
Scheduling Optional Computations in Fault-Tolerant
Real-Time Systems *

Pedro Mejia-Alvarez t
CINVESTAV-IPN. Secci6n de Computaci6n

AV. I.P.N. 2508, Zacatenco.
Mexico, DE 07300

pmejia@cs.cinvestav.mx

Abstract

This paper introduces an exact schedulability analysis for
the optional computation model urider a specified failure hy-
pothesis. From this analysis, we propose a solution for deter-
mining, before run-time, the degree of fault tolerance allowed
in the system. This analysis will allow the system designer to
verifL f a l l the tasks in the system meet their deadlines and to
decide which optional parts must be discarded if some dead-
lines would be missed. The identification of feasible options
that satisfL some optimality criteria requires the exploration
of a potentially large combinatorial space of possible optional
parts to discard. Since this complexity is too high to be con-
sidered practical in dynamic systems, two heuristic algorithms
are proposed for selecting which tasks must be discarded and
for guiding the process of searching for feasible options. The
performance of the algorithms is measured quantitatively with
simulations using synthetic tasks sets.

1 Introduction
Modem real-time embedded processing systems are becom-

ing common nowadays for the management and control of a
variety of applications such as manufacturing, adaptive signal
processing, space or avionics, telecommunication, and indus-
trial automation systems. These different complex applications
are characterized by their stringent timing and reliability re-
quirements. Further, they must react in a predictable fashion
to environmental stimuli. Even when properly designed, real-
time systems can be subject to disturbances caused by hard-
ware design, errors in software coding, deficiencies or mal-
functions in input channels, or dynamic changes in the system
environment. The unpredictable occurrence of these distur-
bances may appear as timing failures (i.e., missing deadlines),

*Supported in part by DAWA under contract DABT63-96-C-0044,

f Work done while this author was visiting the Computer Science Depart-
through the FORTS project.

ment at the University of Pittsburgh.

Hakan Aydin, Daniel MossC, Rami Melhem
Computer Science Department

University of Pittsburgh
Pittsburgh, PA 15260

aydin, mosse, melhem@cs.pitt.edu

which are unacceptable in systems where they can cause dan-
ger to human life, damage to costly equipment, or large de-
lays in production. To avoid that such faults cause system dis-
turbances, real-time systems with high dependability require-
ments are traditionally built with massive replication and re-
dundancy. A less expensive solution to this problem is that
of using time redundancy, which typically does not require a
large amount of extra resources, is amenable to uniprocessors,
and has an error rate that is much higher than permanent faults
[111. Therefore, this paper focuses on the problem of schedul-
ing real-time tasks with transient recovery requests in a unipro-
cessor environment, using time redundancy.

The optional computations (OC) model developed in this
paper is proposed as a means to provide flexibility in schedul-
ing time-constrained fault-tolerant tasks so that recovery from
faults does not cause tasks to miss their deadlines. In this
model every task has two parts, a mandatory part and an op-
tional part. A timely answer is available after the manda-
tory part ends and the accuracy of the result may be improved
by executing the entire optional part (this is called the O I I -
constraint). Recovery is provided only for mandatory parts,
and is accomplished by either re-executing or by executing a
recovery block. The resources reserved for optional parts are
used for recovery, and therefore the optional parts of the tasks
are subject to shedding to allow for the recovery of the manda-
tory parts when a fault occurs.

The optional computation (OC) model is similar to the im-
precise computations (IC) model [9], in that both consider a
task to be divided into a mandatory part and an optional part.
However, the IC model uses an error function as a metric to
evaluate the performance of the system. In [9] an error func-
tion is defined to be inversely proportional to the total amount
of time that the optional parts execute. An optimal schedule
corresponds to the one where the total error of the system is
minimized. In the IC model, the shape of the error functions
and policies for scheduling optional parts are crucial in devis-
ing algorithms for maximizing the performance of the system.
Therefore, a performance degradation may occur if the system

323
1530-1427/00 $10.00 0 2000 IEEE

mailto:melhem@cs.pitt.edu

designers are not familiar with the error functions that repre-
sent the applications at hand. For this reason, our work is not
based on error functions, but on performance metrics widely
known to most system designers and programmers, such as uti-
lization and criticality[2].

