
Energy-Efficient Duplex and TMR Real-Time Systems �

Elmootazbellah (Mootaz) Elnozahy
System Software Department

IBM Austin Research Laboratory
Austin, TX 78758

mootaz@us.ibm.com

Rami Melhem, Daniel Mossé
Computer Science Department

University of Pittsburgh
Pittsburgh, PA 15260

fmelhem, mosseg@cs.pitt.edu

Abstract

Duplex and Triple Modular Redundancy (TMR) systems are
used when a high-level of reliability is desired. Real-Time Sys-
tems for autonomous critical missions need such degrees of re-
liability, but energy consumption becomes a dominant concern
when these systems are built out of high-performance processors
that consume a large budget of electrical power for operation
and cooling. Examples where energy consumption and real time
are of paramount importance include reliable computers onboard
mobile vehicles, such as the Mars Rover, satelites, and other au-
tonomous vehicles.

At first inspection, a duplex system uses about two thirds of the
components that a TMR system does, leading one to conclude that
duplex systems are more energy-efficient. This paper shows that
this is not always the case. We present an analysis of the energy
efficiency of duplex and TMR systems when used to tolerate tran-
sient failures. With no power management deployed, the analysis
supports the intuitive impression about the relative superiority of
duplex systems in energy consumption. The analysis shows, how-
ever, that the gap in energy consumption between the two types of
systems diminishes with proper power management. We introduce
the concept of an optimistic TMR system that offers the same re-
liability and performance as the traditional one, but at a fraction
of the energy consumption budget. Optimistic TMR systems are
competitive with respect to energy consumption when compared
with a power-aware duplex system, can even exceed it in some
situations, and have the added bonus of providing tolerance to
permanent faults.

1. Introduction

There are many commercial, technical and environmental mo-
tivations to reduce energy consumption in computing systems.
Modern systems continue to deploy high-performance processors
with increasing energy requirements for operation and cooling.
This creates and motivates the need for more energy-conscious
designs and algorithms. In this paper, we study the problem of
reducing power consumption in fault-tolerant architectures based
on component replication. These systems are typically used when

�This research has been supported in part by The Defense Advance Research
Projects Agency under contract F33615-00-C-1736. We acknowledge the Trade-
marks and copyrighted material mentioned here as the property of their owners.

high degrees of reliability and availability are required [25]. We
focus on two types of systems used for this purpose, namely du-
plex and triple modular redundancy (TMR) systems. These sys-
tems can tolerate one transient fault of any type that can be de-
tected by either checking for state divergence (duplex systems) or
vote discrepancy (TMR systems).

Power management through dynamic voltage scaling (DVS) as
well as fault tolerance through replication have been well studied
in the context of real-time systems (RTSs). However, researchers
have not addressed the problem of combining energy consump-
tion and fault tolerance in RTSs. There are many situations where
it is important, however, to consider power management as a cen-
tral component in a fault-tolerant system. For example, it is im-
portant to conserve the energy used by reliable computers onboard
autonomous vehicles. The conservation allows these systems to
reduce the battery weight and the overhead of generating the en-
ergy onboard. It also allows these systems to operate at lower tem-
peratures, reducing the cooling needs and reducing the amount of
white noise (thus increasing reliability).

We focus on duplex and TMR systems. At first inspection, one
may correctly conclude that a duplex system consumes only two
thirds of the energy of a TMR system that uses the same machine
types. We present an analysis that confirms this intuition when
no power management is used. However, we present a somewhat
surprising result, in showing that with proper power management,
the difference in energy consumption between the two types di-
minishes. Therefore, with this differentiator all but eliminated,
one can focus on the other merits of the selection between the two
types, such as extended reliability, performance, and so forth.

The paper first develops a simple theory for power manage-
ment in duplex/TMR real-time systems. Using this theory, we
use a mathematical analysis to understand and compare the energy
behaviors of the architectures under study. When appropriate, we
use closed form solutions to drive the analysis. When such closed
forms are not available, we iteratively solve the equations to ob-
tain the desired solutions. We drive the models that we developed
using parameters obtained from actual measurements in our labo-
ratories or from manufacturer’s data sheets. The contributions of
the paper can be summarized as follows:

� It develops a simple theory for power management in the
context of duplex and TMR RTSs.

� It derives the best power management policies for duplex

1
Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

systems based on DVS and on controlling the insertion of
synchronization points in the execution stream, to ensure
deadlines are met.

� It derives the best power management policies for TMR sys-
tems based on hibernation and DVS.

� It suggests a new architecture that we call optimistic TMR
that virtually eliminates the difference in energy consump-
tion between duplex and TMR systems.

As in a study that explores unchartered research areas, we do
not make any claims that the study is complete or practical. Ours
is a first stab at understanding and formulating the problem, and
setting up models that could be used to reason about, and develop
solutions for, the problem of power management in reliable RTSs.
There are obvious limitations of the study; for instance, we do not
consider a mix of computations with different power functions or
tasks that finish before their predicted worst-case workload. We
believe that our contributions are important and substantial in set-
ting the stage for further work in this area, as it is important to
understand the theoretical underpinning of the problem. We also
show the somewhat surprising result of how power-aware TMR
systems can be very competitive with power-aware duplex sys-
tems.

The remainder of this paper is organized as follows. Section 2
describes the computation and power management models, states
the assumptions about the duplex and TMR systems, and illus-
trates the failure model. We examine duplex and TMR systems
with no power management in Section 3, showing the superiority
of the former type. We then examine power management tech-
niques for duplex and TMR systems in Sections 4 and 5, respec-
tively. Section 6 then compares the two types of architecture and
establishes the somewhat surprising result of the vanishing differ-
ence between the two types of architectures under proper power
management. Finally, Section 7 presents related work and Sec-
tion 8 concludes the paper.

