
Optimal Scheduling of Imprecise Computation Tasks
in the Presence of Multiple Faults *

Hakan Aydm, Rami Melhem, Daniel Moss6
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

(aydin, melhem, mosse)@cs.pitt.edu

Abstract

With the advance of applications such as multimedia, im-
agelspeech processing and real-time AI, real-time computing
models allowing to express the “timeliness versus precision”
trade-off are becoming increasingly popular. In the Impre-
cise Computation model, a task is divided into a mandatory
part and an optional part. The mandatory part should be com-
pleted by the deadline even under worst-case scenario; how-
ever, the optional part refines the output of a mandatory part
within the limits of the available computing capacity. A non-
decreasing reward function is associated with the execution of
each optional part. Since the mandatory parts have hard dead-
lines, provisions should be taken against faults which may oc-
cur during execution. An FT-Optimal framework allows the
computation of a schedule that simultaneously maximizes the
total reward and tolerates transient faults of mandatory parts.
In this paper, we extend the framework to a set of tasks with
multiple deadlines, multiple recovery blocks and precedence
constraints among them. To this aim, we first obtain the exact
characterization of Imprecise Computation schedules which
can tolerate up to k faults, without missing any deadlines of
mandatory parts. Then, we show how to generate FT-Optimal
schedules in an efficient way. Our solution works for both lin-
ear and general concave reward functions.

1 Introduction
Real-time computing models which are able to express the

“timeliness versus precision” trade-off are attracting more at-
tention with the advance of applications such as multimedia,
imagebpeech processing, information gathering and real-time
AI. Imprecise Computation (IC) [9, 121, Increased-Reward-
with-Increased-Service (IRIS) [6] and Q-RAM [101 models
address the problem by logically dividing each task into a
mandatory part and an optional part. Despite differences, some

‘This work has been supported by the Defense AdvancedResearch Projects
Agency (Contract DABT63-96-C-0044).

fundamental traits are shared by these models: The optional
part need not to be completed by the deadline, instead its
(partial or complete) execution refines the approximate/initial
result produced by the mandatory part. A non-decreasing
reward/utility function (altematively, a non-increasing error
function) is associated with the execution of the optional part
to quantify the precision or refinement of the final output.
While IC studies have mostly dealt with linear reward func-
tions [9, 121, IRIS [6] and Q-RAM [lo] models extended the
framework to general concave reward functions. Linear and
general concave reward functions can successfully represent
most of the applications, since most realistic applications (such
as multimedia, image processing, real-time decision making)
exhibit non-increasing marginal retum behavior during the ex-
ecution, as in [13, 8,7]. In addition, we have shown that relax-
ation of the concavity assumption results in an NP-Hard prob-
lem [l].

Although these reward-based models allow for greater
scheduling flexibility when compared to traditional hard real-
time models, it should be emphasized that the mandatory parts
have still stringent timing constraints. As such, not only the
mandatory parts should be guaranteed timely completions un-
der worst-case scenarios, but also provisions must be taken
against unexpected events, such as faults. First studies consid-
ering fault tolerance issues in IC schedules appeared in [4, 51.
Recently, we introduced an FT-Optimal scheduling framework
for IC tasks, which involved the computation of the schedule
with maximum reward among all possible fault tolerant (FT)
schedules [2]. The framework was based on exploiting the time
redundancy provided by optional parts to recover mandatory
tasks and had several desirable properties in that it: (a) as-
sumed only knowledge about the maximum number of faults
of the entire task set, (b) considered general concave reward
functions, and (c) required no on-line adjustment as long as no
faults were encountered.

The work in [2] , although it considered both independent
tasks and tasks with linear precedence constraints, was lim-
ited to frame-based systems with a single end-to-end deadline.

289
1530-1427/00 $10.00 0 2000 IEEE

mailto:mosse)@cs.pitt.edu

The case of independent tasks with different deadlines was fur-
ther explored in [3] . Two recovery schemes, namely immediate
and delayed recovery, were proposed and it was shown that the
FT-Optimality problem of independent tasks with delayed re-
covery and multiple deadlines was an intractable problem even
under modest assumptions. Immediate recovery with non-
identical ready times was also shown to result in an NP-Hard
problem, and a pseudo-polynomial time algorithm was devel-
oped for linear reward functions and identical ready times.

This paper extends the FT-Optimality research of [2] for
tasks with linear precedence constraints in two ways. First, we
consider non-identical deadlhies, which needs little justifica-
tion. Second, for multiple faults, we no longer assume that all
the recovery blocks associated with a given task have the same
worst-case execution time. Non-identical recovery blocks are
more realistic: for example, one or two recovery blocks may
try simply to re-execute the original code and execute an al-
temate code for the task, then a final recovery block may try
to load a ’safe state’ onto memory. The use of exact worst-
case execution times per recovery block, instead of relying on
a maximum amount for recovery block for each task, may con-
siderably improve the total reward, as illustrated in Section 3.