In this paper we study the problem of determining the de-
gree of fault tolerance allowed in the system within the frame-
work of the optional computations model. Our approach for
solving this problem is based on a schedulability test that al-
lows a system designer to verify if all mandatory parts of the
system meet their deadlines and to decide which optional parts
must be discarded if some deadlines would be missed. The
problem of identifying feasible solutions requires the explo-
ration of a potentially large combinatorial space of possible
optional parts to discard, therefore heuristic algorithms are de-
veloped for different optimality criteria. The solutions pro-
posed aim at reducing the effective size of the search space
by selecting the discarding order and by guiding the process of
searching for feasible solutions. The first heuristic algorithm is
based on an approximate bisection algorithm of the space so-
lution. The second heuristic comprises a greedy algorithm that
orders the optional parts according to their objective functions
and incrementally searches for the first feasible solution. The
performance of the algorithms is compared against an exhaus-
tive search algorithm and a random search algorithm.

The remainder of this paper is organized as follows. In Sec-
tion 2, the fault-tolerant scheduling problem is formulated and
a methodology for solving the problem is proposed. In Sec-
tion 3, the heuristic algorithms are described and simulation
results are presented, in Section 4, for comparing the perfor-
mance of the algorithms against optimal exhaustive search al-
gorithms and for giving insight into the effectiveness of the
proposed heuristic algorithms in averting timing failures under
a variety of transient recovery workloads. Finally, Section 5
presents concluding remarks.

2 The Fault-Tolerant Optional Computation
Scheduling Problem

In the optional computations model, we consider a set of n
periodic preemptive tasks running on one processor. Each task
ri is logically decomposed into a mandatory part Mi followed
by an optional part Pi. In this model, Ti is the period and Ci is
the worst case execution time of task ~ i . Each execution time
Ci consists of a mandatory part of length mi and an optional
part of length pi (i.e., Ci = mi + pi). The mandatory part
Mi must execute to completion in order to produce an accept-
able and usable result. The optional part Pi can execute only
after the completion of the mandatory part Mi. However, a
partially executed optional part or an optional part that misses
its deadline is of no value to the system (0/1 constraint). The
task ~i meets its deadline if its mandatory part completes by its
deadline. Static (Rate Monotonic Scheduling[8]) or dynamic

2.1 Task and Fault Model

324

(Earliest Deadline First[8]) priority assignment schemes will
be considered in different sections of this paper. Tasks are in-
dependent and have no precedence constraints. It is assumed
that a task executes correctly if its results are produced accord-
ing to its specification, and delivered before its deadline. A
failure occurs when either of these conditions does not hold.
Each task has an associated criticality value vi, which denotes
its importance within the system. A method to derive this value
is proposed in [2] . Our fault model considers that the system
incorporates an error detection mechanism, which detects tran-
sient faults: only one task is affected by each fault and the
errors are detected at the end of the mandatory part. We as-
sume that faults have a minimum inter-arrival time of TF and
computation requirements for recovery operations are known
before run-time. Only mandatory parts are allowed to recover
by either re-executing or by executing a recovery block. The
resources reserved for optional parts are subject to reclaiming
to allow the recovery of the mandatory parts.

2.2 Problem Formulation

In this paper a scheduling analysis is proposed for deter-
mining the degree of fault tolerance allowed in the system for
our optional computations model. The problem to be solved
consists of statically determining whether or not a schedulable
system can be obtained from a non-schedulable set of tasks by
discarding some optional parts, such that some criteria of op-
timality is achieved. The discussion of this problem raises the
following questions: (a) Which and how many optional parts
should be shed to allow the recovery from a specific number
of faults? (b) What is the optimal number of optional parts to
shed that make the task set schedulable?.

We will attempt to solve the problem of discarding optional
parts, with and without fault tolerance, under different optimal-
ity criteria. Our first objective is related to shedding a number
of optional tasks that maximizes the utilization of the system.
This objective favors a solution in which the utilization of the
workload is maximized without considering the number of op-
tional parts to be shed. The second objective assumes that dif-
ferent criticality values are associated with every optional part,
therefore we are interested in maximizing the total value ob-
tained after a number of optional parts are shed.

Discarding optional parts requires the exploration of a po-
tentially large combinatorial space of feasible and non-feasible
solutions. Each element in the search space will be evaluated
either in terms of utilization or criticality. In each case, the
elements will be also tested for feasibility. Only the feasible
elements will be considered for the search. While searching
for feasible elements, we are interested in meeting our opti-
mality criteria without conducting an exhaustive search over
the entire search space and getting as close as possible to an
optimal solution with a reasonably low cost.

