
Effect of Scheduling Jitter on End-to-End Delay in TDMA Protocols *

Libin Dong, Rami Melhem, Daniel Moss6
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

(dong, melhem, mosse)@cs.pitt.edu
Fax: 1-412-624-5249

Abstract

In this paper, we address the problem of guaranteeing
end-to-end (ETE) delay of packets in a distributed sys-
tem where the technique of time division multiplex access
(TDMA) is adopted, and the application at the destination
node requires to process the packets at a regular rate. We
present a time slot allocation algorithm to satisb the trans-
mission rate requirement, and to minimize the scheduling
jitter. Each packet of a stream is delivered in an allocated
time slot according to one of the two delivery protocolspro-
posed in this paper. A worst case ETE delay bound is de-
rived for each protocol. The performance of applying our
scheduling algorithm to different delivery protocols is com-
pared and evaluated via simulations.

1 Introduction

There has been an increased need for real-time commu-
nication services in applications. Predictable and guaran-
teed service has become one of the critical components of
the quality-of-service (QoS) requirements, and is one of the
main concerns in scheduling real-time traffic.

This paper addresses the issue of scheduling real-time
streams in a distributed system where Time Division Multi-
ple Access (TDMA) is used. TDMA and its variations have
been widely used in various network architectures imple-
mented for transmission of digital information over wired,
optical or wireless communication channels. In TDMA,
time is divided into equal length slots, each of which is
equal to the transmission time of a message packet. A
TDMA frameltemplate contains an integer number of time
slots, and the allocation pattern of the template is applied
repeatedly to control the transmission of message streams.
Since the entire execution schedule is predetermined in
TDMA [6], the timing constraints are guaranteed once a
feasible template schedule is generated based on the con-
straints. Moreover, there is no run-time scheduling over-
head, because the packets are transmitted according to a

'This work was supported in part by DARF'A under Contract DABT63-
96-C-0044, a part of the FORTS project.

predetermined template. Thus, some distributed real-time
systems, such as the MARS system [4], adopt TDMA based
protocols.

Some applications require that the destination node con-
tinuously processes the received packets at a regular rate,
which is called the destination continuiry requirement in
this paper. An example is the video-on-demand cable sys-
tems implemented in a limited area such as a hotel. In
this case, the destination node needs to playback the video
frames regularly at a rate of 30 frames per second, in order
to maintain a smooth human perception of the video.

The achievement of the destination continuity require-
ment depends on the predictability of packet transmissions.
If the destination node cannot be sure about the arriving
time of future packets, the only solution to satisfy the desti-
nation continuity requirement is to buffer all the packets of
the message stream at the destination node before it starts to
process them. Obviously, this can lead to a large end-to-end
(ETE) delay. In order to achieve the destination continu-
ity requirement within a limited ETE delay, we propose a
TDMA scheduling algorithm and corresponding transmis-
sion protocols.

The ETE delay is defined as the length of the interval be-
tween the time when the source node begins to transmit the
packets of a message stream and the time when the desti-
nation node begins to continuously process the packets. It
is calculated as the sum of the following four components.
The first is the transmission and propagation delay on each
link, which does not depend on the scheduling discipline
used, and will be factored out of our analysis. The second
is the processing delay at each intermediate node. Once a
stream is accepted, a scheduling TDMA template is gener-
ated such that the transmissions of the packets are controlled
accordingly. Thus, there is no scheduling overhead, and the
processing delay is assumed to be negligible. The third is
the buffer delay in each intermediate node, which is deter-
mined by the scheduling policy and the delivery protocol.
The fourth is the start-up delay at the destination node. In
order to satisfy the continuity requirement, the destination
node needs to accumulate some packets before it delivers
the first packet to the processing application.

In order to control the magnitude of the ETE delay, we
derive a TDMA scheduling algorithm to reserve time slots

223
1530-1427/00 $10.00 0 2000 IEEE

mailto:mosse)@cs.pitt.edu

for packet transmission. Because of the destination continu-
ity requirement, the intermediate nodes should not transmit
the packets at a rate that is smaller than the processing rate
at the destination. Thus, the scheduling algorithm needs to
guarantee a certain transmission rate. Moreover, schedul-
ing jitter is an important concern for scheduling algorithms
in most communication applications, which is defined as the
variance of the temporal distances between all neighboring
time slots allocated to the stream [5] . A smaller jitter im-
plies a smoother transmission pattern for the stream, such
that the destination continuity requirement is easier to en-
force. In order to obtain a small ETE delay, we develop a
time slot allocation algorithm to satisfy the rate requirement
and to minimize the scheduling jitter.

