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Abstract 

With the advance of applications such as multimedia, im- 
agelspeech processing and real-time AI, real-time computing 
models allowing to express the “timeliness versus precision” 
trade-off are becoming increasingly popular. In the Impre- 
cise Computation model, a task is divided into a mandatory 
part and an optional part. The mandatory part should be com- 
pleted by the deadline even under worst-case scenario; how- 
ever, the optional part refines the output of a mandatory part 
within the limits of the available computing capacity. A non- 
decreasing reward function is associated with the execution of 
each optional part. Since the mandatory parts have hard dead- 
lines, provisions should be taken against faults which may oc- 
cur during execution. An FT-Optimal framework allows the 
computation of a schedule that simultaneously maximizes the 
total reward and tolerates transient faults of mandatory parts. 
In this paper, we extend the framework to a set of tasks with 
multiple deadlines, multiple recovery blocks and precedence 
constraints among them. To this aim, we first obtain the exact 
characterization of Imprecise Computation schedules which 
can tolerate up to k faults, without missing any deadlines of 
mandatory parts. Then, we show how to generate FT-Optimal 
schedules in an efficient way. Our solution works for both lin- 
ear and general concave reward functions. 

1 Introduction 
Real-time computing models which are able to express the 

“timeliness versus precision” trade-off are attracting more at- 
tention with the advance of applications such as multimedia, 
imagebpeech processing, information gathering and real-time 
AI. Imprecise Computation (IC) [9, 121, Increased-Reward- 
with-Increased-Service (IRIS) [6] and Q-RAM [ 101 models 
address the problem by logically dividing each task into a 
mandatory part and an optional part. Despite differences, some 
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fundamental traits are shared by these models: The optional 
part need not to be completed by the deadline, instead its 
(partial or complete) execution refines the approximate/initial 
result produced by the mandatory part. A non-decreasing 
reward/utility function (altematively, a non-increasing error 
function) is associated with the execution of the optional part 
to quantify the precision or refinement of the final output. 
While IC studies have mostly dealt with linear reward func- 
tions [9, 121, IRIS [6] and Q-RAM [lo] models extended the 
framework to general concave reward functions. Linear and 
general concave reward functions can successfully represent 
most of the applications, since most realistic applications (such 
as multimedia, image processing, real-time decision making) 
exhibit non-increasing marginal retum behavior during the ex- 
ecution, as in [13, 8,7]. In addition, we have shown that relax- 
ation of the concavity assumption results in an NP-Hard prob- 
lem [l]. 

Although these reward-based models allow for greater 
scheduling flexibility when compared to traditional hard real- 
time models, it should be emphasized that the mandatory parts 
have still stringent timing constraints. As such, not only the 
mandatory parts should be guaranteed timely completions un- 
der worst-case scenarios, but also provisions must be taken 
against unexpected events, such as faults. First studies consid- 
ering fault tolerance issues in IC schedules appeared in [4, 51. 
Recently, we introduced an FT-Optimal scheduling framework 
for IC tasks, which involved the computation of the schedule 
with maximum reward among all possible fault tolerant (FT) 
schedules [2]. The framework was based on exploiting the time 
redundancy provided by optional parts to recover mandatory 
tasks and had several desirable properties in that it: (a) as- 
sumed only knowledge about the maximum number of faults 
of the entire task set, (b) considered general concave reward 
functions, and (c) required no on-line adjustment as long as no 
faults were encountered. 

The work in [ 2 ] ,  although it considered both independent 
tasks and tasks with linear precedence constraints, was lim- 
ited to frame-based systems with a single end-to-end deadline. 
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The case of independent tasks with different deadlines was fur- 
ther explored in [3 ] .  Two recovery schemes, namely immediate 
and delayed recovery, were proposed and it was shown that the 
FT-Optimality problem of independent tasks with delayed re- 
covery and multiple deadlines was an intractable problem even 
under modest assumptions. Immediate recovery with non- 
identical ready times was also shown to result in an NP-Hard 
problem, and a pseudo-polynomial time algorithm was devel- 
oped for linear reward functions and identical ready times. 

This paper extends the FT-Optimality research of [2] for 
tasks with linear precedence constraints in two ways. First, we 
consider non-identical deadlhies, which needs little justifica- 
tion. Second, for multiple faults, we no longer assume that all 
the recovery blocks associated with a given task have the same 
worst-case execution time. Non-identical recovery blocks are 
more realistic: for example, one or two recovery blocks may 
try simply to re-execute the original code and execute an al- 
temate code for the task, then a final recovery block may try 
to load a ’safe state’ onto memory. The use of exact worst- 
case execution times per recovery block, instead of relying on 
a maximum amount for recovery block for each task, may con- 
siderably improve the total reward, as illustrated in Section 3.  