After introducing the system model and basic terminology
in Section 2, we provide a motivating example in Section 3.
We present our main results in two parts: In Section 4, we ad-
dress the problem of efficiently checking the feasibility of a
given IC schedule under any pattern of k faults with (poten-
tially) multiple recovery blocks per task. Besides its impor-
tance per se, this section also lays ground for Section 5, where
we show how to generate k-FT Optimal schedules in an ef-
ficient manner for general concave reward functions. We
conclude with a discussion of this research effort and future
work considerations.

2 System Model

2.1 Task Model

We consider a set T of n imprecise computation tasks
TI , T2, . . . , T,, on a uniprocessor system. The deadline of task
Ti is denoted by di. Without the loss of generality, we assume
that TI is the task with the earliest deadline, T2 is the second
and so on (ties are broken arbitrarily). Each task consists of
a mandatory part Mi and an optional part Oi. The length of
the mandatory part is denoted by mi; each task must receive
at least mi units of service time in order to provide output of
acceptable quality. The optional part Oi becomes ready for
execution only when the mandatory part Mi completes.

We assume precedence constraints between tasks; that is,
first M I and 0 1 execute, then M2 and 0 2 , and so on; the ex-
ecution completes with M , and 0,. Without loss of gener-
ality, M1 is assumed to be ready at t = 0. Note that besides
tasks with linear precedence constraints, this model can also
capture the IC scheduling of independent tasks with identical
ready times in a non-preemptive environment; it is not diffi-

cult to show by a swapping argument that executing each task
(which consists of a (Mi , Oi) pair) in increasing order of dead-
lines is the optimal policy if preemption is not allowed.

Associated with each optional part of a task is a reward
function Rj(t) which indicates the reward accrued by task Ti
when it receives t units of service beyond its mandatory por-
tion. Rj (t) is of the form:

where Fj is a nondecreasing, concave and continuously differ-
entiable function over nonnegative real numbers and oj is the
length of entire optional part Oi. In this formulation, when the
task’s optional execution time t reaches the threshold value oi,
the reward accrued ceases to increase.

Given a task set T, a schedule for T determines the amount
of service each task receives. S is a feasible schedule for T, if
and only if in S,

i) Each mandatory task Mi completes before its deadline di,
ii) No optional task 0; is executed beyond dj, although par-

tial optional executions are acceptable,

iii) Precedence constraints are adhered to.

Further, given a schedule S, define the following functions:

0 Starts (M i) : The time at which Mi is scheduled to start

0 Ends(Mi) : The time at which Mi is scheduled to com-

0 [wl , W Z] ~ : The portionof schedule S between time points

As an example, Figure 1 illustrates a schedule where
Starts(M2) = 15 and Ends(M2) = 20. Note that
Ends(Mi) - Starts(Mi) = mi V i, since preemption never
occurs.

execution.

plete execution.

w1 and w2.

0 5 15 20 24 29 35

Figure 1. A schedule of IC tasks

The Total Reward of an imprecise computation schedule s
is REWs = Ri(ti) where ti is the amount of service that

optional part Oj receives in S. A feasible schedule is optimal
if it maximizes the total reward accrued.

n

i=l

2.2 Fault Model

We assume that at most IC faults may occur during the exe-
cution of the task set. The results are produced or committed

290

at the end of Mi and then again at the end of Oi. Consis-
tency or acceptance checks are performed before the results
are committed. If an error in a task Z is detected at the end
of its mandatory part Mi, then the system initiates the recovery
mode, where a recovery block B ~ J is immediately executed. A
recovery block [111 may simply re-execute Mi or execute an
alternative code. Should the error persist or another error be
detected at the end of Bill, the second recovery block of Z,
namely BQ, is executed and so forth. A fault of M; or of any
of its recovery block is referred to as “a fault of task Z’’ for the
sake of simplicity.

The worst-case execution time of the recovery block Bi,j is
denoted by b i , j . Note that there might be at most k recovery
blocks for a given task, since we allow no more than k faults
in the system. If an error is detected at the end of the optional
part Oi, the result is not committed; but the recovery mode is
not started either: the execution of Mi+l uses the approximate
result produced by Mi. Since the recovery mode is initiated
only for mandatory parts, throughout the paper we will use the
expression “j th fault during the execution” to refer to j t h error
detected at the end of any mandatory part (or recovery block).