In the context of time slot allocation for a TDMA tem-
plate, a related work is based on distance constraint prob-
lems [5] , in which the time interval between every two ad-
jacent allocated time slots to transmit two consecutive pack-
ets of the message stream must be within a specified range,
such that scheduling jitter can be limited by the distance
constraint. Other work has studied scheduling jitter in pe-
riodic task models [l]. and template-based models [3]. All
these algorithms apply to static task sets where the parame-
ters of the set of tasks are known a priory. In this paper, we
focus on the communication environments where message
streams dynamically arrive and depart.

After the schedule is determined by the scheduling al-
gorithm, the packets of a message stream will be buffered
at each intermediate node before they are transmitted in the
allocated time slots. In order to achieve the destination con-
tinuity requirements, we describe two delivery protocols.
One is NED, standing for No Extra Delay at the intermedi-
ate nodes. At the intermediate nodes, each arriving packet
of a message stream will be sent out immediately in the next
available time slot that is allocated to this stream according
to the schedule. This protocol completely relies on the des-
tination node to smooth the jitter before it starts to process
the packets. The second protocol is called WED (With Ex-
tra Delay at the intermediate nodes), in the sense that the
intermediate nodes may delay the arriving packets for a cer-
tain time, even if there are available allocated time slots for
the packet. The objective is to smooth the traffic on its route
and reduce the start-up delay at the destination node.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the system model. Section 3 presents the
scheduling algorithm. The three delivery protocols are pro-
posed in Section 4. Section 5 compares the two protocols
and evaluates their performance via simulation. It also de-
scribes a general protocol that chooses a certain delivery
discipline according to application types. The paper is con-
cluded in Section 6.

2 System model

In this paper, we use M to denote a message stream, and
Mj for the j t h packet of M . The packets of M are trans-
mitted according to the scheduling template, as explained
earlier. Let T be the number of time slots in the template.
Because of the cyclical application of the template, the slot

alloc&ion pattem in the period [t , t+T-11, for any t , will be
repeated in every following interval [t + k T , t + (k + l)T - 11,
fork > 0. We assume that all nodes in the system have the
same template size, T , which is supplied as a system pa-
rameter.

The packets of a message stream are transmitted from
the source node to the destination node through a set of in-
termediate nodes. We assume that a route is generated by
a certain routing algorithm, and will not be changed. The
number of hops in the route is denoted by h, and the nodes
on the route are labeled as NO, ..., Nh with NO being the
source node and N h the destination node. The link Lk,k+l

We define the input pattern of a stream M at a node as
the pattem in which the packets of M are received by the
node. Similarly, the output pattern at a node refers to the
pattem in which the packets of M are transmitted from the
node. The allocation pattern of M at a node is the set of
time slots that are allocated to M by the scheduling algo-
rithm at the node. The output pattem of a node may or may
not be equivalent to the allocation pattern, according to dif-
ferent delivery protocols that will be described later. We
assume that the transmission and propagation delay can be
ignored on the intermediate nodes, as explained in Section
1. Thus, the output pattem of node Nk is equivalent to the
transmissionpattem on the link Lk,k+l, which is also equiv-
alent to the input pattem of the next node Nk+l. That is, if
node N k sends a packet in slot t , then the packet is prop-
agated on link Lk,k+l and received by node Nk+1 in slot
t . The purpose of this assumption is to simplify the discus-
sion. The results will not be influenced if this assumption is
relaxed, as long as the ignored propagation delays are con-
stants.

A general connection-oriented communication protocol
consists of three parts, the connection establishment, the de-
livery discipline at the intermediate nodes, and the start-up
discipline at the destination node.

At the connection establishment stage, the source node
initiates a request for a new message stream M , which is
characterized as M = (n , d) . The ETE deadline of M is
represented by d, which means that the actual ETE delay
must be smaller than or equal to d. We represent the aver-
age transmission rate of M by n, in terms of the number of
time slots that need to be allocated to M in the template of
size T. Given T and n, the average distance between any
two consecutive instances of M is equal to avgD = f. In
order to prevent the overflow or underflow of the receiving
buffer at the destination node, the average transmission rate
is equal to the processing rate at the destination.

Upon receiving the request of a new message stream, an
intermediate node reserves time slots in the template by ex-
ecuting the scheduling algorithm. If there is no sufficient
bandwidth for the new stream at any node, then the request
is rejected. When the request reaches the destination node,
the ETE delay is computed. If the actual ETE delay is larger
than the specified ETE deadline d, the request is also re-
jected.

After a request is accepted, the source node begins to
transmit the packets of the stream. We assume that the

COnneCtS Nk and Nk+1.