Set

s4

ss
s2

s 1

2.4 Feasibility Tests

To evaluate the feasibility of each element in the search
space we will develop an utilization-based test (UBT) and a
response-time test (RTT). The utilization-based test can be
used for scheduling policies such as EDF or RMS with har-
monic task sets', while the response time test can be used with
RMS when the task set is not harmonic. Each test will be ex-
tended to include faults. It is assumed that for a given work-
load, the utilization of the mandatory parts (U , = cy==, p)
is constant and should be less that 1.

Search Space
S{1,2.3,4}

s{1,2,3} S{1,2.4} sI1 .3 .4) s{2,3,4}

s{1,2} S{1.3} s{1.4} s{2.3} S{2.4} S{3,4}

S{ l} S { Z } S{3) S{4}

2.4.1 Utilization-Based Test (UBT)

For each element s of the search space S the utilization-based
test without fault tolerance is defined by,

YiPi

i=l

where yi = 0 means that the optional part is discarded, that is,
y i = (1 - zi). UBT(s) denotes the utilization-based test for
an element s of the search space S. Note that, when choos-
ing a feasible solution, the utilization of the optional parts
(Up = e) must be Up 5 1.0 - U,. Also, any sin-
gle optional part with utilization p i / T i greater than 1.0 - U,
can be immediately discarded.

The UBT test can be extended to include faults by adding an
amount of utilization for the recovery workload. Our approach
is to reserve an amount of time C F for the recovery of the
mandatory parts for the case in which one fault occurs with
a minimum inter-arrival time T F . If the recovery operation

'A harmonic task set is defined as that in which the periods of all tasks are
multiples of each other.

is re-execution or executing a recovery block then C could
be defined as CF = maz{j=l ,,.,, ,) (mj). However, since an
amount of time (mi + yipi) is already reserved for ~i and the
error is detected at the end of the mandatory part, only C =
maz{j=l,...,,)maz{O, (mj - y j p j) } is needed for recovery.
Thus, the UBT can be expressed as:

2.4.2 Response-Time Test (RTT)

In RTT, we will start by defining the schedulability of a task set
under no failure hypothesis using the response time analysis
described in [11. The response time of task ~i is the sum of its
worst case execution time and the interference due to higher
priority tasks. The recurrence expression for the response time
for the OC model without considering faults is

where y i = (1 - x i) as above. The iteration starts with
r: = E:=, Ci and terminates either when r:+' = r y or
when r;" > Di. If ry+' 5 Di then ~i is accepted, other-
wise it is rejected.

Due to the time used by the recovery workload, the schedu-
lability analysis must also include the workload generated by
recovery requests, and the overhead caused by the introduc-
tion of a recovery mechanism. Thatis, if a fault occurs dur-
ing the execution of task ~i and a fault recovery operation has
to be executed at the same priority of task ~ i , we need to in-
clude the timing requirements of the fault recovery operation,
thus adding to the response time of task ~i and all lower pri-
ority tasks. When a single fault occurs during the execution
of task 7-j (j = 1,. . . i). at most Cj" delay will be suffered
by task ~ i , where C; denotes the timing requirement of the
recovery operation of task ~ j . Therefore, recovery will add
mu~{~=~, , . . ,~}G ' j " to the response time of task q. Note that
this is true if only one fault occurs, that is, T F 2 T,.

Punnekkat [101 extended the worst-case response time anal-
ysis [11 to include fault-tolerant real-time tasks, calculating the
response time by,

rw rw
rp+l = ci + r ~ l ~ j + r ~ 1 m a z { j = ~ , . . . , q ~ j F

j=l, ..., i-1 Tj T F

(4)
where T F denotes a fixed minimum time between faults.

From Equation (4) we can derive the response time anal-
ysis for the OC model. If a fault occurs in the optional part
of some task, no recovery operation will be executed. How-
ever, if a fault occurs in the mandatory part of task ~i (or in
some higher priority task that preempts ri), recovery will add

325

CF (see above) to the response time of q. The response time
equation is now given by,

RTT(s) denotes the response-time test for an element s of
the search space S.