A multiple fault pattern is a set P = { p l , p 2 , . . . , p n } ,
where pi denotes the actual number of faults that task Ti in-
curs and such that, xy=l p; < k .

In general, a schedule is said to be k-fault tolerant (k-FT)
if every mandatory part Mi and any of its executed recovery
blocks, can complete by di under any k-fault pattern P . Note
that k-fault tolerance of a schedule implies its feasibility, but
the converse is not true.

Finally, a schedule S is k-FT Optimal if and only if:

i) it is k-FT, and

ii) its total reward is maximum among all k-FT schedules.

As in [2, 31, in this study, the recovery operations will have
to rely on the existence of optional parts which provide a sort
of slack, due to the their non-essential nature. Hence, once
recovery is initiated, the remaining optional parts may not have
a chance to execute. Yet, checking the tolerance of a schedule
to any pattern of k faults in the existence of multiple deadlines
and recovery blocks, and further, determining CPU allotments
of optional parts to simultaneously guarantee k fault tolerance
and maximize system reward are non-trivial problems.

3 k-Fault Tolerant Optimal Scheduling: A Mo-
tivating Example

In this section, we present an example with three tasks. We
assume that only two faults need to be tolerated (i.e., IC = 2).
Further, although non-linear reward functions are more realis-
tic, the tasks in the example have linear reward functions, for
the sake of simplicity. Despite its simplicity, the example illus-
trates many facets of scheduling imprecise computation tasks
in the presence of multiple faults.

hi
25 25
10 30 4 t

T3 20 35 t

As it can be seen, each task has two recovery blocks. The
first recovery blocks are merely re-executions (bi,l = mi, V i) .
The worst-case execution times of the second recovery blocks
are much less than the first ones. Observe that the marginal
return of 0 1 is the largest among all tasks, hence, the schedule
with the highest reward consists in favoring 01 as much as
possible (Fig. 2); call this schedule S I .

r

I I 01 I M21 M31
I I I I I

0 5 25 30 35

Figure 2. An optimal but non-FT Schedule

S1 is optimal (total reward of loo), but it is not F T Ma and
M3 complete just before their deadlines and it is not possible
to tolerate even a single fault which occurs in either of them.

Provided that a task set is k-FT, one can always obtain a triv-
ial FT-schedule by completing every mandatory part as soon
as possible, and the remaining idle time will be assigned to
the last optional part. If we adopt this strategy, we end up by
getting SZ, shown in Fig. 3.

d l cf2 cf3

0 5 10 15 35

Figure 3. A trivial fT Schedule

However, the total reward of S2 is only 20, due to low
marginal return of 03. The study in [2] enforced that the sum
of optional assignments after a given task (and before its dead-
line) should be at least equal to the recovery time that it may
needed. Further, each recovery block was assumed to have the
same worst execution time. However, this approach is inad-
equate for multiple deadlines, in that it excludes some legal
k-FT schedules. Indeed, using that strategy, the schedule with
the highest reward is S3 (Fig. 4, total reward of 55).

Yet, there is another schedule S3 with considerably higher
reward (72), shown in Figure 5 , which tolerates any pattern of k
faults in addition to taking into account non-identical deadlines
and non-identical recovery blocks. Yet, it can be easily verified
that it is k-FT and, in fact, S3 is a k-FT Optimal schedule for
the example task set.

29 1

i ' l 4 2 7 3

0 5 10 15 20 25 35

Figure 4. A k-t=r Schedule with higher reward

In summary, from this example it is clear that new and ef-
fective fault tolerance criteria are needed for the case of task
sets with multiple deadlines and different recovery blocks.

0 5 15 20 24 29 35

Figure 5. The k-t=r Optimal Schedule

4 Exact characterization of k-FT Schedules
In this section, we consider and solve the following prob-

lem: Given a schedule S of imprecise computation tasks,
how can we efficiently check its tolerance to any pattern of
k faults?

Naturally, one can solve the problem by generating all
schedules corresponding to the O (n k) fault pattems and check-
ing the timeliness of each of them in O (n) time, which yields
a total time complexity of O(n'++l). This is clearly an un-
acceptable computational cost. The solution that we present
stems from a rigorous characterization of FT schedules and it
is simultaneously efficient and exact. Besides, such a rigor-
ous characterization of all the FT schedules for a given task set
gives us valuable insights to achieve our ultimate aim of gen-
erating FT-Optimal schedules.

Definition: An IC schedule S is called k-FT at level i if it
remains feasible after recoveries of any faultpattern P where
p j=O, V j < i .