After introducing the system model and basic terminology 
in Section 2, we provide a motivating example in Section 3.  
We present our main results in two parts: In Section 4, we ad- 
dress the problem of efficiently checking the feasibility of a 
given IC schedule under any pattern of k faults with (poten- 
tially) multiple recovery blocks per task. Besides its impor- 
tance per se, this section also lays ground for Section 5, where 
we show how to generate k-FT Optimal schedules in an ef- 
ficient manner for general concave reward functions. We 
conclude with a discussion of this research effort and future 
work considerations. 

2 System Model 

2.1 Task Model 

We consider a set T of n imprecise computation tasks 
TI ,  T2, . . . , T,, on a uniprocessor system. The deadline of task 
Ti is denoted by di.  Without the loss of generality, we assume 
that TI is the task with the earliest deadline, T2 is the second 
and so on (ties are broken arbitrarily). Each task consists of 
a mandatory part Mi and an optional part Oi. The length of 
the mandatory part is denoted by mi; each task must receive 
at least mi units of service time in order to provide output of 
acceptable quality. The optional part Oi becomes ready for 
execution only when the mandatory part Mi completes. 

We assume precedence constraints between tasks; that is, 
first M I  and 0 1  execute, then M2 and 0 2 ,  and so on; the ex- 
ecution completes with M ,  and 0,. Without loss of gener- 
ality, M1 is assumed to be ready at t = 0. Note that besides 
tasks with linear precedence constraints, this model can also 
capture the IC scheduling of independent tasks with identical 
ready times in a non-preemptive environment; it is not diffi- 

cult to show by a swapping argument that executing each task 
(which consists of a (Mi ,  Oi) pair) in increasing order of dead- 
lines is the optimal policy if preemption is not allowed. 

Associated with each optional part of a task is a reward 
function Rj(t) which indicates the reward accrued by task Ti 
when it receives t units of service beyond its mandatory por- 
tion. Rj ( t )  is of the form: 

where Fj is a nondecreasing, concave and continuously differ- 
entiable function over nonnegative real numbers and oj is the 
length of entire optional part Oi. In this formulation, when the 
task’s optional execution time t reaches the threshold value oi, 
the reward accrued ceases to increase. 

Given a task set T, a schedule for T determines the amount 
of service each task receives. S is a feasible schedule for T, if 
and only if in S, 

i) Each mandatory task Mi completes before its deadline di, 
ii) No optional task 0; is executed beyond dj, although par- 

tial optional executions are acceptable, 

iii) Precedence constraints are adhered to. 

Further, given a schedule S,  define the following functions: 

0 Starts ( M i )  : The time at which Mi is scheduled to start 

0 Ends(Mi) : The time at which Mi is scheduled to com- 

0 [wl ,  W Z ] ~ :  The portionof schedule S between time points 

As an example, Figure 1 illustrates a schedule where 
Starts(M2) = 15 and Ends(M2) = 20. Note that 
Ends(Mi)  - Starts(Mi) = mi V i, since preemption never 
occurs. 

execution. 

plete execution. 

w1 and w2. 

0 5  15 20 24 29 35 

Figure 1. A schedule of IC tasks 

The Total Reward of an imprecise computation schedule s 
is REWs = Ri(ti) where ti is the amount of service that 

optional part Oj receives in S. A feasible schedule is optimal 
if it maximizes the total reward accrued. 

n 

i=l 

2.2 Fault Model 

We assume that at most IC faults may occur during the exe- 
cution of the task set. The results are produced or committed 
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at the end of Mi and then again at the end of Oi.  Consis- 
tency or acceptance checks are performed before the results 
are committed. If an error in a task Z is detected at the end 
of its mandatory part Mi,  then the system initiates the recovery 
mode, where a recovery block B ~ J  is immediately executed. A 
recovery block [ 111 may simply re-execute Mi or execute an 
alternative code. Should the error persist or another error be 
detected at the end of Bill, the second recovery block of Z, 
namely BQ, is executed and so forth. A fault of M; or of any 
of its recovery block is referred to as “a fault of task Z’’ for the 
sake of simplicity. 

