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Abstract 

In this paper, we address the problem of guaranteeing 
end-to-end (ETE) delay of packets in a distributed sys- 
tem where the technique of time division multiplex access 
(TDMA) is adopted, and the application at the destination 
node requires to process the packets at a regular rate. We 
present a time slot allocation algorithm to satisb the trans- 
mission rate requirement, and to minimize the scheduling 
jitter. Each packet of a stream is delivered in an allocated 
time slot according to one of the two delivery protocolspro- 
posed in this paper. A worst case ETE delay bound is de- 
rived for each protocol. The performance of applying our 
scheduling algorithm to different delivery protocols is com- 
pared and evaluated via simulations. 

1 Introduction 

There has been an increased need for real-time commu- 
nication services in applications. Predictable and guaran- 
teed service has become one of the critical components of 
the quality-of-service (QoS) requirements, and is one of the 
main concerns in scheduling real-time traffic. 

This paper addresses the issue of scheduling real-time 
streams in a distributed system where Time Division Multi- 
ple Access (TDMA) is used. TDMA and its variations have 
been widely used in various network architectures imple- 
mented for transmission of digital information over wired, 
optical or wireless communication channels. In TDMA, 
time is divided into equal length slots, each of which is 
equal to the transmission time of a message packet. A 
TDMA frameltemplate contains an integer number of time 
slots, and the allocation pattern of the template is applied 
repeatedly to control the transmission of message streams. 
Since the entire execution schedule is predetermined in 
TDMA [6], the timing constraints are guaranteed once a 
feasible template schedule is generated based on the con- 
straints. Moreover, there is no run-time scheduling over- 
head, because the packets are transmitted according to a 
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predetermined template. Thus, some distributed real-time 
systems, such as the MARS system [4], adopt TDMA based 
protocols. 

Some applications require that the destination node con- 
tinuously processes the received packets at a regular rate, 
which is called the destination continuiry requirement in 
this paper. An example is the video-on-demand cable sys- 
tems implemented in a limited area such as a hotel. In 
this case, the destination node needs to playback the video 
frames regularly at a rate of 30 frames per second, in order 
to maintain a smooth human perception of the video. 

The achievement of the destination continuity require- 
ment depends on the predictability of packet transmissions. 
If the destination node cannot be sure about the arriving 
time of future packets, the only solution to satisfy the desti- 
nation continuity requirement is to buffer all the packets of 
the message stream at the destination node before it starts to 
process them. Obviously, this can lead to a large end-to-end 
(ETE) delay. In order to achieve the destination continu- 
ity requirement within a limited ETE delay, we propose a 
TDMA scheduling algorithm and corresponding transmis- 
sion protocols. 

The ETE delay is defined as the length of the interval be- 
tween the time when the source node begins to transmit the 
packets of a message stream and the time when the desti- 
nation node begins to continuously process the packets. It 
is calculated as the sum of the following four components. 
The first is the transmission and propagation delay on each 
link, which does not depend on the scheduling discipline 
used, and will be factored out of our analysis. The second 
is the processing delay at each intermediate node. Once a 
stream is accepted, a scheduling TDMA template is gener- 
ated such that the transmissions of the packets are controlled 
accordingly. Thus, there is no scheduling overhead, and the 
processing delay is assumed to be negligible. The third is 
the buffer delay in each intermediate node, which is deter- 
mined by the scheduling policy and the delivery protocol. 
The fourth is the start-up delay at the destination node. In 
order to satisfy the continuity requirement, the destination 
node needs to accumulate some packets before it delivers 
the first packet to the processing application. 

In order to control the magnitude of the ETE delay, we 
derive a TDMA scheduling algorithm to reserve time slots 
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for packet transmission. Because of the destination continu- 
ity requirement, the intermediate nodes should not transmit 
the packets at a rate that is smaller than the processing rate 
at the destination. Thus, the scheduling algorithm needs to 
guarantee a certain transmission rate. Moreover, schedul- 
ing jitter is an important concern for scheduling algorithms 
in most communication applications, which is defined as the 
variance of the temporal distances between all neighboring 
time slots allocated to the stream [ 5 ] .  A smaller jitter im- 
plies a smoother transmission pattern for the stream, such 
that the destination continuity requirement is easier to en- 
force. In order to obtain a small ETE delay, we develop a 
time slot allocation algorithm to satisfy the rate requirement 
and to minimize the scheduling jitter. 

In the context of time slot allocation for a TDMA tem- 
plate, a related work is based on distance constraint prob- 
lems [ 5 ] ,  in which the time interval between every two ad- 
jacent allocated time slots to transmit two consecutive pack- 
ets of the message stream must be within a specified range, 
such that scheduling jitter can be limited by the distance 
constraint. Other work has studied scheduling jitter in pe- 
riodic task models [l]. and template-based models [3]. All 
these algorithms apply to static task sets where the parame- 
ters of the set of tasks are known a priory. In this paper, we 
focus on the communication environments where message 
streams dynamically arrive and depart. 