Informally, level i k-fault tolerance enforces that the sched-
ule remain feasible if all the faults occur during or after the
execution of Mi (for convenience, we define p p = 0). The fol-
lowing propositions can be easily verified in view of the above
definition.

Proposition 1 A schedule S is k-FT at level n ifand only ifthe
schedule remains feasible in case that all the k faults occur in
the last task M , (or its recovery blocks).

Proposition 2 A schedule S is k-FT at level i < n if and only
if:

1. it is k-FT at level i + 1, and,

2. under any k faultpattern which begins with j faults of M i ,
the tasks Mi, Mj+l, . . . , M, and their recovery blocks
complete before their corresponding deadlines.

Since any k-fault pattern should begin with an error detected at
the end of a specific Mi (1 5 i 5 n), Proposition 2 lets us to
deduce the following:

Proposition 3 A task set T is k-FT ifand only ifthere exists a
schedule which is k-FT at level 1.

A strict characterization of k-fault tolerance will be ob-
tained iteratively by studying tolerance of consecutive levels.
Specifically, we will first obtain necessary and sufficient con-
ditions for a level n k-FT system, then for level n - 1 and so
on, until we reach level 1. Clearly, the first condition is that
the schedule should be k-FT at level n, that is, M, should be
scheduled early enough to leave time for recoveries of k faults
of M , . Similarly, k fault tolerance at level n - 1 requires that
M,-1 be scheduled early enough to let timely recoveries of
any k faults which affect M, and Mn-l, and so on. Note that
while computing the upper bound on the scheduling time of
Mi, we should consider the worst-case scenario which requires
maximum recovery time after End(Mi) , which corresponds to
a k-fault pattern affecting only Mi, Mi+l, . . . , M,. Let us de-
fine a function over individual tasks to resume our analysis.

Definition: The function L C T (M i) , denotes the latest com-
pletion time of Mi in any schedule for T, which allows the
timely completions (and recoveries) of the mandatory parts
Mi, Mi+l,. . . , Mn under any k-faulr pattern which begins
with a fault on M j (j 2 i), that is, p h = 0 h = 1, . . . , i - 1.

Informally, LCT(Mi) is a measure of the maximum
amount Mi can be pushed late in the schedule, without com-
promising level i &Fault Tolerance. Using Propositions 2 and
3, we obtain:

Proposition 4 A schedule S is k-FT at level i if and only if
E n d s (M j) 5 L C T (M j) j = i, . . . , n.

Corollary 1 A task set is k-FT if and only i f there exists a
schedule S where E n d s (M j) 5 L C T (M j) , j = 1,. . . , n.

Therefore, once L C T (M i) is determined for every task, the
k-fault tolerance of a given schedule can be decided in O (n)
time. Hence, the problem is now reduced to the efficient com-
putation of L C T () values for each task.

Computation of L C T () Values:
We will adopt the dynamic programming approach to com-

pute the LCT values in a bottom-up manner. First, we define
an auxiliary function.

292

Definition: The function Zct (M i , U , v) denotes the latest
completion time of Mi in any schedule for T , which allows
the timely completions (and recoveries) of the mandatory parts
Mi, M i + l , . . . , M , under any fault scenario where there are
exactly U fault(s) during the execution of M I , . . . , Mi-1 and
exactly v fault(s) during the execution of Mi, . . . , M,, such
thatu + v = k .

Again, the Zct () function puts an upper bound on the amount
of shift a task Mi can tolerate in a schedule, in a fault pattem
with exactly U faults before it, and exactly v faults on and af-
ter it. Note that if Mi itself actually incurs exactly y faults
in that specific scenario, it should be scheduled to complete
early enough to be able to execute y recovery blocks before di,
as well as not to push the tasks which follow beyond what is
mandated by level i k-Fault Tolerance. Notice that the value of
the LCT(Mi) function is (by definition) simply Zct(Mi, 0, k) .
Let us start by evaluating the Zct value for the last task M,. In
case that exactly i faults occur in M,, we should have time to
execute all the first i recovery blocks before the deadline d,.
which gives:

I

lct(M,, k - i, i) = d, - bn,j (2)
j = 1

Clearly, LCT(M,) is the minimum among all Zct(M,, k -
y, y) values, which correspond to the case where all the faults
occur in or after M, (in this case, all faults will occur in M,):

LCT(M,) = Ict(M,, 0, k) = d, - b,,j (3)
k

j = 1

For i < n, the lct function will be computed by a dynamic
programming approach:

Ict(Mi, IC, 0) = min{di , Ict(Mi+l, k , 0) - mi+l) (4)

The above formula expresses the fact that, assuming that
all the faults occur before Mi, Zct(Mi, k , 0) is either di, or
the latest start time of Mi+l under this scenario (which is
Zct(Mi+l, k , 0) - mi+l), whichever is the smallest. Similarly:

Ict(Mi, k - 1 , l) = mdn{Xo, X I }

X O = min{di, Ict(Mi+l , k - 1,l) - m i + l }

XI = min{di ,Zct(Mi+r7k70) - m i + l } - bi,l

Above, X o corresponds to the scenario where the single
fault which is supposed to occur during the execution of
Mi, . . . , M,, does not occur in Mi, but later; while X1 cap-
tures the case where the fault occurs in fact in Mi in which
case no fault can occur in Mi+l, . . . , M,. We can obtain:

V

Zct(Mi, k - w, w) = min{Xj} w = 0 , . . . , k where :
3=0

j

X j = min{di , Ict(Mi+t I k - (W - j) , w - j) - mi+l} - b i , y
y = l

for the general case. Note that the set { X j) above expresses all
possible k-fault scenarios where we have exactly k - v faults
before Mi and exactly v faults on or after Mi: Mi can incur

exactly j faults and the tasks M i + l , . . . , M, can incur exactly
v - j faults. Once again, LCT(Mi) can be computed by tak-
ing the minimum among all &(Mi, k - y, y) values, which
always happens to be Zd(Mi, 0, k) - the scenario where all
the faults occur during the execution of Mi, . . . , M,. Observe
further that Zct(Mi, k - v, v) values for v < k are not used for
the computation of LCT(Mi) = Zct(Mi, 0, k) , instead they
contribute to the computation of L C T (M j) (j < i) .

What is the complexity of computing Id() values for a
given task set? First, the computation of E”,=, bi,, i =
1 , . . . , n; j = 0, . . . , k can be accomplished in O(n I C) time
and we can store them in a look-up table. Further, there are
only n - (k + 1) function values to be computed. Each of them
can be done in O (k) time (we need to perform at most O (k)
comparisons and arithmetic operations), which suggests that
the overall complexity is O(n I C 2) .

Once we compute LCT(Mi) values, we can quickly test the
k-fault tolerance of a given schedule S, by checking whether
Ends(Mi) 5 LCT(Mi) i = 1 , . . . , n. We conclude the
analysis by pointing out that, if during the checking proce-
dure we observe the existence of an LCT(Mi) value such that
LCT(mi) - mi < 0, it immediately implies that there are
no k-FT schedules for the given task set: there can be no
Ends (M i) values which can satisfy the requirement of Corol-
lary 1, if this is the case. In other words, the test has the ad-
ditional property of being able to detect task sets for which no
k-FT schedules exist.

Example
Let us illustrate the application of the technique on the ex-

ample task set of Section 3. We start by the last manda-
tory task, which is M3. By applying Equation (2), we find

29. Hence, the worst-case scenario for level 3 fault toler-
ance is the occurrence of two faults in M3; and L C T (M 3) =
Zct(M3, 0 , 2) = 29. For M2, we compute:

Zct(M2,1,1) = min{Xo, X I) = 25; where

Z ~ t (M 3 , 2 , 0) = 35, k t (M 3 , 1 , 1) = 30 and Z ~ t (M 3 , 0 , 2) =

Z ~ t (M 2 , 2 , 0) = min{d2,Zct(M3,2,0) - 7723) = 30,

Xo = min(3O7Zct(M3, 1,l) - m3) = 25 and
X i = min{30,Zct(M3,2,0) - m3) - b2,1 = 25.

Note that X O above corresponds to the fault pattem in which
the single fault supposed to occur on or after Ma, actually oc-
curs later, not in M2. In contrast XI captures the case where
M2 actually suffers a fault but M3 does not; we should in-
corporate the execution of the first recovery block B2,1 in the
computation. As it tums out, the two scenarios impose the
same upper bound on the Id(). Lastly, Zct(M2,0,2) involves
the consideration of three different scenarios:
Zct(M2,0,2) = min{&, X I , X 2) = 20; where
X O = min{30,Zct(M3,0,2) - m3) = 24 (both faults occur
in M3);
X1 = min{30, ic t (M3,1 ,1) - m3) - b2,1 = 20 (one fault
occurs in M2 and the other in M3.)
X 2 = min(30, lct(M3, 2,O) - m 3 } - b2,1 - b2,2 = 24 (both

293

faults occur in M2).
From these results, L C T (M 2) is evaluated to be equal to

X 1 , which is 20. Observe that, for level 2 fault tolerance, the
worst-case scenario corresponds to the one where both M2 and
M3 fail once. Finally, we focus on M I :
Zct(M1, 2,O) = min{dl ,Zct(Mz, 2,O) - m 2) = 25,
Zct(M1,1,1) = m i n { X o , X I) = 20; where
X O = min{25,Zct(M2,1,1) - m 2) = 25 and
X 1 = min{25,Zct(Mz, 2,O) - 7722) - b2,1 = 20.