2. System Model

This section describes the computation and failure models, and
shows how they interact with the power consumption model. It
also describes our assumptions about duplex and TMR systems.

2.1. Computation Model

As usual in real-time research, we consider a set of tasks �i,
each of which has a period pi associated with it, and a worst-case
execution time, ci, which is required for execution assuming max-
imum processor frequency, fmax. We normalize the frequencies
such that fmax = 1, and thus the worst-case execution time ci
can also be seen as the worst-case number of cycles needed to ex-
ecute �i. The utilization of each task is Ui = ci=pi and the total
system utilization is given by U =

P
Ui. If U � 1, then the sys-

tem is schedulable according to EDF scheduling. In case U < 1,

we can allot more time than ci for each task to execute, namely
Di = ci=U and still guarantee that all tasks will finish within
their deadlines. Each task will have an allotted amount of time
to execute, which will not interfere with other tasks. Hence, in
this paper, we will only consider a single task � with an allotted
time D. We note that the same reasoning applies to scheduling
algorithm other than EDF.

The problem we address is: “Run � to complete within D de-
spite the possibility of one transient fault, while minimizing en-
ergy consumption.”

The opportunity to save energy depends on the amount of re-
duction in frequency that would still allow the computation to
complete before the deadline. Intuitively, the slower the task can
be executed, the more energy can be saved. If the frequency is
f , then the time by which � completes is c

f
. Since fmax = 1, to

finish within D, we need1

c

f
� D (1)

Equation (1) gives the minimum frequency fmin at which the task
must execute to meet the deadline, fmin = c

D
. Let � = fmin

fmax
=

c
D

, which gives an intuitive indication of the relative load that
� would impose on the system to finish by time D. As � ap-
proaches 1, the processor will have to operate close to its max-
imum frequency and there is very little room for manipulating
the frequency to conserve the dynamic component of energy. In-
versely, as � approaches 0, there is a greater degree of flexibility to
reduce energy consumption by operating at a very low frequency.
Note that there is a frequency that corresponds to the lowest volt-
age value below which the circuits cannot operate. Reducing the
frequency below this value is not useful because it simply slows
down the processor without an attendant saving in power (since
the voltage cannot be lowered any further). For simplicity, we
ignore this minimum voltage, assuming that the load imposed in
the system is high enough. Systems with load less than that are
not interesting and it is easy to incorporate such minimum voltage
constraints in the model.

2.2. Energy Model

The power budget of a system consists of two components,
namely static and dynamic. The static component represents the
power that the system continuously draws regardless of the cur-
rent level of activity. This power goes to refresh memory, keep the
peripheral devices up, maintain the static Random Access Mem-
ory in the processor’s caches, etc. The static power component
also includes power lost to leakage currents in the system circuits.
The dynamic component reflects the power that varies with the
level of activity of the system. This power goes to switching the
transistors and capacitors to execute instructions and manipulate
data. Previous research has shown that the dynamic power com-

1Note that fmax 6= 1, we can define f 0
= f=fmax and replace f by f 0

throughout the paper. Further, wherever c appears, we should have c=fmax.

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

ponent depends on the frequency of operation and the voltage lev-
els for circuit switching [8]. Thus, the power consumed, P , can
be expressed as P = Ps + �fV 2, where Ps is the static power
component, � is a capacitance constant, f is the frequency of op-
eration, and V is the switching voltage. Further, the frequency
and voltage are related by a quasi-linear relation [21], V = f� ,
where � � 1 is a constant. This is true generally for voltages
above a minimum value below which the circuits can no longer
function due to noise and other factors.

For convenience, we express the power consumed as a function
of frequency:

P = Ps + �fm (2)

where 2 � m � 3. Equation (2) establishes a method for reduc-
ing the dynamic power component of the budget by lowering the
frequency [8]. In practice, the system reduces the processor fre-
quency to the level that is sufficient to carry out the computation,
and then it reduces the voltage to the minimum level that permits
the desired frequency to be maintained. This is often called dy-
namic voltage scaling (DVS).

We adopt the conservative and simplifying assumption that the
time a processor takes to complete � is inversely proportional to
its operating frequency. This assumption is somewhat standard in
power management literature [30]. It usually simplifies the anal-
ysis, and leads to conservative estimates of the energy that can be
saved by manipulating the frequency of the system. To understand
why, consider that at high CPU frequencies, the processor wastes
more cycles (and consequently energy) upon cache misses due to
the large difference between memory and processor speeds. At
lower CPU frequencies, however, the processor does not wait as
many cycles, leading to better energy utilization and less perfor-
mance overhead.

2.3. Failure Model and Fault-Tolerant Architecture

The system is required to tolerate one transient fault. We con-
sider two conventional architectures that can serve this purpose,
namely duplex systems [22] and TMR systems [25].

2.3.1. Duplex Systems

A traditional duplex system consists of two identical machines
that run the same program and are controlled by a fault-tolerant
clock. Each machine has its own storage and processor. We as-
sume that an I/O device exists to synchronize input to, and out-
put from, the machines. Periodically, the two machines verify
that their states are identical at pre-defined synchronization points.
The verification can take place in various forms, for example by
a straight comparison of the states, or by computing a hashing
function of each state and comparing the results. If the states are
identical, the state is saved in a checkpoint to enable restart should
errors occur in the future. Otherwise, a transient fault must have
occurred to cause the states of the machines to diverge, and thus

the machines roll back to the saved state from the last successful
synchronization.

A duplex system must reserve sufficient time to recover from
one fault by rolling back to the previously synchronized state and
re-executing from that point. We call this the recovery time. Take
for example a computation � with � = 0:6, a duplex system
can execute � in 0:6D. This leaves 0:4D (i.e., 40% of the al-
lotted time) for recovery time. Since this is not sufficient to re-
execute the computation should a failure occur, therefore the du-
plex system must insert a synchronization point at about 0:3D.
The amount of computation at risk is therefore 0:3D, well within
the available time for recovery (0:4D).