After the schedule is determined by the scheduling al- 
gorithm, the packets of a message stream will be buffered 
at each intermediate node before they are transmitted in the 
allocated time slots. In order to achieve the destination con- 
tinuity requirements, we describe two delivery protocols. 
One is NED,  standing for No Extra Delay at the intermedi- 
ate nodes. At the intermediate nodes, each arriving packet 
of a message stream will be sent out immediately in the next 
available time slot that is allocated to this stream according 
to the schedule. This protocol completely relies on the des- 
tination node to smooth the jitter before it starts to process 
the packets. The second protocol is called WED (With Ex- 
tra Delay at the intermediate nodes), in the sense that the 
intermediate nodes may delay the arriving packets for a cer- 
tain time, even if there are available allocated time slots for 
the packet. The objective is to smooth the traffic on its route 
and reduce the start-up delay at the destination node. 

The rest of this paper is organized as follows. Sec- 
tion 2 introduces the system model. Section 3 presents the 
scheduling algorithm. The three delivery protocols are pro- 
posed in Section 4. Section 5 compares the two protocols 
and evaluates their performance via simulation. It also de- 
scribes a general protocol that chooses a certain delivery 
discipline according to application types. The paper is con- 
cluded in Section 6. 

2 System model 

In this paper, we use M to denote a message stream, and 
Mj for the j t h  packet of M .  The packets of M are trans- 
mitted according to the scheduling template, as explained 
earlier. Let T be the number of time slots in the template. 
Because of the cyclical application of the template, the slot 

alloc&ion pattem in the period [t ,  t+T-11, for any t ,  will be 
repeated in every following interval [t + k T ,  t + ( k  + l)T - 11, 
fork > 0. We assume that all nodes in the system have the 
same template size, T ,  which is supplied as a system pa- 
rameter. 

The packets of a message stream are transmitted from 
the source node to the destination node through a set of in- 
termediate nodes. We assume that a route is generated by 
a certain routing algorithm, and will not be changed. The 
number of hops in the route is denoted by h, and the nodes 
on the route are labeled as NO, ..., Nh with NO being the 
source node and N h  the destination node. The link Lk,k+l 

We define the input pattern of a stream M at a node as 
the pattem in which the packets of M are received by the 
node. Similarly, the output pattern at a node refers to the 
pattem in which the packets of M are transmitted from the 
node. The allocation pattern of M at a node is the set of 
time slots that are allocated to M by the scheduling algo- 
rithm at the node. The output pattem of a node may or may 
not be equivalent to the allocation pattern, according to dif- 
ferent delivery protocols that will be described later. We 
assume that the transmission and propagation delay can be 
ignored on the intermediate nodes, as explained in Section 
1. Thus, the output pattem of node Nk is equivalent to the 
transmissionpattem on the link Lk,k+l, which is also equiv- 
alent to the input pattem of the next node Nk+l.  That is, if 
node N k  sends a packet in slot t ,  then the packet is prop- 
agated on link Lk,k+l and received by node Nk+1 in slot 
t .  The purpose of this assumption is to simplify the discus- 
sion. The results will not be influenced if this assumption is 
relaxed, as long as the ignored propagation delays are con- 
stants. 

A general connection-oriented communication protocol 
consists of three parts, the connection establishment, the de- 
livery discipline at the intermediate nodes, and the start-up 
discipline at the destination node. 

At the connection establishment stage, the source node 
initiates a request for a new message stream M ,  which is 
characterized as M = (n ,  d) .  The ETE deadline of M is 
represented by d, which means that the actual ETE delay 
must be smaller than or equal to d. We represent the aver- 
age transmission rate of M by n, in terms of the number of 
time slots that need to be allocated to M in the template of 
size T. Given T and n, the average distance between any 
two consecutive instances of M is equal to avgD = f. In 
order to prevent the overflow or underflow of the receiving 
buffer at the destination node, the average transmission rate 
is equal to the processing rate at the destination. 

Upon receiving the request of a new message stream, an 
intermediate node reserves time slots in the template by ex- 
ecuting the scheduling algorithm. If there is no sufficient 
bandwidth for the new stream at any node, then the request 
is rejected. When the request reaches the destination node, 
the ETE delay is computed. If the actual ETE delay is larger 
than the specified ETE deadline d, the request is also re- 
jected. 

After a request is accepted, the source node begins to 
transmit the packets of the stream. We assume that the 
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source node delivers the packet continuously at a regular 
rate of one packet in every avgD time slots. When a packet 
is received by an intermediate node, it is buffered either with 
or without extra delay, as determined by the delivery pro- 
tocol. Each received packet is transmitted at an allocated 
time slot according to the schedule on the node. When the 
packets arrive at the destination node, the start-up discipline 
determines the time to start delivering the packets to the pro- 
cessing application, which will process the packets contin- 
uously at the rate of one packets per avgD time slots. 