three values:
Zct(Ml,O, 2) = m i n { X o , X 1 , X 2 } = 15; where
XO = min{25,Zct(Mz, 0 , 2) - m 2) = 15 (both faults occur
after M I) ;
X I = m i n { 2 5 , k t (M 2 , 1 , 1) - m 2) - b1,l = 15 (one fault
occurs in M I and the other one after it.)
X2 = min{25,Zct(M2,2,0) - m2} - b1,l - b1,2 = 17 (both
faults occur in M I) .

Level 1 Fault-tolerance requires that M I be scheduled no
later than t = 15, otherwise a single fault of M1 and a single
fault of Ma would result in a deadline miss. In other words,
the LCT() bounds are evaluated as:

Computing Zct (M I , 0,2) also requires a comparison of

LCT(M1) = 15, L C T (M 2) = 20, LCT(M3) = 29.

Note that mandatory tasks do not overlap in St since:

LCT(Mj) =
Zct(Mi, 0 , k) 5 min{di,Zct(Mi+l, 0 , k) - mi+l}

5 ZCt(Mi+1,0, IC) - mi+1 = L C T (M i + l) - mi+1

Thus, St will contain mandatory parts scheduled at their lat-
est completion times, with (possibly) gaps among them. How-
ever, RewS, = 0 since we did not schedule any optional part
yet. Observe that, in any k-FT schedule, and incidentally in
the k-FT Optimal schedule denoted by S' , any mandatory
part can be moved earlier from its original allocation in St
to create room for optional parts if needed, but never later,
since this would result in a non-FT schedule (Corollary 1). For
example, Figure 7 illustrates three fully utilized schedules cor-
responding to the template schedule St. They all satisfy the
k-fault tolerance requirement: yet, the total rewards are dif-
ferent, and any of them could be the k-FT optimal schedule,
depending on the specific reward functions. To summarize,
St represents the boundary conditions that any k-FT schedule
must satisfy.

i'l 7 2 7 3

5 Generation of k-FT Optimal Schedules

In this section, we address the problem of generating a
k-FT schedule with the maximum reward. Corollary 1 in
Section 4 revealed the necessary and sufficient conditions
for k-fault tolerance, which involves only pre-computation
of LCT(Mi) bounds and checking End(Mi) values against
these. Without loss of generality, and in accordance with [2,3],
we consider FT-Optimal schedules with no idle time1.

To obtain a k-FT optimal schedule S* for a given task set,
we will start creating an initial (template) schedule St which
contains only mandatory parts. Further, in St, each mandatory
part Mi will be scheduled exactly in time interval [LCT(Mi) -
mi, LCT(Mi)]. Figure 6 shows the template schedule St for
the example task set of Section 3.

i" qz q3
M1l L1

0 5 10 15 20 24 29 35

Figure 6. The template schedule

If there is an idle time unit in the middle of an optional execution, one can
executethat optional task for one more time unit. Idle time which occur during
mandatory parts can be removed, effectively decreasing the completion times
and not hurting k-fault tolerance. Clearly, the total reward never decreases
after such schedule modifications.

0 5 10 24 29 35

35 24 29 0 5 10 18

0 5 10 15 19 24 35

Figure 7. Three k-FT schedules

To maximize the total reward, we schedule optional parts
into the 'gaps'. Yet, there are several necessary constraints that
we should obey. Namely, no optional part Oi can be scheduled
beyond deadline di. Similarly, precedence constraints and fault
tolerance requirements enforce the following:

Proposition 5 In the schedule segment [LCT(Mi) , d;] of any
k-FTschedule S, no optionalpart Oj, j < i , can be scheduled.

Proof: Suppose there is an optional part Oj scheduled after
LCT(Mi) (i > j) in S. Since M; should be scheduled later
than Oj, Ends(Mi) > LCT(Mi) , which suggests that S is

0

Hence, we obtain the following necessary conditions for
not k-FT, leading to a contradiction.