Clearly, a task � with � = 1 (i.e., must run at fmax to com-
plete at exactly the deadline) cannot use a duplex system, be-
cause a fault would cause a rollback and thus a deadline to be
missed. This observation leads to a tradeoff: As the value of
� gets closer to 1, the amount of recovery time that can be re-
served gets smaller, and therefore the system must synchronize
the states more frequently. Synchronizing the state, however, in-
curs overhead and consumes cycles that are otherwise available
to the computation. Ultimately, the overhead of synchronization
may consume all the available time and renders the computation
impossible as � progressively approaches 1.

The synchronization points serve the additional purpose of re-
ducing energy consumption by allowing the system to execute at
a lower speed/frequency. Let r be the number of cycles neces-
sary to synchronize the state and take a checkpoint. Typically, r
is much smaller than c. Assume further that state synchronization
occurs at regular intervals. If the number of such synchronization
points is n, and f is the desirable frequency to operate to lower
energy consumption, then Equation (3) describes how the time
can be allocated.

c + nr

f
+

c

n
� D (3)

Equation (3) states that the time is divided between running the
computation itself (c) and synchronizing states (nr) at frequency
f , and allowing for c

n
time to roll back. Notice that we attempt

to reduce the recovery time by running the processor at maximum
frequency during rollback. This is a reasonable decision given
that failures are infrequent and we want to reserve the minimum
amount of time that allows for recovery. This strategy leaves as
much time as possible to carry out the computation itself, allowing
for the largest slowdown, saving the most amount of energy.

We can see now that synchronization points help in reducing
energy consumption. By taking more synchronization points, the
amount of time reserved for recovery c

n
becomes smaller. There

is a tradeoff, however, since the synchronization points consume
time away from the available time to run the computation. The
system thus reaches a point where adding more synchronization
points can start having a negative effect by taking away too much
time from the computation itself, forcing the processor frequency
f to increase to satisfy Equation (3). Figure 1 illustrates this rea-

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

����������c+nr
f

Freq = 1 Freq = 1

n
c

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

Recovery

Synchronizationc
c+nr

T

(b) (c)

Freq = f

(a)

Figure 1. Equally spaced synchronization points
can help reduce energy consumption.

soning: a computation is represented by a rectangle whose area is
the number of CPU cycles needed for execution. The width of the
rectangle represents the CPU execution frequency, and its height
represents the time taken for execution. Figures 1(a) and 1(b)
show the execution of � , at fmax = 1, without synchronization
and with n = 4 synchronization points, respectively. Figure 1(c)
shows that we can reduce the frequency of executing � (with the
4 synchornization points) to f as long as the difference between
the deadline, D, and the time for executing � at frequency f is
at least enough for the overhead of synchronization points (nr)
and the time necessary for a potential rollback, (c

n
), at maximum

speed.

2.3.2. TMR Systems

A TMR system consists of three identical machines that run the
same program and are controlled by a fault-tolerant clock. Each
machine has its own independent storage and processor. A fault-
tolerant voting device receives the output of the three machines
and compares them. If all output values are identical, the vot-
ing device releases them and computation continues. Otherwise,
one of the output values diverges from the output in the other two
machines. In this case, an error must have occurred in the failed
machine and the voting device releases the value of the two func-
tioning machines. The malfunctioning machine is either taken
off-line for (permanent faults) repair or is rejuvenated by copying
the state of one of the functioning machines (transient faults).

When reliability and performance are concerned, a TMR sys-
tem has more desirable features than a duplex system. A TMR
system can tolerate the loss of one machine (effectively turning it-
self into a duplex system).2 It also incurs lower performance over-
head than a duplex system during failure-free operation, since it
does not need to pay the price for the state synchronizations. Ad-

2Our assumption about the failure model is one transient fault during a com-
putation. So, the advantage that a TMR system has over a duplex in this regard is
not centric to our discussion, as we do not consider permanent machine failures.

ditionally, TMR may be the only viable choice for computations
with � close to 1, since such workloads may not be able to afford
the additional time that must be reserved for rollback in duplex
systems. On the other hand, one would intuitively conclude that
a duplex system is likely to be more energy-efficient, since it has
only two machines. Therefore, a tradeoff is emerging: a duplex
system offers less reliability and higher performance overhead,
but consumes less energy, and vice versa for TRM systems.

3. Base Case: No Power Management

In this section, we give a quantitative evaluation of the dif-
ference between duplex and TMR systems, with respect to energy
consumption while guaranteeing deadlines even if a transient fault
occurs, when no power management is deployed (that is, tasks
run at fmax). Under such conditions, the processors of a duplex
system operate at maximum frequency to execute � , finishing by
time Td which consists of the time to run � (i.e., �D = c) and the
overhead allocated to synchronization points:

Td = c + nr = �D + nr (4)

Define � = r
D

, which expresses the overhead of one state syn-
chronization operation relative to the available time D. The
higher the value of � is, the higher the synchronization overhead.
We thus obtain Td = D(�+n�) = c+nr. The energy consumed
by the duplex system consists of the energy consumed by the dy-
namic power component for the duration Td and the static power
component for the entire duration D for both processors:

Ed = 2� (Td�f
m
max +DPs) (5)

The TMR system, using a similar analysis, finishes by time
Tt = �D = c as the processors also run at maximum frequency.
The energy is thus given by

Et = 3� (Tt�f
m
max +DPs) (6)

The difference between the energy consumed by both types of
systems is (from Equations 4- 6):

�E = Et �Ed = c�fmmax +DPs � 2nr�fmmax (7)

Equation (7) predictably states that compared to a duplex system,
a TMR system has to pay the static and dynamic energy compo-
nents for the additional machine that it uses. On the other hand,
the duplex system incurs the energy consumed by the periodic
synchronization. This equation supports the intuitive notion that
a duplex system is more energy-efficient, unless the overhead of
synchronization or the number of synchronization points is exces-
sive.