224

source node delivers the packet continuously at a regular
rate of one packet in every avgD time slots. When a packet
is received by an intermediate node, it is buffered either with
or without extra delay, as determined by the delivery pro-
tocol. Each received packet is transmitted at an allocated
time slot according to the schedule on the node. When the
packets arrive at the destination node, the start-up discipline
determines the time to start delivering the packets to the pro-
cessing application, which will process the packets contin-
uously at the rate of one packets per avgD time slots.

3 Scheduling algorithm at each node

We address the scheduling problem in a system that al-
lows the message streams to dynamically arrive at and de-
part from the system. When the request of a new message
stream M = (n , d) arrives at a certain node, some time
slots in the template of this node are already allocated to
existing message streams. We assume that once a message
stream is accepted and allocated in the template at a node,
its schedule will not be changed until the stream terminates.

Let S = { $1, S 2 , ..., Sn} be the set of time slots allo-
cated by the scheduling algorithm to the n instances of M in
the template, where Sj is the location of the j t h instance of
M . Because of the repetition of the template in the sched-
ule, the location of the (j + n)th instance is T time slots
away from the j t h instance, that is, Sj+n = Sj + T.

Given the schedule S, the set of temporal distances be-
tween all neighboring instances in the template is 2) =
(01, D2, ..., Dn}, where Dj = Sj+l - Sj for all j E
[l, n]. For example, assume that in a template of size 6, the
schedule of a stream consisting of three time slots is S =
{1,2,5}. Then V = {1,3,2}. In this example, the packets
of M will be transmitted at time slot { 1,2,5,7,8,11,13 ...}
according to the schedule, and the corresponding distances
between every two adjacent instances are { 1,3 ,2 ,1 ,3 ,2 ...}.
The sum of all the D j is equal to T , that is, cy==, D j = T.

Recall that the scheduling jitter is defined as the variance
of the temporal distances between all adjacent instances of
the stream. Let a random variable X be the distance be-
tween any two adjacent instances. As shown in the previous
example, the pattem of distance values in V will be repeated
cyclically, which implies that the probability of X = D j is
equal to 1/n for all j E [l, n]. So the expected value of X
is E[X] = E;=, i D j = T/n = avgD. Given a schedule,
the scheduling jitter is calculated by the following equation,
where Var[X] stands for the variance of X.

c;=l(x - avgD)2
Var[X] = E[(X - E[X])2] = (1) n

The scheduling problem at each node is formally stated
as follows. Given a template of size T and a set of m vacant
time slots {tl, tz, ..., tm} in the template, the problem is to
allocate n vacant time slots to the new message stream M ,
such that the scheduling jitter is minimized.

This problem can be transformed to an equivalent graph
problem Q = (V, €) where Q is a directed complete graph

with m vertices, V is the set of vertices and € is the set of
edges. Each vertex E represents the ith vacant time slot in
the template, ti. A directed edge Ei,j points from vertex
K to 5 where i # j. We explain the meaning of E;,j and
define its weight w(Ei,j) as follows.

When i < j , w(Ei,j) = (ti - ti - avgD)2, which
means that if vacant slots t i and t j are chosen for two
consecutive instances of a message stream, then dis-
tance between these two adjacent instances, tj - t;,
contributes a factor of (t j - ti - avgD)2 to the calcu-
lation of the scheduling jitter.
Wheni > j , w(Ei,j) = (tj+T-ti-avgD)',which
means that if vacant slots ti and t j + T are chosen for
two consecutive instances of a message stream, then
distance between these two adjacent instances, t j - ti ,
contributes a factor of (t j + T - t; - avgD)2 to the
calculation of the scheduling jitter.

fmst template , second template
I

3 4 5 6 7 8 9 1 0

Figure 1. Example of graph transformation.

Example 1:A template of size 6 has m = 4 vacant time
slots {1,2,3,5}. A new message stream requests to allo-
cate n = 3 instances in the template. So avgD = = 2.
The graph transformation for Example 1 is illustrated in
Figure 1, where the shaded slots indicate the ones occu-
pied by previously allocated streams. A directed complete
graph of 4 vertices is shown beside the time line, where
Vl, V2, V3, V4 corresponds to the vacant time slots 1,2,3,5,
respectively. The meaning of the edge Ez,3 and E3,2 is
illustrated in the figure. The calculation results of their
weights are W (& ? , 3) = 1 and w(E3,2) = 9. For clarity,
other edges of the graph are not shown under the template.

A schedule S = {SI, ..., Sn} can be represented by a
cycle of n vertices in the graph where each vertex represents
an allocated slot Sj . The weight of the cycle is calculated as
the summation of the weights of all the edges in the cycle.
According to Equation (l), the weight of the cycle is equal
to n times the scheduling jitter of S. Thus, a schedule of n
instances with the minimum jitter corresponds to a cycle of
n vertices with shortest weight.