2.5

The objective functions are defined as

Definition of the Objective Functions

p(s): In this function we subtract the utilization of the set
of optional parts in an element s E S from the total utilization
of all optional parts.

p(s) denotes the remaining utilization in the system for op-
tional parts only, after discarding some optional parts. For ex-
ample, p (~ { 2 , 3 }) denotes an element that discards p2 and p 3 ,

y(s): In this function we compute the remaining critical-
ity ratio achieved after discarding a set of optional parts in an
element s E S. Recalling that vi is the criticality of task ~ i ,

(4) - p - p. that p(' {2 ,3}) = c { i = 1 , ..., n } T,

(7)
Ci=1, . . , n vi - C j = 1 , ..., n xjvj

Ci=l,..,n vi
Y(S) =

y(s) denotes the remaining criticality ratio in the system af-
ter discarding some optional parts. For example, y (~ { 2 , 3 }) is
computed by (Ei=l ,..., m v i) - w 2 - w 3

Li=l ,..., n
2.6 Search Criteria

Each element on the set s k is evaluated according to ei-
ther objective function previously described. The goal of the
search is to find an optimal solution within the search space
that satisfies some optimality criteria. Without loss of gener-
ality, we assume that the elements of the search space S , are
ordered according to their objective functions, that is, when-
ever p(s) is optimized the tasks are sorted such that 2 >
E 2,. . . , E 2 E and whenever y(s) is optimized the
tasks are sorted such that 211 2 ~2 2,. . . ,> 21,-1 > 21,. Note
that this ordering results in a total order for the first set SI for
each objective function, with elements increasing from left to
right. However, this may not be generally true for other sets
s k , k = 2, . . . , n - 1. The following propositions will help us
motivate our algorithms. Let us start by considering p(s) as
the objective function.

Proposition 1 If the first element of set s k (i.e., the element in
which x 1 = x 2 = . . . = x k = 1) is notfeasible then there exist
no feasible elements in s k .

Proof: Let c = 1.0 - U , be the available utilization for op-
tional computations and U p = cy=l E. The first element in
set s k is s{1,2 ,..., k } and its utilization is,

and c .< U," by assumption.
Consider any element in s k , namely SA, where A is a sub-

set of { 1,2, . . . , n} with cardinality k. The utilization of this

i = 1, . . . , n - 1, it is clear that 2 E, hence
U," 5 U,". The first element is infeasible by assumption, thus
c < U,k 5 U," and the utilization U," does not lead to a feasible
solution either.

element is U," = U, - 5. Since - Pi > for Ti - Ti+l

Proposition 2 [f the last element of set s k (i.e., the element in
which x n - k + l = xn-k+2 = . . . = xn = 1) is feasible then all
elements in s k are also feasible.

Proof: The utilization of the last element in set s k is
n

Tn Tn-l ' ' ' ' ' Tn-k+l Ti i = n - k t l

Consider any element in s k , namely S A , where A is a sub-
set of { 1,2, . . . , n} with cardinality k. The utilization of this
element is again U," = Up - e. Since e 2 e for
i = 1 ,..., n - 1 and C ~ = n - - k + l (~) L e, then
U," 2 U,". The last element is feasible by assumption, and
since U," 5 U2 5 c, the claim is proved.

Proposition 3 If the last element of set SI, is feasible, then for
every element x of set S,, 3 2 5, there exists an element y in
set S k such that U: 5 Uy" 5 e.

Proof: Proposition 2 establishes that d l the elements in SI, are
feasible, hence Uy" 5 c is immediately proven. For j = k ,
y = 2 and the proof is complete.

Now consider an element x in set S,, j > k . The utilization
of this element is U: = U p - e where A is a subset
of (1, . . . , n} with cardinality j. Consider any subset A' of A
with cardinality k (since k < j such subsets clearly exist, un-
less k = n). Let y be this element. Uy" = U P - x { , E A , } k 5 c
by Proposition 2 (all elements of s k should be feasible, [A'(=
k) . But U: is clearly equal to U; - xf2E(A-A,)) E, and
E{2E(A-A,)} 2 2 0, U: 5 U; 5 c, proving the statement.

Corollary: Once we locate a set SI, such that its last element
is feasible, we need not to search through S,; j > k for an
element with larger utilization.

Note that propositions 1, 2 and 3, also hold for the objec-
tive function y (s) because of the corresponding ordering of its
elements in S.

326

2.7 Optimality Criteria

Our goals are defined by the following optimality criteria,

0 Maximize the utilization. The aim of this objective is
to find a feasible element s E S such that the remaining
utilization in the system is maximized, as follows.

maximize p(s)

subject to UBT or RTT
where s E S

0 Maximize the value. Maximizing the value requires to
find a feasible element s E S such that y(s) is maximized.

maximize y(s)

subject to UBT or RTT
where s E S

3 Heuristic Algorithms
In this section, we will describe three heuristic algorithms

which try to maximize an specific metric while meeting all
deadlines. The Approximate Incremental Algorithm (AIA),
uses a fast and greedy search mechanism and it has been de-
signed to provide the lower bound on the quality of the results
and on the complexity for all the algorithms. The Approximate
Binary Algorithm (ABA) attempts to search every feasible set
s k for a near optimal and low cost solution using an binary
search algorithm. The Random Search Algorithm (RSA), also
searches every feasible set s k but the search is conducted ran-
domly. We are interested in comparing the performance of the
random search algorithm against the binary search algorithm
in the search of near optimal solutions.