The worst-case execution time of the recovery block Bi,j is 
denoted by b i , j .  Note that there might be at most k recovery 
blocks for a given task, since we allow no more than k faults 
in the system. If an error is detected at the end of the optional 
part Oi,  the result is not committed; but the recovery mode is 
not started either: the execution of Mi+l uses the approximate 
result produced by Mi. Since the recovery mode is initiated 
only for mandatory parts, throughout the paper we will use the 
expression “j th  fault during the execution” to refer to j t h  error 
detected at the end of any mandatory part (or recovery block). 

A multiple fault pattern is a set P = { p l , p 2 , .  . . , p n } ,  
where pi denotes the actual number of faults that task Ti in- 
curs and such that, xy=l p; < k .  

In general, a schedule is said to be k-fault tolerant (k-FT) 
if every mandatory part Mi and any of its executed recovery 
blocks, can complete by di under any k-fault pattern P .  Note 
that k-fault tolerance of a schedule implies its feasibility, but 
the converse is not true. 

Finally, a schedule S is k-FT Optimal if and only if: 

i) it is k-FT, and 

ii) its total reward is maximum among all k-FT schedules. 

As in [2, 31, in this study, the recovery operations will have 
to rely on the existence of optional parts which provide a sort 
of slack, due to the their non-essential nature. Hence, once 
recovery is initiated, the remaining optional parts may not have 
a chance to execute. Yet, checking the tolerance of a schedule 
to any pattern of k faults in the existence of multiple deadlines 
and recovery blocks, and further, determining CPU allotments 
of optional parts to simultaneously guarantee k fault tolerance 
and maximize system reward are non-trivial problems. 

3 k-Fault Tolerant Optimal Scheduling: A Mo- 
tivating Example 

In this section, we present an example with three tasks. We 
assume that only two faults need to be tolerated (i.e., IC = 2). 
Further, although non-linear reward functions are more realis- 
tic, the tasks in the example have linear reward functions, for 
the sake of simplicity. Despite its simplicity, the example illus- 
trates many facets of scheduling imprecise computation tasks 
in the presence of multiple faults. 

hi 
25 25 
10 30 4 t  

T3 20 35 t 

As it can be seen, each task has two recovery blocks. The 
first recovery blocks are merely re-executions (bi,l = mi, V i ) .  
The worst-case execution times of the second recovery blocks 
are much less than the first ones. Observe that the marginal 
return of 0 1  is the largest among all tasks, hence, the schedule 
with the highest reward consists in favoring 01 as much as 
possible (Fig. 2); call this schedule S I .  

r 

I I 01 I M21 M31 
I I I I I 

0 5  25 30 35 

Figure 2. An optimal but non-FT Schedule 

S1 is optimal (total reward of loo), but it is not F T  Ma and 
M3 complete just before their deadlines and it is not possible 
to tolerate even a single fault which occurs in either of them. 

Provided that a task set is k-FT, one can always obtain a triv- 
ial FT-schedule by completing every mandatory part as soon 
as possible, and the remaining idle time will be assigned to 
the last optional part. If we adopt this strategy, we end up by 
getting SZ, shown in Fig. 3. 

d l  cf2 cf3 

0 5  10 15 35 

Figure 3. A trivial fT Schedule 

However, the total reward of S2 is only 20, due to low 
marginal return of 03. The study in [2] enforced that the sum 
of optional assignments after a given task (and before its dead- 
line) should be at least equal to the recovery time that it may 
needed. Further, each recovery block was assumed to have the 
same worst execution time. However, this approach is inad- 
equate for multiple deadlines, in that it excludes some legal 
k-FT schedules. Indeed, using that strategy, the schedule with 
the highest reward is S3 (Fig. 4, total reward of 55).  

Yet, there is another schedule S3 with considerably higher 
reward (72), shown in Figure 5 ,  which tolerates any pattern of k 
faults in addition to taking into account non-identical deadlines 
and non-identical recovery blocks. Yet, it can be easily verified 
that it is k-FT and, in fact, S3 is a k-FT Optimal schedule for 
the example task set. 
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i ' l  4 2  7 3  

0 5  10 15 20 25 35 

Figure 4. A k-t=r Schedule with higher reward 

In summary, from this example it is clear that new and ef- 
fective fault tolerance criteria are needed for the case of task 
sets with multiple deadlines and different recovery blocks. 

0 5  15 20 24 29 35 

Figure 5. The k-t=r Optimal Schedule 

4 Exact characterization of k-FT Schedules 
In this section, we consider and solve the following prob- 

lem: Given a schedule S of imprecise computation tasks, 
how can we efficiently check its tolerance to any pattern of 
k faults? 