3 Scheduling algorithm at each node 

We address the scheduling problem in a system that al- 
lows the message streams to dynamically arrive at and de- 
part from the system. When the request of a new message 
stream M = ( n , d )  arrives at a certain node, some time 
slots in the template of this node are already allocated to 
existing message streams. We assume that once a message 
stream is accepted and allocated in the template at a node, 
its schedule will not be changed until the stream terminates. 

Let S = { $1, S 2 ,  ..., Sn} be the set of time slots allo- 
cated by the scheduling algorithm to the n instances of M in 
the template, where Sj is the location of the j t h  instance of 
M .  Because of the repetition of the template in the sched- 
ule, the location of the ( j  + n)th instance is T time slots 
away from the j t h  instance, that is, Sj+n = Sj + T. 

Given the schedule S, the set of temporal distances be- 
tween all neighboring instances in the template is 2) = 
(01, D2, ..., Dn}, where Dj  = Sj+l - Sj for all j E 
[l, n]. For example, assume that in a template of size 6, the 
schedule of a stream consisting of three time slots is S = 
{1,2,5}. Then V = {1,3,2}. In this example, the packets 
of M will be transmitted at time slot { 1,2,5,7,8,11,13 ...} 
according to the schedule, and the corresponding distances 
between every two adjacent instances are { 1,3 ,2 ,1 ,3 ,2  ...}. 
The sum of all the D j  is equal to T ,  that is, cy==, D j  = T.  

Recall that the scheduling jitter is defined as the variance 
of the temporal distances between all adjacent instances of 
the stream. Let a random variable X be the distance be- 
tween any two adjacent instances. As shown in the previous 
example, the pattem of distance values in V will be repeated 
cyclically, which implies that the probability of X = D j  is 
equal to 1/n for all j E [l, n]. So the expected value of X 
is E[X] = E;=, i D j  = T/n  = avgD. Given a schedule, 
the scheduling jitter is calculated by the following equation, 
where Var[X] stands for the variance of X. 

c;=l(x - avgD)2 
Var[X] = E[(X - E[X])2] = (1) n 

The scheduling problem at each node is formally stated 
as follows. Given a template of size T and a set of m vacant 
time slots {tl, tz, ..., tm} in the template, the problem is to 
allocate n vacant time slots to the new message stream M ,  
such that the scheduling jitter is minimized. 

This problem can be transformed to an equivalent graph 
problem Q = (V,  €) where Q is a directed complete graph 

with m vertices, V is the set of vertices and € is the set of 
edges. Each vertex E represents the ith vacant time slot in 
the template, ti. A directed edge Ei,j points from vertex 
K to 5 where i # j. We explain the meaning of E;,j and 
define its weight w(Ei,j) as follows. 

When i < j ,  w(Ei,j) = (ti - ti - avgD)2, which 
means that if vacant slots t i  and t j  are chosen for two 
consecutive instances of a message stream, then dis- 
tance between these two adjacent instances, tj  - t;, 
contributes a factor of ( t j  - ti - avgD)2 to the calcu- 
lation of the scheduling jitter. 
Wheni > j ,  w(Ei,j) = (tj+T-ti-avgD)',which 
means that if vacant slots ti and t j  + T are chosen for 
two consecutive instances of a message stream, then 
distance between these two adjacent instances, t j  - ti ,  
contributes a factor of ( t j  + T - t; - avgD)2 to the 
calculation of the scheduling jitter. 

fmst template , second template 
I 

3 4 5 6 7 8 9 1 0  

Figure 1. Example of graph transformation. 

Example 1:A template of size 6 has m = 4 vacant time 
slots {1,2,3,5}. A new message stream requests to allo- 
cate n = 3 instances in the template. So avgD = = 2. 
The graph transformation for Example 1 is illustrated in 
Figure 1, where the shaded slots indicate the ones occu- 
pied by previously allocated streams. A directed complete 
graph of 4 vertices is shown beside the time line, where 
Vl, V2, V3, V4 corresponds to the vacant time slots 1,2,3,5,  
respectively. The meaning of the edge Ez,3 and E3,2 is 
illustrated in the figure. The calculation results of their 
weights are W ( & ? , 3 )  = 1 and w(E3,2) = 9. For clarity, 
other edges of the graph are not shown under the template. 

A schedule S = {SI, ..., Sn} can be represented by a 
cycle of n vertices in the graph where each vertex represents 
an allocated slot Sj . The weight of the cycle is calculated as 
the summation of the weights of all the edges in the cycle. 
According to Equation (l), the weight of the cycle is equal 
to n times the scheduling jitter of S. Thus, a schedule of n 
instances with the minimum jitter corresponds to a cycle of 
n vertices with shortest weight. 