Figure 2 shows a comparison between the two types of sys-
tems for two values of � and of �. For each value, a chart shows
the variation of the energy as a function of the relative ratio of
Ps=�, which characterizes the different machine “types” (here

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

10

20

30

40

50

60

70

80

10 9 8 7 6 5 4 3 2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

E
ne

rg
y

Static-to-dynamic power ratio

TMR vs Duplex, no Power Management, σ (load) = 0.4

TMR
Duplex (ρ=0.01)
Duplex (ρ=0.10)

0

20

40

60

80

100

120

140

10 9 8 7 6 5 4 3 2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

E
ne

rg
y

Static-to-dynamic power ratio

TMR vs Duplex, no Power Management, σ (load) = 0.8

TMR
Duplex (ρ=0.01)

Figure 2. Energy consumption for Duplex vs. TMR
systems with no power management

Ps = 5W [14], but the absolute numbers here are not impor-
tant). The left side of the horizontal axis represents machines
where the static power consumption dominates, such as embed-
ded systems in which a low-power embedded processor is a small
contributor to the entire system’s power budget. The right side of
the horizontal axis represents machines where the dynamic com-
ponent prevails, such as modern systems with a high-end, high-
performance processor whose power consumption is a substantial
portion of overall system’s power budget. For example, the value
of Ps=� = 0:2 in the figure corresponds to a Pentium III system
that we measured in our laboratory [3]. The different values of �
show how the systems act in response to different workloads, with
the workload increasing with the value of � (recall that � = c=D
and note the different scales of the Y axes for each graph). Fi-
nally, we analyze for different values of � to show the effect of
the overhead of state synchronization in duplex systems. We have
experimented with � ranging from 0:01 to 0:1, which are repre-
sentative of the overhead found in checkpointing systems. For
clarity, we show results only for 0:01 and 0:1.

Figure 3. Energy consumption for TMR and Duplex
for two processor types with no power management.

By inspecting the graphs, there are two important observations.
First, the TMR system consistently consumes more energy than
the duplex system, by a wide margin. Predictably, this is due to
the fact that for typical values, the overhead of synchronization
in a duplex system does not cause sufficient energy consumption
compared to the power drawn by the third machine in a TMR sys-
tem. Second, as � increases, the duplex system becomes less of
a viable option. In fact, for � � 0:8, the duplex system cannot
function for � � 0:01. At such high values of �, it is not possible
to reserve recovery time regardless of the number of synchroniza-
tion points. This case is illustrated in Figure 3, which shows the
energy consumption as the workload (�) varies when two systems
are built using Pentium IV (P4) and Pentium III (P3) processors.
The figure assumes � = 0:01, and shows the duplex system un-
able to function (i.e., misses deadlines) beyond � = 0:8. Again,
the figure also reinforces the first conclusion about the superiority
of duplex systems in energy consumption when the workload is
low (small values of �).

To summarize, when there is no power management, the anal-
ysis establishes the superiority of duplex over TMR systems in
most situations with respect to energy consumption, except for
high-intensity workloads. We now turn our attention to applying
power management to both duplex and TMR systems.

4. Power Management For Duplex Systems

We examine two policies for conserving energy in duplex sys-
tems. The first policy is dynamic voltage scaling and targets the
dynamic power component of the system. The second, hiberna-
tion, targets the static power component of the system.

4.1. Dynamic Voltage Scaling

Above we discussed the tradeoff of having fewer or more syn-
chronization points in a task. This was based on Equation (3),

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

which established a safety requirement for the duplex system. We
now derive the frequency, f , that will allow � to finish within
D, while minimizing the dynamic component of the power con-
sumption and allowing for the synchronization overhead, the time
to roll back from a fault and the time for re-execution. Hence,
from Equation 3, f can be given by

f �
c+ nr

D � c
n

=
n� + n2�

n� �
(8)

For a given number of synchronization points, n, Equation (8)
establishes a safety requirement by defining a lower bound on the
frequency at which the processor should execute to finish � within
its deadline. Reducing the frequency below this level will reduce
the energy required to run � , but recovery within the deadline may
not be possible if a fault occurs.

The energy, E, consumed during the execution of � is the prod-
uct of the time it takes to execute � and power consumed [8].
Thus:

E = 2� ((PsD) + (�fm)(
c+ nr

f
)) (9)

The goal of the analysis is to find n which gives the frequency that
minimizes the energy consumption given by Equation (9) subject
to the constraints in Equation (8). Since this frequency is a func-
tion of n from Equation (8), we can derive the value of n which
minimizes E by differentiating Equation (9) with respect to n and
equating the result to zero. Note from Equation (8) that f depends
on n, and df

dn
denotes the differentiation of f with respect to n.

�(m � 1)fm�2(c+ nr)
df

dn
+ �f (m�1)r = 0

(m� 1)(c+ nr)
df

dn
+ fr = 0

(m � 1)(c+ nr)(n� + n2�) � (n � �)(� + 2n�) +

r(n� + n2�)(n � �) = 0

This results in a cubic equation in n with two non-positive solu-
tions (which we ignore), and one optimal positive value of n given
by:

n =
�

2m
((2m� 1) +

s
(2m � 1)2 +

4m(m � 1)

�
) (10)

For the common case ofm = 3, we obtain n = �
6 (5+

q
25 + 24

�
)

and for m = 2, we obtain n = �
4 (3 +

q
9 + 8

�
). When the

optimal n is not an integer, an approximation must be made by
taking bnc or dne depending on which value yields lower energy
consumption.