Naturally, one can solve the problem by generating all 
schedules corresponding to the O ( n k )  fault pattems and check- 
ing the timeliness of each of them in O ( n )  time, which yields 
a total time complexity of O(n'++l). This is clearly an un- 
acceptable computational cost. The solution that we present 
stems from a rigorous characterization of FT schedules and it 
is simultaneously efficient and exact. Besides, such a rigor- 
ous characterization of all the FT schedules for a given task set 
gives us valuable insights to achieve our ultimate aim of gen- 
erating FT-Optimal schedules. 

Definition: An IC schedule S is called k-FT at level i if it 
remains feasible after recoveries of any faultpattern P where 
p j=O,  V j < i .  

Informally, level i k-fault tolerance enforces that the sched- 
ule remain feasible if all the faults occur during or after the 
execution of Mi (for convenience, we define p p  = 0). The fol- 
lowing propositions can be easily verified in view of the above 
definition. 

Proposition 1 A schedule S is k-FT at level n ifand only ifthe 
schedule remains feasible in case that all the k faults occur in 
the last task M ,  (or its recovery blocks). 

Proposition 2 A schedule S is k-FT at level i < n if and only 
if: 

1. it is k-FT at level i + 1, and, 

2. under any k faultpattern which begins with j faults of M i ,  
the tasks Mi,  Mj+l,  . . . , M, and their recovery blocks 
complete before their corresponding deadlines. 

Since any k-fault pattern should begin with an error detected at 
the end of a specific Mi (1 5 i 5 n),  Proposition 2 lets us to 
deduce the following: 

Proposition 3 A task set T is k-FT ifand only ifthere exists a 
schedule which is k-FT at level 1. 

A strict characterization of k-fault tolerance will be ob- 
tained iteratively by studying tolerance of consecutive levels. 
Specifically, we will first obtain necessary and sufficient con- 
ditions for a level n k-FT system, then for level n - 1 and so 
on, until we reach level 1. Clearly, the first condition is that 
the schedule should be k-FT at level n, that is, M, should be 
scheduled early enough to leave time for recoveries of k faults 
of M ,  . Similarly, k fault tolerance at level n - 1 requires that 
M,-1 be scheduled early enough to let timely recoveries of 
any k faults which affect M, and Mn-l, and so on. Note that 
while computing the upper bound on the scheduling time of 
Mi,  we should consider the worst-case scenario which requires 
maximum recovery time after End(Mi ) ,  which corresponds to 
a k-fault pattern affecting only Mi,  Mi+l, . . . , M,. Let us de- 
fine a function over individual tasks to resume our analysis. 

Definition: The function L C T (  M i ) ,  denotes the latest com- 
pletion time of Mi in any schedule for  T, which allows the 
timely completions (and recoveries) of the mandatory parts 
Mi, Mi+l,. . . , Mn under any k-faulr pattern which begins 
with a fault on M j  ( j  2 i), that is, p h  = 0 h = 1, . . . , i - 1. 

Informally, LCT(Mi) is a measure of the maximum 
amount Mi can be pushed late in the schedule, without com- 
promising level i &Fault Tolerance. Using Propositions 2 and 
3, we obtain: 

Proposition 4 A schedule S is k-FT at level i if and only if 
E n d s ( M j )  5 L C T ( M j )  j = i, . . . , n. 

Corollary 1 A task set is k-FT if and only i f  there exists a 
schedule S where E n d s ( M j )  5 L C T ( M j ) ,  j = 1,. . . , n.  

Therefore, once L C T ( M i )  is determined for every task, the 
k-fault tolerance of a given schedule can be decided in O ( n )  
time. Hence, the problem is now reduced to the efficient com- 
putation of L C T ( )  values for each task. 

Computation of L C T ( )  Values: 
We will adopt the dynamic programming approach to com- 

pute the LCT values in a bottom-up manner. First, we define 
an auxiliary function. 
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Definition: The function Zct ( M i ,  U ,  v) denotes the latest 
completion time of Mi in any schedule for  T ,  which allows 
the timely completions (and recoveries) of the mandatory parts 
Mi,  M i + l , .  . . , M ,  under any fault scenario where there are 
exactly U fault(s) during the execution of M I ,  . . . , Mi-1 and 
exactly v fault(s) during the execution of Mi,  . . . , M,, such 
thatu + v = k .  