We solve this shortest cycle problem using a dynamic 
programming technique [2 ] .  Note that a shortest cycle that 
contains vertex V is equivalent to a shortest path from V 
back to itself. Let us define a m x m matrix II(k), where 
each element T$) is the weight of the shortest path from 

to Vj with exactly k edges. In order to find the short- 
est cycle with n edges, we construct a series of matrices 
II(O), ..., The smallest element among the diagonal 
elements T$) in the matrix II(") gives the weight of the 
shortest cycle. Since a path from E to 6 with k edges can 
be constructed by a path from to V, with k - 1 edges plus 
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the edge E,j, each element in the matrix is calculated by 
the following recursive relation. 

The calculation of the matrix is shown below by by ap- 
plying the dynamic programming technique to Example 1. 
In this example, the shortest cycle has a weight 0, and con- 
sists of vertex VI ,  V3 and V,, which correspond to slot 1, 
3, 5, respectively. Thus, a uniform allocation pattem with 
jitter 0 is found for this example. 

In summary, the algorithm min-jitrer selects n out of the m 
vacant time slots in the template to minimize the jitter. The 
algorithm is described as follows. 

min-jitter 

If m < n, the new stream is rejected because the rate 
requirement cannot be satisfied. 

If n = 1, allocate the first vacant time slot in the tem- 
plate to the new stream. If n = m, allocate all the 
vacant time slots to the new stream. 

Solve the transformed shortest cycle problem. The 
schedule is constructed from the set of the time slots 
that correspond to the vertices in the shortest cycle. 

4 Delivery protocols 

Once a new message stream is accepted, and a schedule 
is generated at each intermediate node during the connec- 
tion establishment stage, the packets of the stream are de- 
livered at each node according to one of two delivery proto- 
cols, NED and WED. In each protocol, we will describe the 
connection establishment scheme, the buffering scheme at 
the intermediate nodes and the start-up scheme at the desti- 
nation. Moreover, a bound to the largest ETE delay in the 
worst case is derived for each scheme. In later subsections, 
we will use the following example to explain the two proto- 
cols. 

Example 2: A message stream M requires transmission 
at the rate of 4 packets in a template of size 12, from node 
NO to node N,. In Figure 2, the time line at each inter- 
mediate node shows the allocation pattem generated by the 
scheduling algorithm at the node, where a time slot with a 
'X' stands for an allocated slot. The down-arrows on the 
link Lk,k+l represent transmissions of packets on the link 
between node Nk and node Nk+l, which indicates the out- 
put pattem of Nk and the input pattem of Nk+1. The last 
row of down-arrows in each sub-figure shows the regular 
delivery of packets from the destination node to the process- 
ing application. A dotted line connects an arriving packet to 
the time slot at which it is transmitted according to a certain 
buffering discipline. 

(a) scheduling result by applying NED to Example 2 

(b) scheduling result by applying WED to Example 2 

Figure 2. An ETE example of 3 hops 

4.1 Delivery with No Extra Delay at intermediate 
nodes (NED) 

The buffering scheme of NED is straightforward in the 
sense that the packet arriving at each intermediate node is 
sent out as soon as possible in the next available allocated 
time slot. However, the existence of scheduling jitter in the 
input and output pattem may lead to the skipping of allo- 
cated slots, as shown in Figure 2(a). In the figure, a circled 
time slot indicates a skip. At node N I ,  though slot 3 is al- 
located for the stream, it is skipped because the receiving 
buffer is empty at that moment. 

When the packets arrive at Nz, more skips take place, 
and the predictable allocation pattem generated by the 
scheduling algorithm will be changed along the route to the 
destination. However, we will show that this slot skipping 
will not occur after a certain time as long as the source 
node, NO, is continuously transmitting packets at the re- 
quired rate. At the first node N I ,  skipping slots implies that 
the instantaneous transmission rate of N1 is lower than the 
receiving rate from NO. So the packets will be accumulated 
in the receiving buffer at N I ,  until the transmission rate is 
equal to the receiving rate. This means that, from this time 
on, there will be no more skipping. We define the no-skip 
state of a node to be the state at which the node will not skip 
any allocated time slot until the termination of the stream. 
Once NI reaches the no-skip state, it will keep on sending 
n packets in every T slots to N2. The above argument im- 
plies that N2 will also reach the no-skip state, and so on. 
The time to reach the no-skip state at node Nk is defined 
as the time slot immediately after the last skipped slot, and 
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is denoted as 12Sk. In Figure 2(a), there is no slot skipping 
after slot 3 at node N I ,  nor after slot 14 at N2. So nsl = 4 
and ns2 = 15. The following theorem about the no-skip 
state and nsk is stated without proof, because of the limit of 
space. 

Theorem 1: When the buffering scheme of NED is ap- 
plied, each node will reach the no-skip state. Moreover, 

In Figure 2(a), ns2 = nsl + 11 = ns1 + T - 1, that is, 
the time to reach the no-skip state at N2 is exactly T - 1 
slots later than ns1. So the bound in Theorem 1 is a tight 
bound for ns. 

