsÞ and URBoundÿDSðr; UsÞ. Once again, RBound-DS
always has a processor utilization larger than or equal to DS
and achieves a large processor utilization for small values of
Us. RBound-DS merges with DS when Us � ð2ÿ rÞ=ð2rÿ 1Þ.
Similarly to the comparison of DS and PE, RBound-DS
achieves a lower utilization than RBound-PE.

6 CONCLUSION

Rate-monotonic scheduling (RMS) is arguably one of the
most successful real-time scheduling techniques. While
RMS has been principally developed in the context of
uniprocessor systems, multiprocessor systems are becom-
ing more common for real-time applications and, therefore,
interest is growing in the area of multiprocessor real-time
scheduling. As a consequence, this paper addresses the
problem of efficiently scheduling tasks on a multiprocessor
using RMS on each processor. We designed our solution to
remain close to the original RMS uniprocessor technique so
that the transition path to actual systems is smoother (only
admission control procedures are changed). Further, we
have shown two examples of RM extensions that can be
directly applied to, and profit from, RBound. Further, the
large body of work developed for uniprocessor RMS can be
adapted to the multiprocessor case by using partitioning. A
methodology for proving that any extension to RM can be
immediately applied to RBound is underway.

This paper makes the following contributions to the field
of rate-monotonic scheduling:

Uniprocessor scheduling. RBound is an admission control
for RMS that uses information about the largest and
smallest task periods to obtain a high processor utiliza-
tion. We have shown that RBound always achieves a
processor utilization larger than or equal to the original
RMS admission control. Although RBound achieves a
high processor utilization, its computational complexity
remains low since information about the tasks periods is
reduced to one variable. One of the main advantages of
RBound is that its formalism remains close to the original
RMS formalism and, thus, RBound can be easily applied
whenever the original formalism applies (that is, task

dispatching is still done via a fixed-priority scheme

based on the task periods).

Multiprocessor scheduling. RBound isolates cases in which

the processor utilization is close to the optimal. Based on

this observation, we developed RBound-MP, a partition-

ing scheme based on RBound that schedules tasks on a

multiprocessor in a way that preserves this quasi-

optimal processor utilization. Experimental results in-

dicate that RBound-MP achieves a high average proces-

sor utilization (over 90 percent).

Scheduling with error recovery. Multiprocessor RMS

algorithms that provide timeliness guarantees in the

presence of faults are presented. These algorithms are

based on RBound and achieve a high processor utiliza-

tion. Algorithm RBound/RMD-MP recovers from tran-

sient and temporary faults by reserving some processor

utilization on each processor. When a fault is detected, a

recovery action is guaranteed to be performed before the

task’s deadline. Algorithm FT-RBound-MP provides

recovery from transient, temporary, and permanent

faults by overloading the reserved processor utilization.

Our performance evaluation indicates that these algo-

rithms achieve a good processor utilization and often

outperform other scheduling algorithms that do not

provide error recovery.

Scheduling with aperiodic task servicing. The problem of

guaranteeing the timeliness of periodic tasks while

servicing aperiodic requests also benefits from RBound.

We developed admission controls based on RBound for a

priority exchange server and for a deferrable server.

These proposed admission controls always achieve a

processor utilization larger than or equal to the originally

proposed admission controls for a priority exchange

server and for a deferrable server.

ACKNOWLEDGMENTS

This work was supported in part by the US Defense

Advanced Research Projects Agency under contract

DABT63-96-C-0044. An earlier version of this paper

appeared in the International Symposium on Parallel

Processing, 1998.

REFERENCES

[1] A. Bertossi, A. Fusiello, and L. Mancini, “Fault-Tolerant Deadline-
Monotonic Algorithm for Scheduling Hard-Real-Time Tasks,”
Proc. Int’l Parallel Processing Symp., pp. 133-138, 1997.

[2] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son, “New Strategies for
Assigning Real-Time Tasks to Multiprocessor Systems,” IEEE
Trans. Computers, vol. 44, no. 12, pp. 1429-1442, Dec. 1995.

[3] A. Burns, R. Davis, and S. Punnekkat, “Feasibility Analysis of
Fault-Tolerant Real-Time Task Sets,” Proc. Euromicro Workshop
Real-Time Systems, pp. 29-33, 1996.

[4] S. Davari and S.K. Dhall, “An On Line Algorithm for Real-Time
Tasks Allocation,” Proc. IEEE Real-Time Systems Symp., pp. 194-
200, 1986.

[5] S. Davari and S.K. Dhall, “On a Periodic Real-Time Task
Allocation Problem” Proc. 19th Ann. Int’l Conf. System Sciences,
pp. 133-141, 1986.

[6] S.K. Dhall and C.L. Liu, “On a Real-Time Scheduling Problem,”
Operations Research, vol. 26, no. 1, pp. 127-140, 1978.

LAUZAC ET AL.: AN IMPROVED RATE-MONOTONIC ADMISSION CONTROL AND ITS APPLICATIONS 349

Fig. 17. Performance evaluation of RBound-DS.

[7] S. Ghosh, R. Melhem, and D. Mossé, “Analysis of a Fault-Tolerant
Multiprocessor Scheduling Algorithm,” Proc. Fault Tolerant Com-
puting Symp., 1994.

[8] S. Ghosh, D. Mossé, R. Melhem, and J. Sen Sarma, “Fault-Tolerant
Rate-Monotonic Scheduling,” J. Real-Time Systems, 1998.

[9] C.-C. Han and H.y. Tyan, “A Better Polynomial-Time Schedul-
ability Test for Real-Time Fixed-Priority Scheduling Algorithms,”
Proc. Real-Time Systems Symp., 1997.