3.1 The Incremental Algorithm, AIA
The Approximate Incremental Algorithm (AIA) is a greedy

algorithm that searches for feasible solutions incrementally in
the first set S1 according to increasing values. In this algo-
rithm, we start by evaluating the element with the smallest
value in S1 (according to p(s) or y(s)) and check whether dis-
carding it makes the system schedulable. If not, we choose
the two smallest elements, and so on until we reach the cu-
mulative number of optional parts to discard which makes the
system schedulable. This is equivalent to searching S on the
first element of every set, S I , ..., S,. The complexityof this al-
gorithm is O(n) plus O(n log n) for the sorting of the first set.
The quality of the results for this algorithm is 1/2 [4], that is,
the worst case performance ratio of the solution will be no less
than half the value of the optimal solution. Even though this
solution leads to a relatively poor worst-case performance, our
simulations, presented in Section 4, will show that on average
this fast algorithm has an acceptable performance.

The AlA algorithm can be used for maximizing utilization
(AIA-U) and for maximizing criticality (AIA-V).

3.2 The Binary Algorithm, ABA

The Approximate Binary Algorithm (ABA) attempts to
search every feasible set SI, for a near optimal solution using
an approximate bisection algorithm. In the description of the
algorithm we will use p(s) as the objective function for the
goal of maximizing utilization, and refer to the algorithm as
ABA-U. This approach can be extended to the objective func-
tion y(s).

Figure 1 shows the ABA-U in macro-steps. To guarantee
that a feasible solution exists, S, must be first evaluated. Re-
call that the set s, contains only one element in which all op-
tional parts are shed. If S , is feasible then a binary search is
conducted on all feasible sets, starting from S I , until the set
S,-1 is reached, or until we find a set s k in which the last
element is feasible (see Proposition 3). For every feasible set
s k ABA attempts to find the best feasible solution, that is, an
element as close as possible to the last element in s k . The in-
tuition behind this argument is that, due to the ordering of the
elements in sk , the last elements in this set (if they are feasible)
will probably give solutions with higher utilizations2.

For every feasible set, ABA starts by testing the feasibility
of the first element, LL(k) , and last element, LR(k) , of each
feasible set s k . If the element in the middle of s k is feasible
(let us call this element L M (k)) , then the elements L M (k)
and LR(k) will be the next end points on the search. The
ABA heuristic discards the remaining elements (from LL(k)
to L M (k) - l), even though they may contain feasible so-
lutions. On the other hand, if the middle element L M (k) is
not feasible the search continues with elements from LL(k) to
L M (k) - 1, even though some feasible solution may be dis-
carded within [L M (k) 1- 1, LR(k)l.

Note that, if ABA does not find any element better than the
first element, the worst case quality result of ABA will be the
same obtained by AIA. However, as we will show in our per-
formance evaluation study, ABA outperforms the AIA algo-
rithm. The complexity of algorithm ABA is O(n210gn) plus
the time used to order SI which is O(n log n). The cardinality
of each set s k is (-), therefore for n sets the complexity

O(n log(n!)) = O(n2Zogn). Although the complexityofABA
may seem high, we will show with simulations that the run-
time of the algorithm is relatively low. Clearly, the complexity
increases if response time is used as a feasibility test.

ABA can also be used for maximizing criticality value (de-
noted by ABA-V) by using the objective function y(s).

is o (x { k = l ,._., n} log&) = O(C{k=l, ..., n} log (n!)) =

3.3 The Random Search Algorithm, RSA

In order to have a baseline algorithm for comparison, we
implemented a Random Search Algorithm (RSA), which fol-
lows the same sequence to find feasible sets as in ABA for each

2Simulation experiments in Section 4 will help us to support this
assumption.