4.2. Hibernation and voltage scaling

In this mode, the system puts itself in a hibernation mode when
it does not have a computation to execute. The important advan-
tage of this mode is that the static component of the power con-
sumption is all but eliminated when the system idles. Modern

technology supports hibernation in a manner that allows the pro-
cessor and the system in general to respond almost immediately
to new events or requests. Hibernation support may consist, for
instance, of putting the processor in a “deep sleep” and “deeper
sleep” modes [15], and switching the memory off the bus and
putting it in self-refresh mode. Using this technology, the pro-
cessor and main memory consume almost no energy and can be
back online in a few milliseconds, or even microseconds. Our
measurements in the lab show that with the energy consumed by
memory drops by 99% in hibernation mode, while the specifica-
tions of the Intel Pentium III processor show that power drops to
0.47W in “deeper sleep mode” from a maximum of 22W, a ratio
of 98% [15].

Hibernation motivates “finishing” the computation as soon as
possible (i.e., at the highest speed) so that the static component
of the power consumption can be conserved. On the other hand,
dynamic voltage scaling requires that the processor execute at the
minimum speed to minimize the dynamic power component. Ex-
pectedly, the tradeoff depends on the actual constants that charac-
terize the power and energy equation. We now find the frequency
that would minimize the total energy consumption. Assuming that
energy during hibernation is insignificant, Equation (5) reduces
to:

Ed = 2� (Ps + �fm)� (
c+ nr

f
) (11)

We can find f that minimizes the energy consumption by min-
imizing Ed, subject to the safety constraint specified by Equa-
tion (8). It is not clear if there is a closed form for the solution.
We solve the equation iteratively and, as discussed in the next
section, the solution will depend on the “type of machine” that is
used by the system. For those where the static power consump-
tion dominates, setting the frequency to the maximum proves to
be most advantageous, and vice versa.

4.3. Evaluation

Figure 4 shows a comparison of relative energy consumption
between three cases, namely no power management (NoPM), dy-
namic voltage scaling (DVS), and DVS+hibernation (Hibern), for
various values of � and with � = 0:01. The conclusions for other
values of � and � are essentially the same and we do not show
the other figures for brevity. The notation and organization of the
figure are identical to Figure 2.

As the workload increases (higher values of�), the energy con-
sumption increases–note the different scales of the Y axes in each
graph–and the differences among the schemes blur. This is pre-
dictable, since higher workloads require the machine to operate
close to the maximum frequency for almost the entire duration,
negating any benefit from dynamic voltage scaling or hibernation.
Further, for machines where the static component dominates (left
side of X axis), hibernation is most effective, as it eliminates the
constant draw of energy. However, for machines where the dy-
namic power component dominates (right part of the X axis in

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

0

5

10

15

20

25

30

35

40

45

50

55

10 9 8 7 6 5 4 3 2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

E
ne

rg
y

Static-to-dynamic power ratio

Comparison of Duplex Systems, σ (load) = 0.4

NoPM
DVS

Hibern

0

10

20

30

40

50

60

70

80

90

100

10 9 8 7 6 5 4 3 2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

E
ne

rg
y

Static-to-dynamic power ratio

Comparison of Duplex Systems, σ (load) = 0.8

NoPM
DVS

Hibern

Figure 4. Effectiveness of power management for duplex systems, � = 0:01

each graph), the performance of Hibern approaches that of DVS,
since the influence of the static component decreases.

In practice, since different computations will have different
values of �, it follows that applying the hibernation policy com-
bined with DVS will yield the best results in general, outperform-
ing the other two policies for machines where the static power
component dominates, and performing as good as the other poli-
cies when either the dynamic power component dominates or the
workload is too high.

5. Power Management For TMR Systems

5.1. Dynamic Voltage Scaling

Dynamic voltage scaling is much simpler for TMR systems
compared to Duplex systems. Simply, since for idle processors
the static component of power consumption is fixed for the du-
ration D, the frequency f (or f 0 if fmax 6= 1) is set to �. This
guarantees that the processors execute at the minimum frequency
that allows the computation to complete within the deadline. As
a result, the dynamic component of the power consumption is re-
duced to the minimum on every machine.

5.2. Hibernation and Voltage Scaling

Similar to the hibernation mode in duplex systems, the TMR
system puts itself in a hibernation mode when there are no tasks to
execute. This mode is combined with dynamic voltage scaling to
strike a balance that minimizes overall energy consumption. The
tradeoff still exists between the need to execute quickly and min-
imize the static power consumed and to execute slowly to reduce
the dynamic power component. Recalling that P = Ps + �fm

from Equation (2), we now find the frequency that would mini-
mize the total energy consumption:

ETMR = 3� P �
c

f
= 3c(

Ps
f

+ �f (m�1)) (12)

We find f that minimizes E by solving the differential equation
dE
df

= 0 which yields

f = m

s
Ps

�(m � 1)
(13)

Note that typically f > �, unless the load is very low; in other
words, the task will typically finish well ahead of its deadline. In
any case, we need to guarantee that c

f
� D and therefore we set

f = maxf m

q
Ps

�(m�1) ;
c
f
; fming.

5.3. Optimistic TMR Systems—A Step Further

Further optimization of energy consumption is possible if we
consider that state divergence (caused by faults) is rare. We use
this fact to devise the following mechanism: we run two of the
machines that belong to the TMR system at the frequency com-
puted from Equation (13). If no failure occurs, the votes of the
two machines will be identical and can be released, at which time
the three machines are put in hibernate mode. The third machine
serves as a slow arbiter in the case if state divergence is detected
when the two main machines vote their output. In such a case, the
third machine will compute its output and acts as a “tie-breaker,”
selecting the output that matches its own as the correct one. Thus,
at the beginning of the computation we run the third machine at
the minimum possible frequency that allows it to make enough
progress such that if state divergence is detected, it can “take over”
and compute at maximum frequency to break the stalemate be-
fore the deadline. Depending on the workload, the third machine
could be put to hibernate while the other two are computing, or
we may have to set it to execute at a low frequency that consumes
the least possible power and yet allow the machine to take over
and produce the output if needed. We call this scheme optimistic
TMR. The optimism stems from the assumption that the two other
machines will always vote identically.