Again, the Zct () function puts an upper bound on the amount 
of shift a task Mi can tolerate in a schedule, in a fault pattem 
with exactly U faults before it, and exactly v faults on and af- 
ter it. Note that if Mi itself actually incurs exactly y faults 
in that specific scenario, it should be scheduled to complete 
early enough to be able to execute y recovery blocks before di, 
as well as not to push the tasks which follow beyond what is 
mandated by level i k-Fault Tolerance. Notice that the value of 
the LCT(Mi)  function is (by definition) simply Zct(Mi, 0, k ) .  
Let us start by evaluating the Zct value for the last task M,. In 
case that exactly i faults occur in M,, we should have time to 
execute all the first i recovery blocks before the deadline d,. 
which gives: 

I 

lct(M,,  k - i, i) = d, - bn,j (2) 
j = 1  

Clearly, LCT(M,) is the minimum among all Zct(M,, k - 
y, y) values, which correspond to the case where all the faults 
occur in or after M, (in this case, all faults will occur in M,): 

LCT(M,) = Ict(M,, 0,  k )  = d, - b,,j ( 3 )  
k 

j = 1  

For i < n, the lct function will be computed by a dynamic 
programming approach: 

Ict(Mi, IC, 0) = min{di ,  Ict(Mi+l, k ,  0) - mi+l) (4) 

The above formula expresses the fact that, assuming that 
all the faults occur before Mi,  Zct(Mi, k ,  0) is either di,  or 
the latest start time of Mi+l under this scenario (which is 
Zct(Mi+l, k ,  0) - mi+l), whichever is the smallest. Similarly: 

Ict(Mi, k - 1 , l )  = mdn{Xo, X I }  

X O  = min{di,  Ict(Mi+l , k - 1,l) - m i + l }  

XI = min{di ,Zct(Mi+r7k70)  - m i + l } -  bi,l 

Above, X o  corresponds to the scenario where the single 
fault which is supposed to occur during the execution of 
Mi, .  . . , M,, does not occur in Mi, but later; while X1 cap- 
tures the case where the fault occurs in fact in Mi in which 
case no fault can occur in Mi+l,  . . . , M,. We can obtain: 

V 

Zct(Mi, k - w, w) = min{Xj} w = 0 , .  . . , k where : 
3=0 

j 

X j  = min{di ,  Ict(Mi+t I k - (W - j ) ,  w - j) - mi+l} - b i , y  
y = l  

for the general case. Note that the set { X j )  above expresses all 
possible k-fault scenarios where we have exactly k - v faults 
before Mi and exactly v faults on or after Mi: Mi can incur 

exactly j faults and the tasks M i + l , .  . . , M, can incur exactly 
v - j faults. Once again, LCT(Mi )  can be computed by tak- 
ing the minimum among all &(Mi,  k - y, y) values, which 
always happens to be Zd(Mi, 0, k )  - the scenario where all 
the faults occur during the execution of Mi,  . . . , M,. Observe 
further that Zct(Mi, k - v, v) values for v < k are not used for 
the computation of LCT(Mi)  = Zct(Mi, 0, k ) ,  instead they 
contribute to the computation of L C T ( M j )  ( j  < i ) .  

What is the complexity of computing Id() values for a 
given task set? First, the computation of E”,=, bi,, i = 
1 ,  . . . , n; j = 0, . . . , k can be accomplished in O(n I C )  time 
and we can store them in a look-up table. Further, there are 
only n - ( k  + 1 )  function values to be computed. Each of them 
can be done in O ( k )  time (we need to perform at most O ( k )  
comparisons and arithmetic operations), which suggests that 
the overall complexity is O(n I C 2 ) .  

Once we compute LCT(Mi)  values, we can quickly test the 
k-fault tolerance of a given schedule S, by checking whether 
Ends(Mi) 5 LCT(Mi)  i = 1 , .  . . , n. We conclude the 
analysis by pointing out that, if during the checking proce- 
dure we observe the existence of an LCT(Mi)  value such that 
LCT(mi) - mi < 0, it immediately implies that there are 
no k-FT schedules for the given task set: there can be no 
Ends ( M i )  values which can satisfy the requirement of Corol- 
lary 1, if this is the case. In other words, the test has the ad- 
ditional property of being able to detect task sets for which no 
k-FT schedules exist. 

Example 
Let us illustrate the application of the technique on the ex- 

ample task set of Section 3. We start by the last manda- 
tory task, which is M3. By applying Equation (2), we find 

29. Hence, the worst-case scenario for level 3 fault toler- 
ance is the occurrence of two faults in M3; and L C T ( M 3 )  = 
Zct(M3, 0 , 2 )  = 29. For M2, we compute: 

Zct(M2,1,1) = min{Xo, X I )  = 25; where 

Z ~ t ( M 3 , 2 , 0 )  = 35, k t ( M 3 , 1 , 1 )  = 30 and Z ~ t ( M 3 , 0 , 2 )  = 

Z ~ t ( M 2 , 2 , 0 )  = min{d2,Zct(M3,2,0) - 7723) = 30, 

Xo = min(3O7Zct(M3, 1,l) - m3) = 25 and 
X i  = min{30,Zct(M3,2,0) - m3) - b2,1 = 25. 