Ic-fault tolerance:

294

N1: In interval [d;, &+I] the only optional parts that can be

N2: In interval [LCT(Mi), dn] the only optional parts that

But the schedule is also feasible and fully utilized, hence:

x (m j + tj) 5 di i = 1,. . . , n - 1 and C (m j + tj) = d,

scheduled are Oi+l,. . . , On. I n

can be scheduled are Oi, . . . , On. j=1 j=1

We can reflect the constraints NI and N2 in the op-
tional assignments as follows. Let us start by noting that
Starts,(Mi) = Ends,(Mi) - mi = LCT(Mi) - mi is the
latest start time of Mi in any k-FT schedule. Clearly, the to-
tal CPU allotment for the first task, namely ml + t ~ , cannot
exceed dl (constraint NI), or Starts, (M2) (constraint N2):
ml+tl 5 min{dl, Starts, (Mz)} . Similarly, the totalassign-
ment ml + tl + m2 + t 2 should satisfy the deadline constraint
for T2 and LCT constraint for M3: ml + t l + m2 + t 2 5
min{dz, Starts, (M3)). And in general:

j C(mi +ti) 5 minldj, starts, (~ j + i)) j < 71
i=l

Finally, the schedule will contain no idle time:
n

C(mi +ti) = dn
i=l

We continue with the following definitions:

Note that d;: represents the effective deadline of z, that is,
the execution of z. beyond this limit violates either its deadline
or k-fault tolerance (for convenience, we define do = 0).

The theorem below proves that the constraint set { Ci} de-
rived from conditions N1 and N2 is necessary and sufficient
for k-fault tolerance:

Theorem 1 A schedule S is k-FT ifand only if it satisfies the
constraints CI, . . . , Cn .

Proof: Suppose that each constraint Ci i = 1,. . . , n is
satisfied. The schedule is feasible since xi=l(mj + t j) 5
Ji 5 di 1 5 i 5 n. But also, ci,:(mj + t j) 5 Ji-1 5
Starts, (M i) 1 i 5 n. Hence, S is also k-FT since:

i-1

C (m j + tj) +mi = ~ n d s (~ i)
j=1

5

Starts, (Mi) + mi = Ends, (M i) = LCT(Mi) i = 1,. . . , n
Conversely, suppose that the schedule S is L-FT. This im-
plies: ~ n d s (~ i + l) = ~ f , ~ (m j + t j) + mi+l 5

tracting mi+l from both sides (note that Ends,(Mi+l) -
mi+l = Starts, (Mi+l)), we obtain:

LCT(Mi+1) = Ends,(Mi+l) i = 0 , . . . , n - 1. By sub-

t

C (m j + t j) 5 Starts,(Mi+l) o 5 i 5 n - I
j = l

Combining the last results, we obtain: xf,l(mj + t j) 5
min{di,Starts,(Mi+l)} i = l , . . . , n - l a n d x y , l (m j +
t j) = dn , yielding:

i

j=1
n

j = 1

Hence, all the Ci constraints are satisfied. 0
Having expressed the FT conditions in terms of optional ser-
vice times {ti}, we can now formulate the non-linearoptimiza-
tion problem to maximize the total reward. Note that every ti
assignment should be non-negative, in order to have a physical
interpretation. Hence, we obtain our final theorem:

Theorem 2 k-FT optimal optional service assignments { t i }
are given by the following optimization problem:

maximize 5 &(ti) (5)
i=l

n n

i= l i=l
subject to t i = dn - mi (6)

osti i = 1 , ..., 12 (7)

Proof: The constraint (6) corresponds to Cn. The constraint
(7) is self-explanatory. The constraint set (8) is equivalent to
{Ci}, as proven below. Let us define:

Cj”=n-i+l (mj + tj) 2 in - i n - i

(mj + t j) = di - do
if i < n
i f i = n

-
Ci : the constraint

We claim that the constraint set {Ci} is satisfied for a given
schedule S if and only if the constraint set {E} is satisfied.

In fact, suppose that the set {Ci} is satisfied. Then by
subtracting Cn-i from C,, one can obta? {a}-(for i =
1, . . . , n - 1). Cn is identical to C, (dn = dn and do = 0).

Conversely, suppose that the set {E} is satisfied. One can
subtract Cn-2 from to get Ci (for i = 1, . . . , n - l), and so
on. By re-arranging the new constraint set {E} , we obtain the

0
The above problem is a non-linear (concave) optimization

problem with equality and inequality constraints. It can be
solved by using the algorithm developed for the solution of
problem CHAIN, in [2]. The complexity of the solution is
O(n2 log n) for linear, logarithmic or identical concave re-
ward functions; in the general concave case, the complexity
is O(n3 log n).

formulation used in the optimization problem above.

295

To summarize, the algorithm in [2] , which assigns FT-
Optimal ti values, proceeds in two phases. In the first phase,
we focus solely on satisfying the inequality constraints by pro-
cessing the task set in a bottom-up manner. During this phase,
we apply a least commitment strategy in that we do not as-
sign to an optional task a service time which is greater than re-
quired by inequality constraints. During the second phase, we
make optimal distribution of the total schedule segments avail-
able for all optional parts in the chain, considering the output
of the first phase as lower bounds on the execution times.