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

We illustrate the idea by the following example. Suppose � =
0:3, and that f = fmax. The two machines will finish at time
0:3D. Since there is ample time to run the computation should
state divergence is detected at time 0:3D, the third machine is
put to hibernate from the beginning. If the two machines agree
in their votes, then we have produced the correct output without
consuming any energy in the third machine. If state divergence,
however, is detected, the third machine can execute and produce
the needed result by time 0:6D.

Note that when � increases, we may have to put the third ma-
chine to work at a low frequency. Consider the example where
� = 0:6, and again we run at f = fmax. Again, the output will
be ready by 0:6D, leaving about 0:4D for the third machine to
compute the output. Therefore, the third machine must be put to
execute a 0:2D worth of computation just in case state divergence
is detected. Therefore, the third machine should be put to work
at 0:33fmax for the interval up to time 0:6D. This will guaran-
tee that the third machine can take over and compute the required
output by time D. In fact we can use the scheme in Section 5.2
to determine the frequency at which the third machine is to exe-
cute, given that it may or may not need to execute at the highest
frequency.

5.4. Evaluation

Figure 5 shows a comparison of relative energy consumption
between four cases, namely no power management (NoPM), dy-
namic voltage scaling (DVS), DVS+hibernation (Hibern), and the
optimistic TMR system (Optim). The notation and organiza-
tion of the figure are identical to Figures 2 and 4 and will not
be repeated here for brevity. The figure shows the analysis for
� = 0:01 and � = 0:4; 0:8, but results are similar for other values
of � and �.

Similar to the case of duplex systems, the differences among
the schemes blur for high values of �. Again, higher workloads
require the machine to operate close to the maximum frequency
for almost the entire duration, negating any benefit from dynamic
voltage scaling or hibernation, and preventing the third machine
from being put to work at a sufficiently low frequency to pro-
duce a substantial saving in energy consumption. Further, the
optimistic TMR system performs best or at least as good as the
other schemes. The savings are more pronounced for machines
where the static-power component dominates, or for small values
of�, or both. This demonstrates the effectiveness of the optimistic
TMR method.

It follows from the analysis that using optimistic TMR is
preferable when hardware redundancy is needed.

6. Comparison Between Duplex and TMR Systems

Now we turn to the central question in this paper. We have
established in Section 3 that duplex systems are superior to TMR
systems in energy consumption absent power management and for
workloads that allow a duplex system to be deployed (� not too

close to 1). It is useful now to consider the effect of incorporating
the power management techniques described in Sections 4 and 5
on the overall comparison.

Figure 6 shows a comparison of relative energy consumption
between the optimistic TMR and three duplex systems that use hi-
bernation and dynamic voltage scaling, but differ in the synchro-
nization overhead �. The notation and organization of the figure
are identical to Figures 2 and 4 and will not be repeated here for
brevity.

Analyzing the data in the figure shows that there is no sub-
stantial difference in energy consumption among the four config-
urations under study. Predictably, duplex systems with higher �
tend to consume more energy. But the striking conclusion that
the figure portrays is that with proper power management, a TMR
system is competitive with duplex systems. In the case where the
workload was low, the TMR system consistently consumed less
energy than the duplex systems with the parameters that we stud-
ied. To understand why, we observed that, under low �, the opti-
mistic TMR system effectively behave like a duplex system with-
out the overhead of synchronization. The third machine will be
effectively turned off all of the time of fault-free operation since,
even after the two functioning machines produce their votes, there
will be sufficient time for the third machine to do its own compu-
tation in case an error is detected (outputs disagree).

When the load is moderate (� = 0:4), the TMR system’s be-
havior is almost indistinguishable from the three duplex systems
that were studied. There are two reasons for this, first the duplex
systems do not operate at the optimal frequency point because the
optimal value of n is not an integer. Additionally, the overhead
of synchronization and hibernation conspire to reduce the energy
consumption advantage of the duplex systems.

Finally, as � approaches 1, the effectiveness of power manage-
ment in general decreases across the two types of systems. This
makes the TMR system consume more energy as it becomes more
difficult to hibernate the machines (see the figure for � = 0:8),
with a difference that reaches 25% over a duplex system. How-
ever, in that range, the duplex system becomes very sensitive to
the synchronization overhead and fewer configurations can oper-
ate in that range (in fact only for � � 0:01), thus negating the
advantage that duplex systems may have as � increases.

To summarize, proper power management techniques make it
possible for TMR systems to wipe out their disadvantages in en-
ergy consumption compared to duplex systems. At low-intensity
workloads, an optimistic TMR system actually outperforms a du-
plex system. At moderate workloads, a duplex system behaves
slightly better than a TMR system, but the energy consumption
is almost indistinguishable between the two system types. Only
when � approaches 1 that the duplex system restores some of its
advantage, but only to give them up quickly as the sensitivity to
the synchronization overhead make them infeasible in that range.
This rather surprising result concludes our study.

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

0

10

20

30

40

50

60

70

80

10 9 8 7 6 5 4 3 2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

E
ne

rg
y

Static-to-dynamic power ratio

Comparison of TMR Systems, σ (load) = 0.4

NoPM
DVS

Hibern
Optm

0

20

40

60

80

100

120

140

10 9 8 7 6 5 4 3 2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

E
ne

rg
y

Static-to-dynamic power ratio

Comparison of TMR Systems, σ (load) = 0.8

NoPM
DVS

Hibern
Optm

Figure 5. Effectiveness of power management for TMR systems, � = 0:01.