327

1: Initial Conditions and Assumptions:
2: Given a set of n tasks with the following parameters: (Ci = mi + p i) , (Ti), (D i)
3: Some Task(s) are not schedulable
4 Algorithm:
5: Compute p(S,)
6 if fi(Sn) is not feasible then exit:
7: else
8: Compute SI using the objective function p(s) /* compute the first set */
9: Sort SI in increasing order
10: j = 1: /* start with the first row */
11: while (j < n)
12: if the first element in Sj is feasible then
13:
14:
IS:
16: while (L L (j) <> L R (j))
17:
18:
19: LRCj) = LMG):
20: else
21:
22: LLU) = LMG):
23: endwhile
2 4
25: j = j + I; /* search next set */
26: if the first and the last elements in Sj are feasible then exit:
27: endwhile
28: Solution = Max(k); (k=lj)

LLO) =element in the left most side of Sj
LRG) = element in the right most side of Sj
LMO) =element in the middle of Sj

if element LMU) of Sj is not feasible then
Search for a feasible element within LLU) and LMG)

Search for a feasible element within LMQ) and LRO)

MaxG) =best element in Sj evaluated by @(s)

Figure 1. The Approximate Binary Algorithm: ABA-U

set S k but randomly picks at most O(nlogn) elements; the el-
ement with maximum feasible value becomes the result of this
set. The maximum of these values of each set becomes the
RSA maximum, which is the result of this algorithm.

RSA can be used for utilization (RSA-U) and for criticality
value (RSA-V). RSA has the same execution time of ABA,
since the only difference is that the search on each set is done
randomly. In Section 4 we will show simulations experiments
to evaluate the performance of these three algorithms. It will
be shown that ABA outperforms RSA, because ABA uses a
guided search on partially ordered sets while RSA conducts its
search randomly on each set of the search space.

3.4 Example

The example described in this section has been designed to
illustrate in detail the framework presented so far. Consider a
set of 5 periodic tasks with timing requirements and assigned
criticality values described in Table 2. The priority assignment
policy chosen for this example is Rate Monotonic (RMS) [8].
The response times of each task are shown in Table 3 , for a
fault-free workload and for workloads with faults with a mini-
mum inter-arrival time T F = 50 and T F = 100.

Note that for the three cases only task 75 is not feasible (no.
By applying ABA and AIA, we can determine which op-

tional parts need to be discarded to make the system schedu-
lable. Figure 2 shows the results from the algorithms when
applied for each of the objective functions. In this example,
when generating the search space only the response time test
has been used as the feasibility test.

For the goal of maximizing the utilization of the optional

15.0 2.0 1.0 1.0 0.1333 6.0
20.0 7.0 3.0 4.0 0.35 10.0

Table 2. Example Real-Time Workload

II Tasks

Table 3. Response Time Analysis

parts, the exhaustive search and ABA-U find the optimal value,
0.332, with optional p artspl andp4 discarded. The result from
RSA-U is 0.303. Also, the result from the AIA-U indicates that
p2 should be discarded yielding a utilization of 0.263. For this
goal, every value in S is computed using the objective func-
tion p(s) described in Equation (6). Maximizing the critical-
ity requires the objective function y(s), from Equation (7), for
evaluating the elements in S . The ABA-V and RSA-V algo-
rithms find the optimal solution, 0.812, by shedding optional
parts p 3 and p4. The result from AIA-V is 0.688 with optional
part pa discarded. Table 4 shows a trace of the execution of
the algorithm using the objective function p(s) for maximiz-
ing the utilization. The set Sg is feasible, therefore the search
is conducted in the remaining sets. The search starts with the
feasible sets S1 and 5'2 after verifying that their first element is
feasible, and stops on set S3, because its last element is feasi-
ble. According to Proposition 3, if the last element of a given
set are feasible it will indicate that the search must stop be-
cause no better feasible solutions (with higher utilization) will
be found after this set. The highest value found on the search
becomes the output of the algorithm.

Note that, the best utilization from this binary search is
0.332. The optional parts to shed are p1 andp4 and the number
of elements searched is 14. In the next section we present re-

Algorithms I Maximizing Utilization
I Utilization Number of Optional RunTime' I

Parts to Discard

A I A - U 0.263
Maximizing Criticality

Value Number of Optional RunTime* I

* The run time describes the number of elements visited in the search

Figure 2. Example: Results from the Algorithms

328

a2,3,1 = 0.1 '2.1.4 = 0.13 s3,1,4 = 0.22 83,4,5 = 0.26 '1,4,5 = 0.3
o ~ , ~ = 0.16 s3,1 = 0.29 '1.4 = 0.33 '1.5 = nf '4.5 = nf
'2 = 0.26 '1 = nf '3 = n f .5 = nf

Table 4. Binary Search Example

sults from extensive simulations that measure the average per-
formance of the algorithms.