[10] K.-H. Huang and J.A. Abraham, “Algorithm-Based Fault Toler-
ance for Matrix Operations,” IEEE Trans. Computers, vol. 33,
pp. 518-528, 1984.

[11] M. Joseph and P. Pandya, “Finding Response Times in a Real-
Time System,” The Computer J., vol. 29, no. 5, pp. 390-395, 1986.

[12] S. Lauzac, R. Melhem, and D. Mossé, “Comparison of Global and
Partitioning Schemes for Scheduling Rate Monotonic Tasks on a
Multiprocessor,” Proc. Euromicro Workshop Real-Time Systems,
pp. 188-195, 1998.

[13] J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic
Scheduling: Exact Characterization and Average Case Behavior,”
Proc. IEEE Real-Time Systems Symp., pp. 166-171, 1989.

[14] J. Lehoczky, L. Sha, and J.K. Strosnider, “Enhanced Aperiodic
Responsiveness in Hard Real-Time Environments,” Proc. IEEE
Real-Time Systems Symp., pp. 261-270, 1987.

[15] J.Y.-T. Leung and J. Whitehead, “On the Complexity of Fixed-
Priority Scheduling of Periodic Real-Time Tasks,” Performance
Evaluation, vol. 2, pp. 237-250, 1982.

[16] C.L. Liu and J. Layland, “Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 47-61 1973.

[17] Y. Oh and S. Son, “An Algorithm for Real-Time Fault-Tolerant
Scheduling in a Multiprocessor System,” Proc. Fourth Euromicro
Workshop Real-Time Systems, June 1992.

[18] Y. Oh and S.H. Son, “Tight Performance Bounds of Heuristics for
a Real-Time Scheduling Problem,” Technical Report CS-93-24,
Univ. of Virginia, 1993.

[19] Y. Oh and S.H. Son, “Enhancing Fault-Tolerance in Rate-
Monotonic Scheduling,” The J. Real-Time Systems, vol. 7, no. 3,
pp. 315-329, Nov. 1994.

[20] M. Pandya and M. Malek, “Minimum Achievable Utilization for
Fault-Tolerant Processing of Periodic Tasks,” IEEE Trans. Compu-
ters, vol. 47, no. 10, pp. 1102-1112, Oct. 1998.

[21] S. Ramos-Thuel and J.K. Strosnider, “Scheduling Fault Recovery
Operations for Time-Critical Applications,” Proc. Fourth IFIP Conf.
Dependable Computing for Critical Applications, Jan. 1995.

[22] K. Shin and P. Ramanathan, “Real-Time Computing: A New
Discipline of Computer Science and Engineering,” Proc. IEEE,
vol. 82, no. 1, pp. 6-24, 1994.

[23] J.A. Stankovic, “Decentralized Decision Making for Tasks Reallo-
cation in a Hard Real-Time System,” IEEE Trans. Computers,
vol. 38, no. 3, pp. 341-355, Mar. 1989.

[24] J. Strosnider, J. Lehoczky, and L. Sha, “The Deferrable Server
Algorithm for Enhanced Aperiodic Responsiveness in Hard Real-
Time Environments,” IEEE Trans. Computers, vol. 4, no. 1, pp. 73-
91, Jan. 1995.

[25] Y.M. Yeh and T.Y. Feng, “Algorithm Based Fault Tolerance for
Matrix Inversion with Maximum Pivoting,” J. Parallel and
Distributed Computing, vol. 14, pp. 373-389, 1992.

Sylvain Lauzac graduated from the Institut
National Agronomique de Paris in 1992 and
received the MS and PhD degrees in computer
science from the University of Pittsburgh in 1995
and 2000, respectively. He is currently a
member of the Content Delivery Services Group
at Akamai Technologies. His research interests
include fault-tolerant and real-time systems, load
balancing, web services, and edge computing.

Rami Melhem received the BE degree in
electrical engineering from Cairo University in
1976, the MA degree in mathematics and the
MS degree in computer science from the
University of Pittsburgh in 1981, and the PhD
degree in computer science from the University
of Pittsburgh in 1983. He was an assistant
professor at Purdue University prior to joining
the faculty of The University of Pittsburgh in
1986, where he is currently a professor of

computer science and electrical engineering and the chair of the
Computer Science Department. His research interest include real-time
and fault-tolerant systems, optical interconnection networks, high
performance computing, and parallel computer architectures. Dr.
Melhem served on program committees of numerous conferences and
workshops and was the general chair for the Third International
Conference on Massively Parallel Processing Using Optical Intercon-
nections. He was on the editorial board of the IEEE Transactions on
Computers and served on the advisory boards of the IEEE technical
committees on Parallel Processing and on Computer Architecture. He is
the editor for the Plenum Book Series in Computer Science and is on the
editorial board of the IEEE Transactions on Parallel and Distributed
Systems and Computer Architecture Letters. Dr. Melhem is a fellow of
the IEEE and a member of the ACM.

Daniel Mossé received the BS degree in
mathematics from the University of Brasilia in
1986 and the MS and PhD degrees in computer
science from the University of Maryland in 1990
and 1993, respectively. He joined the faculty of
The University of Pittsburgh in 1992, where he is
currently an associate professor. His research
interest include fault-tolerant and real-time sys-
tems, as well as networking. The major thrust of
his research in the new millenium is power-

aware computing and security. Dr. Mossé has served on program
committees for all major IEEE-sponsored real-time related conferences
and as program and general chair for the RTAS and RT Education
Workshop. Typically funded by the US National Science Foundation and
US Defense Advanced Research Projects Agency, his projects combine
theoretical results and implementations. He is a member of the editorial
board of the IEEE Transactions on Computers and is a member of the
IEEE Computer Society the ACM.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

350 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