Note that X O  above corresponds to the fault pattem in which 
the single fault supposed to occur on or after Ma, actually oc- 
curs later, not in M2. In contrast XI captures the case where 
M2 actually suffers a fault but M3 does not; we should in- 
corporate the execution of the first recovery block B2,1 in the 
computation. As it tums out, the two scenarios impose the 
same upper bound on the Id(). Lastly, Zct(M2,0,2) involves 
the consideration of three different scenarios: 
Zct(M2,0,2) = min{&, X I ,  X 2 )  = 20; where 
X O  = min{30,Zct(M3,0,2)  - m3) = 24 (both faults occur 
in M3); 
X1 = min{30, ic t (M3,1 ,1)  - m3) - b2,1 = 20 (one fault 
occurs in M2 and the other in M3.) 
X 2  = min(30, lct(M3, 2,O) - m 3 }  - b2,1 - b2,2 = 24 (both 
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faults occur in M2). 
From these results, L C T ( M 2 )  is evaluated to be equal to 

X 1 ,  which is 20. Observe that, for level 2 fault tolerance, the 
worst-case scenario corresponds to the one where both M2 and 
M3 fail once. Finally, we focus on M I  : 
Zct(M1, 2,O) = min{dl ,Zct(Mz,  2,O) - m 2 )  = 25, 
Zct(M1,1,1) = m i n { X o ,  X I )  = 20; where 
X O  = min{25,Zct(M2,1,1) - m 2 )  = 25 and 
X 1  = min{25,Zct(Mz, 2,O) - 7722) - b2,1 = 20. 

three values: 
Zct(Ml,O, 2)  = m i n { X o ,  X 1 , X 2 }  = 15; where 
XO = min{25,Zct(Mz, 0 , 2 )  - m 2 )  = 15 (both faults occur 
after M I ) ;  
X I  = m i n { 2 5 , k t ( M 2 , 1 , 1 )  - m 2 )  - b1,l = 15 (one fault 
occurs in M I  and the other one after it.) 
X2 = min{25,Zct(M2,2,0) - m2} - b1,l - b1,2 = 17 (both 
faults occur in M I ) .  

Level 1 Fault-tolerance requires that M I  be scheduled no 
later than t = 15, otherwise a single fault of  M1 and a single 
fault of Ma would result in a deadline miss. In other words, 
the LCT() bounds are evaluated as: 

Computing Zct ( M I ,  0,2)  also requires a comparison of 

LCT(M1) = 15, L C T ( M 2 )  = 20, LCT(M3)  = 29. 

Note that mandatory tasks do not overlap in St since: 

LCT(Mj)  = 
Zct(Mi, 0 ,  k) 5 min{di,Zct(Mi+l,  0 ,  k) - mi+l} 

5 ZCt(Mi+1,0, IC) - mi+1 = L C T ( M i + l )  - mi+1 

Thus, St will contain mandatory parts scheduled at their lat- 
est completion times, with (possibly) gaps among them. How- 
ever, RewS, = 0 since we did not schedule any optional part 
yet. Observe that, in any k-FT schedule, and incidentally in 
the k-FT Optimal schedule denoted by S' , any mandatory 
part can be moved earlier from its original allocation in St 
to create room for optional parts if needed, but never later, 
since this would result in a non-FT schedule (Corollary 1). For 
example, Figure 7 illustrates three fully utilized schedules cor- 
responding to the template schedule St. They all satisfy the 
k-fault tolerance requirement: yet, the total rewards are dif- 
ferent, and any of them could be the k-FT optimal schedule, 
depending on the specific reward functions. To summarize, 
St represents the boundary conditions that any k-FT schedule 
must satisfy. 

i'l 7 2  7 3  

5 Generation of k-FT Optimal Schedules 

In this section, we address the problem of generating a 
k-FT schedule with the maximum reward. Corollary 1 in 
Section 4 revealed the necessary and sufficient conditions 
for k-fault tolerance, which involves only pre-computation 
of LCT(Mi)  bounds and checking End(Mi)  values against 
these. Without loss of generality, and in accordance with [2,3], 
we consider FT-Optimal schedules with no idle time1. 