The no-skip state is important for the destination node to 
decide when to start to deliver the packets to the application. 
Before the last intermediate node Nh-1 reaches the no-skip 
state, the destination node N h  receives packets with no pre- 
dictable pattem. The receiving rate is lower than n packets 
per T slots because of the skipping. In order to guaran- 
tee the destination continuity requirement, Nh cannot begin 
processing until it is sure that the receiving buffer will not 
underflow in the future (i.e., there is always a packet for it 
to process when it needs to). 

Once the last intermediate node Nh-1 reaches the no- 
skip state, it transmits packets to the destination node Nh 
according to the allocation pattern of Nh- 1 which guaran- 
tees n packets every T slots. So Nh can detect that Nh-1 
has reached the no-skip state when it receives n packets 
within T time slots. We call this the detecting discipline. 
It can be simply implemented by using a FIFO queue of 
length n - 1 to store the receiving time of the last n - 1 
packets, as described in the following. 

risk 5 nsk-1+ T - 1. 

detecting discipline 
1. The arrival times of the first n - 1 packets are en- 

queued. 
2. When Nh receives a new packet, it compares the re- 

ceiving time with the one at the front of the queue. 

3. If the difference is smaller than or equal to T, then Nh 
has received n packets within T time slots. Nh imme- 
diately starts to deliver the packets to the processing 
application. 

4. Otherwise, Nh dequeues the front element and en- 
queues the new receiving time at the end. 

Because Nh-1 reaches the no-skip state at time nsh-1, 
the detecting discipline decides that Nh can start the pro- 
cessing at time nsh-1 +T- 1. In Figure 2(a), N3 can detect 
the no-skip state of N2 by receiving 4 packets from time 18 
to time 26. So the start-up time decided by the detecting 
discipline is 26, which is equal to 17.92 + 11. According to 
Theorem 1, it is guaranteed that Nh- 1 can reach the no-skip 
state at a time no later than t o  + ( h  - 1)(T - l), where to  
is the time when NO starts to transmit the first packet. The 
ETE delay upper bound provided by the detecting discipline 
is thus h(T - 1). 

Before Nh detected the no-skip state, Nh receives pack- 
ets at some unpredictable rate. The accumulation in the re- 
ceiving buffer can be used to allow for an earlier start-up. 

Since the no-skip state must be reached at Nh-1 by time 
t o  + (h - 1) (T - l), we consider this time as the bound of 
the latest time for Nh to start-up. If, at a certain time, there 
is already enough packets in the buffer for Nh to process 
at the rate of one packet in every avgD time slots until the 
bound is approached, then the start-up decision can be made 
immediately. We name this start-up scheme the approach- 
ing discipline which is described as follows. Note that the 
source node can transmit a packet containing to  before it 
starts to deliver the data packets to inform the destination 
node of to.  The destination node will discard the first packet 
after reading the value of t o  from it. 

approaching discipline 

Once Nh receives the first packet, it sets a time-out 
value to be to  + ( h  - 1)(T - 1). 
When a new packet arrives, decrease the time-out 
value by awgD. This means that Nh can start awgD 
time slots earlier, since it has one more packet to pro- 
cess before reaching the time-out value. 
If the current time is smaller than or equal to the time- 
out value, Nh starts to deliver the packets to the appli- 
cation. 

The ETE delay bound provided by the approaching dis- 
cipline is ( h  - 1)(T - 1). In the example of Figure 2(a), 
N I  starts to transmit the packets at time 1. So the estimated 
bound is 1 + 2 x 11 = 23. When N3 receives the 4th 
packet at time 13, the time-out value has been decreased to 
11. So it can immediately start to deliver the packets to the 
processing application at time 13. 

We combine both the detecting discipline and the ap- 
proaching discipline at Nh. So Nh starts delivery to the 
processing application either because it has detected the no- 
skip state, or it has reached the timeout. Consider a situa- 
tion where for each node Nk, nsk = risk-1 + T - 1. That 
is, the no-skip state is reached at the latest possible time. 
In this case, the detecting discipline is not efficient for Nh 
start up. However, a late skipping before nsk implies that 
the receiving buffer is empty at Nk, and all the received 
packets have been transmitted toward the destination before 
the skipping. So Nh should have a fast accumulation in its 
receiving buffer, and the approaching discipline can decide 
an earlier start-up time. On the other hand, a slow accu- 
mulation at Nh implies that the intermediate nodes skips at 
the beginning of the template, which results in an early ns. 
In this case, the detecting discipline is more efficient than 
the approaching one. So these two disciplines complement 
each other. 

In summary, the NED protocol is abstracted as follows. 
At the connection establishment stage, each intermedi- 
ate node finds the schedule using min-jitter. 

When the message stream starts to be transmitted, each 
intermediate node sends the packets at the earliest pos- 
sible slot based on the schedule. 