0

5

10

15

20

25

30

10 9 8 7 6 5 4 3 2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

E
ne

rg
y

Static-to-dynamic power ratio

Duplex vs. TMR Systems, σ (load) = 0.4

TMR
Duplex, ρ = 0.05
Duplex, ρ = 0.03
Duplex, ρ = 0.01

0

10

20

30

40

50

60

70

80

90

100

10 9 8 7 6 5 4 3 2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

E
ne

rg
y

Static-to-dynamic power ratio

Duplex vs. TMR Systems, σ (load) = 0.8

TMR
Duplex, ρ (load) = 0.01

Figure 6. A comparison between duplex and TMR systems when using the most effective power management
policy for each.

7. Related Work

Duplex and TMR systems are standard techniques for building
fault-tolerant systems. Vaidya compared the reliability obtained
from both techniques [29], and Pradhan and Vaidya described du-
plex systems in great detail [22]. Siewiorek and Swarz describe
early implementations of TMR systems along with some funda-
mental concepts [25] and countless references are available on the
subject.

Both the distribution of power consumption and methods for
managing it have been studied extensively in conventional sys-
tems such as laptops, personal digital assistants (PDAs), and
servers. For example, one power consumption study is a detailed
analysis of the energy consumed by the various components of
Apple Macintosh laptop computers [17]. Other studies have pro-
posed policies for managing energy use in server clusters by pow-

ering machines on and off [3, 4]. However, we are not aware of
any work that addresses energy management in fault-tolerant du-
plex and TMR systems.

Many processor architectures and microarchitectures incorpo-
rate power-saving features [15]. More recently developed and less
widely deployed today are new memory chip architectures that are
incorporating similar “spin down” states so that the system can ac-
tively manage the power used by main memory [23]. In addition,
several research efforts are focusing on new power management
mechanisms employed at the operating system [28] and applica-
tion layers [7]. Techniques for dynamically controlling processor
temperature [24] have also been used to indirectly control energy
consumption. Our work builds on these studies by demonstrating
the value of these mechanisms in fault-tolerant systems.

DVS was first proposed and studied in [30], but it has been
further explored in a variety of contexts. For example, for RTSs,

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

DVS schemes focus on minimizing energy consumption in the
system while still meeting the deadlines. Yao et al. [31] pro-
vided a static off-line scheduling algorithm, assuming aperiodic
tasks and worst-case execution times (WCET). Heuristics for on-
line scheduling of aperiodic tasks while not hurting the feasibil-
ity of periodic requests are proposed in [12]. Non-preemptive
power aware scheduling is investigated in [11]. For periodic tasks
with identical periods, the effects of having an upper bound on
the voltage change rate are examined in [13]. Slowing down the
CPU whenever there is a single task eligible for execution was
explored in [27]. DVS in the context of soft deadlines was inves-
tigated in [18]. Cyclic and EDF scheduling of periodic hard real-
time tasks on systems with two (discrete) voltage levels have been
investigated in [16]. The static solution for the general periodic
model where tasks have potentially different power characteristics
is provided in [1, 2]. Real-time applications exhibit a large vari-
ation in actual execution times [6] and WCET is too pessimistic.
Thus, a lot of research was directed at dynamic slack-management
techniques [2, 10, 20, 26]. Many other DVS papers appeared
in recent conferences and workshops, such as COLP (Compiler
and Operating Systems for Low Power) and PACS (Power-Aware
Computing Systems).

Clearly, commercial efforts have been underway to put in place
standards for power management. Examples include ACPI (Ad-
vanced Configuration and Power Interface [5]), and Microsoft’s
OnNow initiative [19]. It is conceivable that some of these stan-
dards could be of use in energy-aware reliable systems. However,
we believe that such use could prove problematic since all these
standards were drafted without consideration to reliability. It is an
open question whether energy-aware fault-tolerant systems will
need their own set of standards or they could use existing ones, or
modifications thereof.

8. Conclusions and Future Work

We have presented a simple theory for power management in
duplex and TMR systems when a limited amount of time is avail-
able for execution of tasks. This theory confirms the intuition that
duplex systems are superior to TMR systems when no power man-
agement is deployed. We then developed several techniques for
power management in duplex systems, showing how to insert syn-
chronization points to enable DVS and still guarantee deadlines.
Analysis of this method shows the sensitivity to the overhead of
state synchronization and that this sensitivity becomes a limiting
factor that may not allow these systems to function beyond a cer-
tain workload factor. We then combined hibernation which targets
the static power component of the system with DVS to arrive at
a policy that works well for a wide range of workloads and syn-
chronization overhead.

We then turned our attention to TMR systems, showing with
a simpler analysis how DVS and hibernation could be combined
to improve energy consumption drastically compared to the base
case. The best configuration was obtained from what we call op-

timistic TMR systems that attempt to turn off or slow down one
of the three machines to conserve energy. The result is a TMR
system that can have the same reliability and performance char-
acteristics of traditional ones, but with an energy consumption
profile that almost matches that of the optimized duplex systems.
This somewhat surprising result states that TMR systems, with
proper power management, can be competitive with duplex sys-
tems while providing better fault coverage.

While we are satisfied with this first step, there is a lot of work
that needs to be developed. Understanding energy consumption
during failure recovery is of interest. In this paper, we considered
failures rare and acted accordingly. In failure-prone environments
such as space ships, it will be necessary to revise these policies
to accommodate frequent clustered failures. It is also necessary
to understand how this model can be extended to handle the inter-
actions of the system with the surrounding environment or other
systems. We are currently working on these issues.