4 Performance Evaluation
The experiment results will show how the algorithms be-

have when simulations are run for different a) problem sizes
(number of tasks), b) tasks distributions (distribution of the uti-
lization of tasks) and c) data ranges (distribution of the size of
the optional parts).

Each data point represents the average of 500 randomly gen-
erated periodic tasks sets. The algorithms are executed on task
sets whose number varies randomly from 7 to 15 periodic tasks
following a uniform distribution. The worst-case execution
time C, is chosen as a random variable with uniform distri-
bution between 10 and 500 time units. The period Ti is chosen
as a value equal to Ti = (nCz)/U. where n is the total num-
ber of tasks and U = Ci/Ti. The experiments were
conducted with a total utilization U varying between 85% and
190%. The utilization of each task Vi = 3 is distributed uni-
formly between (Uilmin, Vi * max). We show two cases in
this paper: (Ui/2, Vi * 2) and (Ui/6, Vi * 2). The values of pi in
the graphs shown vary randomly between 40% to 60% from its
corresponding computation time Ci. The feasibility test used
on all the simulations was the utilization based test described
in Equation (2). Although not shown in this paper, additional
studies were conducted showing similar results for p, varying
from 20% to 40%, from 60% to 80% and from 20% to 80%.
The priority assignment policy chosen is Rate Monotonic[8].
For each task set, one fault is injected periodically to force the
system to become unschedulable. The fault inter-arrival time
was chosen as T F = 2T,.

The performance of our algorithms was measured according
to the following metrics:

0 Utilization Value Achieved, p(s) : This metric is com-
puted by using the function p(s) described in Equation
(6).

0 Criticality Value Achieved, y(s): This metric is com-
puted by using the function y(s) described in Equation
(7).

0 Run time: This represents the number of elements visited
on each search space by each of the algorithms.

It is important to note that the results obtained in our sim-
ulation experiments are not compared with previous work be-
cause they use different task models or different performance
metrics. The results obtained in [3] with the RED algorithm
deal with aperiodic tasks using a dynamic scheduling policy

(EDF). In [9, 61 the aim is to minimize the total error of the
system. The work of [7, 51 allows some instances of some
tasks to be skipped entirely and therefore their model can not
be compared with ours.

4.1 Maximizing Utilization
This experiment shows how AIA and ABA perform when

the purpose is to maximize utilization. Figures 3 and 4 show
the performance of the algorithms for task sets with utilizations
in the intervals (Ui/2, Vi * 2) and (Ui/S, Vi * 2) respectively.
While the main goal is to maximize p(s), we also measured the
run time associated with each algorithm. No criticality value is
attached to these task sets.

lW4I 256

&*arch -
A W U .
R S A U - AIA-U .

B
U"

80 90 100 110 120 130 1 0 1% 160 170 180
Load

Figure 4. Maximizing Utilization: (Ui/S, Vi * 2)

Conclusions from this experiment are the following:

(a) ABA-U algorithm shows a performance very close to
the exhaustive search for maximizing utilization but with much
lower run time. (b) The RSA-U algorithm has a performance
always lower that the ABA-U algorithm. The reason for this
behavior is that ABA-U conducts the search towards the max-
imum values on each set, while RSA-U conducts the search
randomly. It may be that ABA-U will not achieve optimal per-
formance because the values on each S k using p(s) are only
partially ordered (recall that only SI is totally ordered). How-
ever, results from Figures 3 and 4 show that ABA-U is very
close to the optimal performance. (c) For an algorithm with
such low run time, the AIA-U algorithm performs fairly well.
However, when the variance in utilization of tasks increases,
AIA-U shows lower p(s) compared with other algorithms. (d)
With respect to run time, AIA clearly is the best, because the
number of searches is reduced to n (note the log scale of the
Y-axis). (e) The behavior of the run time of ABA-U and RSA-
U can be explained as follows. As the load in the system in-

329

creases, more optional parts need to be shed, causing less sets
in S to be feasible. For this reason, the number of sets to be
searched is reduced. This is more evident when the load is high
(e.g., 170%) causing fewer sets to become feasible. (0 The ex-
periments show that the larger difference on the utilization be-
tween optional parts the bigger the difference in performance
between AIA and the exhaustive search (see Figures 3 and 4).
This argument applies for all our optimality criteria.

4.2 Maximizing Criticality Value

Figures 5 and 6 compare the performance of the AIA-V and
ABA-V algorithms with the performance of RSA-V and the
Exhaustive Search, when the purpose is to maximize the crit-
icality value. We are also correlating this metric with the run
time associated with each algorithm. Criticality values are as-
sociated with each task. The algorithms are executed on tasks
sets whose criticality values vary from 1 to 15 following a uni-
form distribution.