The destination node applies the detecting and the ap- 
proaching disciplines to make the start-up decision. 
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The ETE delay bound of the NED protocol scheme is 
( h  - 1)(T - l), the smaller of the two bounds provided 
by the detecting discipline and the approaching discipline. 
However, scheduling jitter at the intermediate nodes largely 
influences the ETE delay. A small scheduling jitter leads 
to a small probability of skipping in the intermediate nodes, 
thus to a small start-up delay at the destinationnode. For ex- 
ample, when the scheduling jitter is 0, that is, the instances 
of the stream are uniformly allocated in the templates of all 
the intermediate nodes, then slot skipping does not occur. 
Since our scheduling algorithm minimizes the scheduling 
jitter, the simulation results in section 5 will show that by 
applying the min-jitter algorithm and the NED protocol, the 
ETE delay is typically much smaller than the worst case 
bound. 

4.2 Delivery With Extra Delay at intermediate 
node (WED) 

As presented in the previous section, protocol NED 
transmits each packet at the earliest possible slot, such that 
the buffering delay at each intermediate node is minimized. 
However, slot skipping at the intermediate nodes makes it 
hard for the destination node to predict the arriving pattem. 
In this section, the objective of scheme WED is to get rid 
of skipping by introducing extra delay before the transmis- 
sion of the first packet at each intermediate node. Since by 
doing this, the input/output patterns at all the nodes are pre- 
dictable, the destination node can start to deliver packets to 
the application as early as possible. 

For a stream M ,  we define a local delay pair at node Nk 
as (S ,  y), which means that if the first packet of the stream 
arrives at Nk at time slot S (S  E [l, TI), then it needs to be 
delayed at least y time slots to prevent slot skipping in the 
future at Nk. Any delay value that is smaller than y time 
slots will cause future skipping. 

Since it is not certain when the first packet will arrive at 
node Nk,  we need to construct a set of n local delay pairs 
at node Nk, in which every element corresponds to a os 
sible arrival time for the first packet at Nk. We use sj to 
denote the time slot allocated to the j t h  instance of A4 in 
the template of node Nk. The set {St-', $-', ..., $-'} 
contains all the possible time slots at which N k - 1  may de- 
liver the first packet to node Nk in the interval [l, TI. If the 
first packet is received by Nk at time Sj"- ', and is transmit- 
ted by Nk at time s," so that no future skipping will occur 
at Nk, then the local delay pair at Nk is (Sj-', yj)  where 
y j  = St - Sj"-'. The set of local delay pairs at node Nk, 

p k  = {(S;-', y j ) , ~ '  E [l, n]} ,  can be found from the fol- 
lowing algorithm. 

construct-pairs 

! -  

1. Assume that n packets arrive at Nk in the slots 
{St-' ,  ..., S:-'}. Find (21, ..., z ,} ,  the set of time 
slots for Nk to transmit these n packets if each packet 
is transmitted immediately in the next available allo- 
cated slot at Nk, as would be done in NED scheme. 

2. Assume that z, = Sg", which means that the nth re- 
ceived packet is transmitted by Nk at the location of 
the g t h  instance. Then {Si-,+', ..., S,"} is the set of 
time slots at which each packet will be transmitted by 
Nk without slot skipping. The j t h  packet received at 
time $-' will be transmitted at time sg"-,+j by Nk, 
for j E [ l ,  n]. 

3. Construct the set Pk with pairs (s;-', yj)  for all j E 

[l, n], where yj = Ss-n+j - Sj k k - 1  . 

The method first finds the output slots corresponding to 
the n arrivals at node Nk as if NED is a plied. If the nth 

ted at the location s:, then there must be g - n skipped slots 
at Nk in the interval [I, Si]. So instead of delivering the 
first packet immediately at time 21, and skipping allocated 
slots later, WED skips the first g - n allocated slots at the 
beginning, and delays the transmission of the first packet 
until the location of the (g - n + l)th instance, such that 
packets 441, ..., M, are transmitted by il'k at n continuously 
allocated slots Sg"-T"+l ,..., Si. 

By applying this method to Example 2, Figure 2(a) 
shows that if N1 receives 4 packets at slots { 1,4 ,7 ,  lo}, 
then by applying NED, the 4th input corresponds to the 
5th  allocated slot at N I ,  which indicates that 1 skipping 
has occurred. So the first packet needs to be delayed un- 
til the 2nd instance to avoid the skipping, as shown in 
Fig 2(b) where M1 is delivered by N1 at the second al- 
located slot. In this case, the set of local delay pairs is 

If the first packet of message stream 44 arrives at node 
Nk at a time that is later than T ,  we can easily decide how 
long it needs to be delayed at Nk. Assume that the first 
packet M1 is received by node N k  at time t. We define 
a function mod(t) that returns the modulus of the division 
o f t  by T if it is not 0. Otherwise, mod retums T.  Let 
t' = mod(t). So t' E [l, TI, and t - t' = i x T for some 
integer i. Because of the template repetition, an arrival at 
t is equivalent to an arrival at t'. Hence, find a local delay 
pair ($-', yj) at Nk in the set pk such that $-' = t'. 
Then y j  is the shortest amount of time that the first packet 
needs to be delayed at node Nk to avoid slot skipping. 