To illustrate the derivation of exact constraint set for the
CHAIN, we retum to the example task set of Section 3, of
which the template schedule St was shown in Figure 6. The
’effective’ deadline for each task is the minimum of its dead-
line and the start time of the next task in St, thus:

Similarly, the inequality constraints are obtained as:

By substituting the values of mi i = 1,2,3, we obtain the
instance of CHAIN:

n

maximize Ri (ti)
i=l

n

subject to = 20

The algorithm which solves the problem CHAIN [2] retums
the output set { t l = 10,t2 = 4,t3 = 6 } , which, indeed cor-
responds to the k-FT Optimal schedule which was previously
shown in Figure 5.

6 Conclusion
In this paper, we addressed the problem of generating FT-

Optimal schedules for imprecise computation tasks with mul-
tiple timing constraints, recovery blocks and linear precedence
constraints. The approach can be also used for a set of indepen-
dent tasks, in case that preemption is not allowed. After point-
ing out to the disadvantages of adopting trivial extensions of
previous solutions, we first provided an exact characterization
of Imprecise Computation schedules which allow timely com-
pletion of mandatory parts even in the presence of k transient
faults. The test is efficient and further, can be applied to any
IC schedule, with arbitrary or no precedence constraints, with
preemption or no preemption, as long as the recovery blocks
are to be executed immediately following error detection(s).

This special type of recovery technique was called ’Immediate
Recovery’ in [3].

In the last part of the paper, we showed how to use the task
and fault characterization information to generate the sched-
ules which allow timely recoveries of mandatory parts while
compromising the total reward as little as possible. Our future
work in this area includes the investigation of efficient heuris-
tics for intractable cases.

References
H. Aydin, R. Melhem, D. Moss6 and P.M. Alvarez. Opti-
mal Reward-Based Scheduling of Periodic Real-Time Tasks.
In Proceedings of 20th IEEE Real-Time Systems Symposium
(RTSS’99), Phoenix, December 1999.
H. Aydin, R. Melhem and D. MossC. Incorporating Error Re-
covery into the Imprecise computation Model. The Sixth Inter-
national Conference on Real-Time Computing Systems and Ap-
plications (RTCSA’99), Hong Kong, December 1999.
H. Aydin, R. Melhem and D. MossC. Tolerating Faults while
Maximizing Reward. Proceedings of the Twelfth Euvomicro
Conference on Real-Time Systems (Eui-omicro’OO), Stockholm,
June 2000.
R. Bettati, N.S. Bowen and J.Y. Chung. Checkpointing Impre-
cise Computation. Proceedings of the IEEE Workshop on Impre-
cise and Approximate Computation, Dec. 1992.
R. Bettati, N.S. Bowen and J.Y. Chung. On-Line Scheduling for
Checkpointing Imprecise Computation. Proceedings of the Fifth
Euromicro Workshop on Real-Time Systems, June 1993.
J. K. Dey, J. Kurose and D. Towsley. On-Line Scheduling Poli-
cies for a class of IRIS (Increasing Reward with Increasing
Service) Real-Time Tasks. IEEE Transactions on Computers

J. Grass and S. Zilberstein. Value-Driven Information Gather-
ing. AAAI Workshop on Building Resource-Bounded Reasoning
Systems, Rhode Island, 1997.
X. Huang and A. M. K. Cheng, Applying Imprecise Computa-
tion Algorithms to Real-Time Image and Video Transmission.
In IEEE Real-Time Technology and Applications Symposium,
1995.
J. W . 4 . Liu, K.-J. Lin, W.-K. Shih, A. C.-S. Yu, C. Chung, J.
Yao and W. Zhao. Algorithms for scheduling imprecise compu-
tations. IEEE Computer, 24(5): 58-68, May 1991.
R. Rajkumar, C. Lee, J. P. Lehozcky and D. P. Siewiorek. A Re-
source Allocation Model for QoS Management. In Proceedings
of 18th IEEE Real-Time Systems Symposium, December 1997.
B. Randell. System Structure for Software Fault Tolerance.
IEEE Transactions on Software Engineering, 1(2):22&232,
June 1975.
W.-K. Shih, J. W.-S. Liu, and J.-Y. Chung. Algorithms for
scheduling imprecise computations to minimize total error.
SIAM Journal on Computing, 20(3), July 1991.
S. Zilberstein and S.J. Russell. Anytime Sensing, Planning and
Action: A practical model for Robot Control. In IJCAI 13,
France, 1993.

45(7):802-813, July 1996.

296