To obtain a k-FT optimal schedule S* for a given task set, 
we will start creating an initial (template) schedule St which 
contains only mandatory parts. Further, in St, each mandatory 
part Mi will be scheduled exactly in time interval [LCT(Mi)  - 
mi, LCT(Mi)].  Figure 6 shows the template schedule St for 
the example task set of Section 3. 

i" qz q3 
M1l L1 

0 5  10 15 20 24 29 35 

Figure 6. The template schedule 

If there is an idle time unit in the middle of an optional execution, one can 
executethat optional task for one more time unit. Idle time which occur during 
mandatory parts can be removed, effectively decreasing the completion times 
and not hurting k-fault tolerance. Clearly, the total reward never decreases 
after such schedule modifications. 

0 5  10 24 29 35 

35 24 29 0 5 10 18 

0 5 10 15 19 24 35 

Figure 7. Three k-FT schedules 

To maximize the total reward, we schedule optional parts 
into the 'gaps'. Yet, there are several necessary constraints that 
we should obey. Namely, no optional part Oi can be scheduled 
beyond deadline di.  Similarly, precedence constraints and fault 
tolerance requirements enforce the following: 

Proposition 5 In the schedule segment [LCT(Mi) ,  d;] of any 
k-FTschedule S, no optionalpart Oj, j < i ,  can be scheduled. 

Proof: Suppose there is an optional part Oj scheduled after 
LCT(Mi)  ( i  > j )  in S. Since M; should be scheduled later 
than Oj, Ends(Mi)  > LCT(Mi) ,  which suggests that S is 

0 

Hence, we obtain the following necessary conditions for 
not k-FT, leading to a contradiction. 

Ic-fault tolerance: 
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N1: In interval [d;, &+I]  the only optional parts that can be 

N2: In interval [LCT(Mi), dn] the only optional parts that 

But the schedule is also feasible and fully utilized, hence: 

x ( m j  + tj) 5 di i = 1,. . . , n - 1 and C ( m j  + tj) = d, 

scheduled are Oi+l,. . . , On. I n 

can be scheduled are Oi, . . . , On. j=1 j=1 

We can reflect the constraints NI and N2 in the op- 
tional assignments as follows. Let us start by noting that 
Starts,(Mi) = Ends,(Mi) - mi = LCT(Mi) - mi is the 
latest start time of Mi in any k-FT schedule. Clearly, the to- 
tal CPU allotment for the first task, namely ml + t ~ ,  cannot 
exceed dl  (constraint NI), or Starts, (M2)  (constraint N2): 
ml+tl 5 min{dl, Starts, (Mz)} .  Similarly, the totalassign- 
ment ml + tl + m2 + t 2  should satisfy the deadline constraint 
for T2 and LCT constraint for M3: ml + t l  + m2 + t 2  5 
min{dz, Starts, (M3)).  And in general: 

j C(mi +ti) 5 minldj, starts, ( ~ j + i ) )  j < 71 
i=l 

Finally, the schedule will contain no idle time: 
n 

C(mi +ti) = dn 
i=l 

We continue with the following definitions: 

Note that d;: represents the effective deadline of z, that is, 
the execution of z. beyond this limit violates either its deadline 
or k-fault tolerance (for convenience, we define do = 0). 

The theorem below proves that the constraint set { Ci} de- 
rived from conditions N1 and N2 is necessary and sufficient 
for k-fault tolerance: 

Theorem 1 A schedule S is k-FT ifand only if it satisfies the 
constraints CI, . . . , Cn . 

Proof: Suppose that each constraint Ci i = 1,. . . , n is 
satisfied. The schedule is feasible since xi=l(mj  + t j )  5 
Ji 5 di 1 5 i 5 n. But also, ci,:(mj + t j )  5 Ji-1 5 
Starts, ( M i )  1 i 5 n. Hence, S is also k-FT since: 

i-1 

C ( m j  + tj) +mi = ~ n d s ( ~ i )  
j=1 

5 

Starts, (Mi) + mi = Ends, ( M i )  = LCT(Mi) i = 1,. . . , n 
Conversely, suppose that the schedule S is L-FT. This im- 
plies: ~ n d s ( ~ i + l )  = ~ f , ~ ( m j  + t j )  + mi+l 5 

tracting mi+l from both sides (note that Ends,(Mi+l) - 
mi+l = Starts, (Mi+l)), we obtain: 