Exaaarsh .

I .\; . .
0 4

0 2

BO 90 1m 110 120 130 lo 150 160 170 180
Load

Figure 5. Maximizing Q

Ex-alch -+-

Am-Y --
RSA-V - .
A1A.V L

, I I
80 BO 1W 110 120 130 140 150 160 170 180

Load

iticality: (U, * 2, Ui/2)

. .
0 ” ” ” ’ . % - 1 ” ” ” ” ’

Figure 6. Maximizing Criticality: (Ui/S, Vi * 2)

80 SI rm 110 120 130 io 150 160 170 160
LDad

BO SI im 110 la0 130 io 1% im 170 180
Lced

Conclusions from this experiment are the following:

(a) The performance of ABA-V is close to the exhaustive
search. The difference in performance with respect to the ex-
haustive search is the following: For (Ui/2, Vi * 2), the perfor-
mance varies from 1% to 8% and for (Ui/S, Vi * 2) varies from
1% to 13%. (b) As in maximizing utilization, ABA-V outper-
forms the RSA-V algorithm. (c) The behavior of the run time
shows a behavior similar to that obtained while maximizing
utilization (see previous section).

fault-tolerant fixed-priority tasks by using the Optional Com-
putation model. This analysis allows the system designer to
verify if all the task in the system meet their deadlines and
to decide which optional parts must be discarded when some
deadlines are missed, such that some criteria of optimality is
achieved. Heuristic algorithms developed here, namely Ap-
proximate Binary Algorithm (ABA) and Approximate Incre-
mental Algorithm (AIA), have been tested with simulations
against the performance of the Exhaustive Optimal Search and
a random search algorithm; the results illustrate the effective-
ness of both ABA and AIA. In particular, ABA shows a per-
formance close to optimal with low run time. Lower run time
is obtained by AIA with reasonably high performance, mak-
ing it amenable to dynamic implementations. For real-time
workloads with criticality values assigned to each task, ABA
algorithms also show their high performance.

References
[l] A. Bums, K. Tindell, A. Wellings, “Effective Analysis for En-

gineering Real Time Fixed Priority Schedulers”, IEEE Transac-
tions on Software Engineering, pp. 475-480, May 1995.

[2] A. Burns, D. Prasad, et-al. “The Meaning and Role of Value
in Scheduling Flexible Real-Time Systems”, Journal of Systems
Architecture, 2000

[3] G.C. Buttazzo, “Red: A Robust Earliest Deadline Scheduling
Algorithm”, Proceedings of Third International Workshop on
Responsive Computing Systems, Spain, December 1998.

[4] G.B. Dantzig, “Discrete Variable Extremum Problems”, Operu-
tions Research, 5 , pp. 266-277.

[5] M. Hamdaoui and P. Ramanathan. “A Dynamic Priority Assign-
ment Technique for Streams with (m,k)-firm Deadlines”, IEEE
Transactions on Computers, December 1995.

[6] K.I. Ho, J. Y-T. Leung, W-D Lei. “ Scheduling Imprecise Com-
putation Tasks with the 0/1 Constraint”, Tech Report. Depart-
ment of Computer Science, Universit?, of Nebraska, 1992

[7] G. Koren and D. Shasha. “Skip-over: Algorithms and Com-
plexity for Overloaded Real-Time Systems”, Proceedings of the
IEEE Real Time Systems Symposium, December 1995.

[8] C.L. Liu, J. Layland. “Scheduling Algorithms for Multipro-
gramming in Hard Real-Time Environments”, J . ACM Jan.
1973.

[9] J.W. Liu and W.K. Shih. “Imprecise Computations”, Proceed-
ings of the IEEE, January, 1994.

[101 S. Punnekkat. “Schedulability Analysis for Fault Tolerant Real
Time Systems”, PhD. Thesis, Dept. CS, University of York, June
1997.

[l l] D.P. Siewiorek, V. Kini, H. Mashbum, S. Mcconnel, M. Tsao.
“A Case Study of C . m p , Cm’, and C.vmp: Part 1 - Expe-
riences with Fault Tolerance in Multiprocessor Systems”, Pro-
ceedings ofthe IEEE, 66(10). pp. 1178-1 199, Oct. 1978.

5 Conclusions

In this paper, a scheme was presented to provide schedul-
ing guarantees by developing an exact schedulability test for

330