References

[1] H. Aydin, R. Melhem, D. Mossé, P.M. Alvarez: Deter-
mining Optimal Processor Speeds for Periodic Real-Time
Tasks with Different Power Characteristics, Proceedings
of the 13th Euromicro Conference on Real-Time Systems
(ECRTS’01), Delft, Netherlands, June 2001

[2] H. Aydin, R. Melhem, D. Mossé and P. M. Alvarez: Dy-
namic and Aggressive Scheduling Techniques for Power-
Aware Real-Time Systems, Proceedings of Real-Time Sys-
tems Symposium, 2001

[3] P. Bohrer, E.N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy,
C. McDowell, and R. Rajamony. The Case for Power Man-
agement in Web Servers. In Robert Graybill and Rami Mel-
hem, editors, Power-Aware Computing. Kluwer/Plenum Se-
ries in Computer Science, January 2002.

[4] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle.
Managing Energy and Server Resources in Hosting Cen-
ters. In 18th Symposium on Operating Systems Principles
(SOSP), October 2001.

[5] Compaq et al. ACPI Specification, Version 2.0, 2000.

[6] R. Ernst and W. Ye: Embedded Program Timing Analysis
based on Path Clustering and Architecture Classification,
Computer-Aided Design(ICCAD’97), pp. 598-604, 1997

[7] J. Flinn and M. Satyanarayanan. Energy-aware adaptation
for mobile applications. In 17th ACM Symposium on Oper-
ating Systems Principles (SOSP’99), pages 48–63, 1999.

[8] R. Gonzalez and M. Horowitz. Energy dissipation in gen-
eral purpose microprocessors. IEEE Journal of Solid-State
Circuits, September 1996.

[9] K. Govil, E. Chan, and H. Wasserman. Comparing Algo-
rithm for Dynamic Speed-Setting of a Low-Power CPU. In
Mobile Computing and Networking, 1995.

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

[10] F. Gruian: Hard Real-Time Scheduling Using Stochastic
Data and DVS Processors, Proceedings of International
Symposium on Low Power Electronics and Design, pp. 46-
51, 2001

[11] I. Hong, D. Kirovski, G. Qu, M. Potkonjak and M. Srivas-
tava: Power Optimization of Variable Voltage Core-based
Systems, Proceedings of the 35th Design Automation Con-
ference (DAC’98), 1998

[12] I. Hong, M. Potkonjak and M. Srivastava: On-line Schedul-
ing of Hard Real-Time Tasks on Variable Voltage Proces-
sors, Computer-Aided Design (ICCAD’98), pp. 653-656,
1998

[13] I. Hong, G. Qu, M. Potkonjak and M. Srivastava: Synthe-
sis Techniques for Low-Power Hard Real-Time Systems on
Variable Voltage Processors, Proceedings of the 19th IEEE
Real-Time Systems Symposium (RTSS’98), Madrid, Decem-
ber 1998

[14] Intel Corporation. Pentium III Technical Specifications,
2000.

[15] Intel Corporation. Mobile Intel Pentium III Processor-M
Datasheet October 2001. Order Number: 298340-002, Oc-
tober 2001.

[16] C. M. Krishna and Y. H. Lee: Voltage Clock Scaling Adap-
tive Scheduling Techniques for Low Power in Hard Real-
Time Systems, Proceedings of the 6th IEEE Real-Time Tech-
nology and Applications Symposium (RTAS’00), Washing-
ton D. C., May 2000

[17] J.R. Lorch and A.J. Smith. Energy Consumption of Ap-
ple Macintosh Computers. IEEE Micro, 18(6), Novem-
ber/December 1998.

[18] J. R. Lorch and A. J. Smith: Improving Dynamic Voltage
Scaling Algorithms with PACE, Proceedings of the ACM
SIGMETRICS 2001 Conference, Cambridge, MA, June 2001

[19] Microsoft Corp. PC99 System Design Guide. Microsoft
Press, 1999.

[20] D. Mossé, H. Aydin, B. Childers, R. Melhem: Compiler-
Assisted Dynamic Power-Aware Scheduling for Real-Time
Applications, Workshop on Compilers and Operating Sys-
tems for Low Power (COLP’00), Philadelphia, PA, October
2000

[21] Kevin Nowka. Private communication. IBM Research,
Austin, TX.

[22] D. K. Pradhan and N. H. Vaidya. Roll-forward and rollback
recovery: Performance-reliability trade-off. In FTCS-24:
24th International Symposium on Fault Tolerant Comput-
ing, pages 186–195, Austin, Texas, 1994. IEEE Computer
Society Press.

[23] Rambus Corporation. Rambus Technology Overview, Feb
1999.

[24] Erven Rohou and Michael D. Smith. Dynamically Manag-
ing Processor Temperature and Power. In 2nd Workshop on
Feedback-Directed Optimization, November 1999.

[25] D. Siewiorek and R. Swarz. The theory and practice of reli-
able system design, 1982.

[26] D. Shin, J. Kim and S. Lee: Intra-Task Voltage Scheduling
for Low-Energy Hard Real-Time Applications, IEEE De-
sign and Test of Computers, 18(23):20-30, March 2001

[27] Y. Shin and K. Choi: Power Conscious Fixed Priority
Scheduling for Hard Real-Time Systems, Proceedings of the
36th Design Automation Conference (DAC’99), 1999

[28] A. Vahdat, A. Lebeck, and C. Ellis. Every Joule is Precious:
The Case for Revisiting Operating System Design for En-
ergy Efficiency. In 9th ACM SIGOPS European Workshop,
September 2000.

[29] Nitin H. Vaidya. Comparison of duplex and triplex memory
reliability. IEEE Transactions on Computers, 45(4):503–
507, 1996.

[30] M. Weiser, B. Welch, A. Demers, and S. Shenker. Schedul-
ing for reduced CPU energy. In First Symposium on Op-
erating Systems Design and Implementation, pages 13–23,
Monterey, California, U.S., 1994.

[31] F. Yao, A. Demers and S. Shankar: A Scheduling Model for
Reduced CPU Energy, IEEE Annual Foundations of Com-
puter Science, pp. 374 - 382, 1995

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