Note that in WED, each intermediate node needs to guar- 
antee that no allocated slot is skipped during transmission. 
This is similar to the destination continuity requirement, in 
the sense that both need to continuously deliver the packets 
in a certain pattem once the delivery starts. So the des- 
tination node can also use the set of local delay pairs to 
determine the start-up time. When the destination node re- 
ceives the first packet of the stream at time t ,  it can decide 
the start-up time according to mod(t) and the set ph, in the 
same way as described for the intermediate node. 

The set of local delay pairs provides a way to calculate 
the exact ETE delay that is needed to achieve the destina- 
tion continuity requirement. It relies on the fact that all the 
packets of the stream have the same ETE delay, because the 
packets are delivered regularly at the rate of 1 packet ev- 

packet that is received by Nk at time Slf- P will be transmit- 

{ (La) ,  (4, a) ,  (7,2), (10,3)}. 
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ery awgD slots at both the source node and the destination 
node. So we only need to trace the delay of one packet, as 
described in the algorithm exact-ETE-delay. The ETE de- 
lay of a packet is calculated by using an accunzulated delay 
pair ( z ,  U )  at each node Nk, which means that the packet 
transmitted by Nk at time 2 has experienced an accumu- 
lated delay of U time slots from the source node to Nk. 

exact-ETE-delay 
1. At the first node N I ,  assume that a local delay pair 

( x ,  y) is in P I ,  indicating that an input at 2 is delayed 
at NI by y slots and is transmitted at time z = x + y. 
Then form an accumulated delay pair (2, y). 

2. The accumulated delay pair is transmitted to the next 
node. 

3. When node Nk (1 < k 5 h )  receives the accumulated 
delay pair ( z ,  U), it finds a local delay pair ( x j ,  yj)  in 
pk such that xj = mod(z) .  The accumulated delay 
pair is updated to ( z  + yj , U + yj), and transmitted to 
the next intermediate node. 

4. After executing the previous step at the destination 
node, the exact ETE delay is equal to U in the final 
result of ( z ,  U). 

- 

In the exact-ETE-delay algorithm, NI initiates the ac- 
cumulated delay pair according to a randomly picked local 
delay pair. On every subsequent node Nk, a received pair 
< z ,  U > indicates that the packet which is transmitted by 
Nk - 1 and received by Nk at time z has experienced a delay 
of U slots when it reaches Nk. So Nk finds the local delay 
value yj for this packet, which implies that the packet will 
be transmitted by N,+ at time z + yj, and the accumulated 
delay value for this packet is increased to U + yj at Nk. 

In summary, the following steps abstract the behavior of 
the protocol WED. Figure 2(b) shows the result of apply- 
ing WED to Example 2. Since the packets are delayed by 
the exact amount to achieve continuity at the destination, 
the ETE delay is shorter than the one shown in Figure 2(a), 
where the worst-case estimate is used. 

1. At the connection establishment stage, each intermedi- 
ate node Nk needs to execute the following steps. The 
destination node only executes the second and the third 
steps. 

(a) Find the allocation pattem { St, . . . , S: ] based on 
the scheduling algorithm min-jitter. 

(b) Construct the set of local delay pairs pk. 
(c) Calculate the accumulated delay pair. 
(d) Transmit the local allocation pattem and the ac- 

cumulated delay pair to the next node. 

2. Upon receiving the first packet of the stream, each 
node, including the destination node, decides how long 
it needs to be delayed according to the set of local de- 
lay pairs. 

3. Once node N, starts to deliver M I ,  it will deliver the 
subsequent packets at the next allocated slots. 

The ETE delay bound is determined by the scheduling 
jitter. The effect is illustrated in Figure 3. Figure 3(a) shows 
the best case where the scheduling jitter is 0 and the in- 
stances of the stream are distributed uniformly in the tem- 
plate at each node. So the largest delay a packet can experi- 
ence at one node is awgD - 1. The ETE delay bound in this 
case is ( h  - l ) (awgD- 1). Figure 3(b) shows the worst case 
where the scheduling jitter is the largest and the instances 
of the stream are all clustered together in the template at 
each node. So the largest delay a packet can experience at 
one node is T - n. The ETE delay bound in this case is 
( h  - 1)(T - n). 

temulate of size ‘I 

avgD-1 

(a) with 0 jitter 

L template of size T 
I I , I  

c 
T-n 

(b) with the largest jitter 

Figure 3. the best and the worst case 

5 Performance evaluation 

We presented two delivery protocols in the previous sec- 
tion. They are compared in terms of connection control, 
intermediate node processing and ETE delay as follows. 

1. NED has a simpler connection establishment scheme 
than WED, since WED needs more overhead to find 
the local delay pairs, to transmit additional informa- 
tion, and to store the additional information at each in- 
termediate node. 

2. During the transmission stage, the delivery schemes of 
NED is straightforward. WED needs to deliberately 
delay the first packet according to the set of delay pairs 
stored at each node. 