LCT(Mi+1) = Ends,(Mi+l) i = 0 , .  . . , n  - 1. By sub- 

t 

C ( m j  + t j )  5 Starts,(Mi+l) o 5 i 5 n - I 
j = l  

Combining the last results, we obtain: xf,l(mj + t j )  5 
min{di,Starts,(Mi+l)} i = l , . . . , n - l a n d x y , l ( m j +  
t j )  = dn ,  yielding: 

i 

j=1 
n 

j = 1  

Hence, all the Ci constraints are satisfied. 0 
Having expressed the FT conditions in terms of optional ser- 
vice times {ti}, we can now formulate the non-linearoptimiza- 
tion problem to maximize the total reward. Note that every ti 
assignment should be non-negative, in order to have a physical 
interpretation. Hence, we obtain our final theorem: 

Theorem 2 k-FT optimal optional service assignments { t i  } 
are given by the following optimization problem: 

maximize 5 &(ti) ( 5 )  
i=l 

n n 

i= l  i=l 
subject to t i  = dn - mi (6) 

osti i = 1 ,  ..., 12 (7) 

Proof: The constraint (6) corresponds to Cn. The constraint 
(7) is self-explanatory. The constraint set (8) is equivalent to 
{Ci}, as proven below. Let us define: 

Cj”=n-i+l (mj + tj) 2 in - i n - i  

(mj + t j )  = di - do 
if i < n 
i f i = n  

- 
Ci : the constraint 

We claim that the constraint set {Ci} is satisfied for a given 
schedule S if and only if the constraint set {E}  is satisfied. 

In fact, suppose that the set {Ci} is satisfied. Then by 
subtracting Cn-i from C,, one can obta? {a}-(for i = 
1, . . . , n - 1). Cn is identical to C, (dn = dn and do = 0). 

Conversely, suppose that the set {E}  is satisfied. One can 
subtract Cn-2 from to get Ci (for i = 1, . . . , n - l), and so 
on. By re-arranging the new constraint set {E} ,  we obtain the 

0 
The above problem is a non-linear (concave) optimization 

problem with equality and inequality constraints. It can be 
solved by using the algorithm developed for the solution of 
problem CHAIN, in [2]. The complexity of the solution is 
O(n2 log n)  for linear, logarithmic or identical concave re- 
ward functions; in the general concave case, the complexity 
is O(n3 log n). 

formulation used in the optimization problem above. 
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To summarize, the algorithm in [2] ,  which assigns FT- 
Optimal ti values, proceeds in two phases. In the first phase, 
we focus solely on satisfying the inequality constraints by pro- 
cessing the task set in a bottom-up manner. During this phase, 
we apply a least commitment strategy in that we do not as- 
sign to an optional task a service time which is greater than re- 
quired by inequality constraints. During the second phase, we 
make optimal distribution of the total schedule segments avail- 
able for all optional parts in the chain, considering the output 
of the first phase as lower bounds on the execution times. 

To illustrate the derivation of exact constraint set for the 
CHAIN, we retum to the example task set of Section 3, of 
which the template schedule St was shown in Figure 6. The 
’effective’ deadline for each task is the minimum of its dead- 
line and the start time of the next task in St, thus: 

Similarly, the inequality constraints are obtained as: 

By substituting the values of mi i = 1,2,3,  we obtain the 
instance of CHAIN: 

n 

maximize Ri (ti) 
i=l 

n 

subject to = 20 

The algorithm which solves the problem CHAIN [2] retums 
the output set { t l  = 10,t2 = 4,t3 = 6 } ,  which, indeed cor- 
responds to the k-FT Optimal schedule which was previously 
shown in Figure 5. 

6 Conclusion 
In this paper, we addressed the problem of generating FT- 

Optimal schedules for imprecise computation tasks with mul- 
tiple timing constraints, recovery blocks and linear precedence 
constraints. The approach can be also used for a set of indepen- 
dent tasks, in case that preemption is not allowed. After point- 
ing out to the disadvantages of adopting trivial extensions of 
previous solutions, we first provided an exact characterization 
of Imprecise Computation schedules which allow timely com- 
pletion of mandatory parts even in the presence of k transient 
faults. The test is efficient and further, can be applied to any 
IC schedule, with arbitrary or no precedence constraints, with 
preemption or no preemption, as long as the recovery blocks 
are to be executed immediately following error detection(s). 

This special type of recovery technique was called ’Immediate 
Recovery’ in [3]. 

In the last part of the paper, we showed how to use the task 
and fault characterization information to generate the sched- 
ules which allow timely recoveries of mandatory parts while 
compromising the total reward as little as possible. Our future 
work in this area includes the investigation of efficient heuris- 
tics for intractable cases. 
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