3. In terms of ETE delay, WED achieves a shorter ETE 
delay than NED to satisfy the destination continuity 
requirement, subject to the allocation pattem on each 
intermediate node. 

We simulated the NED and WED protocols in a dis- 
tributed system consisting of 20 nodes with dynamic mes- 
sage arrivals and departures. At each node, random dy- 
namic traffic are generated to achieve a certain average sys- 
tem workload. An ETE stream randomly selects h - 1 nodes 
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as the intermediate nodes, where h is uniformly distributed 
in the range [5,20]. We apply the min-jitter scheduling al- 
gorithm to generate the allocation pattern at each interme- 
diate node. Both NED and WED are applied to deliver an 
ETE stream under the same system configuration, and the 
ETE delay of the stream is measured for each case. More- 
over, in order to illustrate the impact of scheduling jitter 
over ETE delay, we also simulated two other scheduling 
algorithms, namely, FIFO-schedule and random-schedule. 
At each node, FIFO-schedule allocates the first n avail- 
able time slots in the template to message stream M ,  and 
random-schedule randomly picks n vacant slots in the tem- 
plate. Thus, the 6 combinations of applying the three 
scheduling algorithms and two delivery protocols are sim- 
ulated, under a system with an average workload of lo%, 
30%, 50%, 70% and 90%, respectively. In each system con- 
figuration, ETE delay of 5,000 streams are measured. 

Note that the parameters h and awgD unfairly affect the 
ETE delay, and the ETE delay values of two streams are 
not comparable if the parameters are different. We define 
relative ETE delay being equal to which repre- 
sents the average delay a packet experiences at each node, 
normalized to avgD. Figure 4(a) shows the average rel- 
ative ETE delay of all the tasks versus system workload. 
The 6 curves represent the performance of the 6 combi- 
nations. The ETE delay is slightly increased with the in- 
crease of the system workload, because it is harder to have 
a uniform allocation pattern when more time slots are oc- 
cupied in the template. When the same scheduling algo- 
rithm is applied, WED provides a shorter relative ETE de- 
lay than NED, as expected. For each delivery protocol, 
min-jitter achieves the best performance among the three 
scheduling algorithms, because min-jitter tries to distribute 
the instances of a stream as uniformly as possible in the tem- 
plate at each node, which will benefit the ETE delay of the 
stream. Moreover, uniformly distributing the instances im- 
plies that the vacant slots in the template are also distributed 
in a uniform manner, which will benefit the future aniv- 
ing streams to obtain a smaller scheduling jitter, and thus 
a smaller ETE delay. Figure 4(b) shows the standard devi- 
ation of the relative ETE delay for different system loads. 
It strengthens the conclusion that the combination of min- 
jitter with WED is the best, since it achieve the shortest 
ETE delay for most of the streams, with the smallest stan- 
dard deviation. 

6 Conclusion 

In this paper, we address the communication QoS prob- 
lem in which ETE delay of a message stream in a distributed 
system needs to be guaranteed, and at the same time, the 
destination continuity requirement needs to be satisfied. We 
solve the problem based on a TDMA slot allocation algo- 
rithm min-jitter, which satisfies the average transmission 
rate requirement and minimizes the scheduling jitter. The 
effect of the scheduling jitter on the ETE delay is shown us- 
ing simulation results. The scheduling algorithm min-jitter 
substantially improves the ETE delay when compared to 
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Figure 4. Performance of different workload 

other algorithms in which scheduling jitter is not taken into 
consideration. Two protocols are proposed, each of which 
includes a connection establishment scheme, a buffering 
scheme at the intermediate nodes, and a start-up scheme at 
the destination node. 

References 

[l]  S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari. 
Scheduling periodic task systems to minimize output 
jitter. international Conference on Real-Time Comput- 
ing Systems and Applications, pages 62-69, November 
1999. 

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Zn- 
troduction To Algorithms. The MIT Press, Cambridge, 
Massachusetts London, England, 1994. 

[3] L. Dong, D. Mosse, and R. Melhem. Time Slot Alloca- 
tion for Real-Time Messages with Negotiable Distance 
Constrains. Proceedings of IEEE Real-time Technol- 
ogy and Applications Symposium, pages 13 1-136, June 
1998. 

[4] T.M. Galla and R. Pallierer. Cluster Simulation-Support 
for Distributed Development of Hard Real-Time Sys- 
tems using TDMA-Based Communication. Proceed- 
ings of EuroMicro Conference on Real-Time Systems, 
June 1999. 

[5 ]  C.W. Hsueh and K.J. Lin. Schedulability Compar- 
isons Among Periodic and Distance-Constrained Real- 
Time Schedulers. International Conference on Real- 
Time Computing Systems and Applications, pages 60- 
66, October 1997. 

[6] C.D. Locke. Software Architecture for Hard Real-Time 
App1ications:Cyclic Executives vs. Fixed Priority Ex- 
ecutives. Real-Time Systems Journal, 4:37-53,1992. 

230 