We solve this shortest cycle problem using a dynamic
programming technique [2] . Note that a shortest cycle that
contains vertex V is equivalent to a shortest path from V
back to itself. Let us define a m x m matrix II(k), where
each element T$) is the weight of the shortest path from

to Vj with exactly k edges. In order to find the short-
est cycle with n edges, we construct a series of matrices
II(O), ..., The smallest element among the diagonal
elements T$) in the matrix II(") gives the weight of the
shortest cycle. Since a path from E to 6 with k edges can
be constructed by a path from to V, with k - 1 edges plus

225

the edge E,j, each element in the matrix is calculated by
the following recursive relation.

The calculation of the matrix is shown below by by ap-
plying the dynamic programming technique to Example 1.
In this example, the shortest cycle has a weight 0, and con-
sists of vertex VI , V3 and V,, which correspond to slot 1,
3, 5, respectively. Thus, a uniform allocation pattem with
jitter 0 is found for this example.

In summary, the algorithm min-jitrer selects n out of the m
vacant time slots in the template to minimize the jitter. The
algorithm is described as follows.

min-jitter

If m < n, the new stream is rejected because the rate
requirement cannot be satisfied.

If n = 1, allocate the first vacant time slot in the tem-
plate to the new stream. If n = m, allocate all the
vacant time slots to the new stream.

Solve the transformed shortest cycle problem. The
schedule is constructed from the set of the time slots
that correspond to the vertices in the shortest cycle.

4 Delivery protocols

Once a new message stream is accepted, and a schedule
is generated at each intermediate node during the connec-
tion establishment stage, the packets of the stream are de-
livered at each node according to one of two delivery proto-
cols, NED and WED. In each protocol, we will describe the
connection establishment scheme, the buffering scheme at
the intermediate nodes and the start-up scheme at the desti-
nation. Moreover, a bound to the largest ETE delay in the
worst case is derived for each scheme. In later subsections,
we will use the following example to explain the two proto-
cols.

Example 2: A message stream M requires transmission
at the rate of 4 packets in a template of size 12, from node
NO to node N,. In Figure 2, the time line at each inter-
mediate node shows the allocation pattem generated by the
scheduling algorithm at the node, where a time slot with a
'X' stands for an allocated slot. The down-arrows on the
link Lk,k+l represent transmissions of packets on the link
between node Nk and node Nk+l, which indicates the out-
put pattem of Nk and the input pattem of Nk+1. The last
row of down-arrows in each sub-figure shows the regular
delivery of packets from the destination node to the process-
ing application. A dotted line connects an arriving packet to
the time slot at which it is transmitted according to a certain
buffering discipline.

(a) scheduling result by applying NED to Example 2

(b) scheduling result by applying WED to Example 2

Figure 2. An ETE example of 3 hops

4.1 Delivery with No Extra Delay at intermediate
nodes (NED)

The buffering scheme of NED is straightforward in the
sense that the packet arriving at each intermediate node is
sent out as soon as possible in the next available allocated
time slot. However, the existence of scheduling jitter in the
input and output pattem may lead to the skipping of allo-
cated slots, as shown in Figure 2(a). In the figure, a circled
time slot indicates a skip. At node N I , though slot 3 is al-
located for the stream, it is skipped because the receiving
buffer is empty at that moment.

When the packets arrive at Nz, more skips take place,
and the predictable allocation pattem generated by the
scheduling algorithm will be changed along the route to the
destination. However, we will show that this slot skipping
will not occur after a certain time as long as the source
node, NO, is continuously transmitting packets at the re-
quired rate. At the first node N I , skipping slots implies that
the instantaneous transmission rate of N1 is lower than the
receiving rate from NO. So the packets will be accumulated
in the receiving buffer at N I , until the transmission rate is
equal to the receiving rate. This means that, from this time
on, there will be no more skipping. We define the no-skip
state of a node to be the state at which the node will not skip
any allocated time slot until the termination of the stream.
Once NI reaches the no-skip state, it will keep on sending
n packets in every T slots to N2. The above argument im-
plies that N2 will also reach the no-skip state, and so on.
The time to reach the no-skip state at node Nk is defined
as the time slot immediately after the last skipped slot, and

226

is denoted as 12Sk. In Figure 2(a), there is no slot skipping
after slot 3 at node N I , nor after slot 14 at N2. So nsl = 4
and ns2 = 15. The following theorem about the no-skip
state and nsk is stated without proof, because of the limit of
space.

Theorem 1: When the buffering scheme of NED is ap-
plied, each node will reach the no-skip state. Moreover,

In Figure 2(a), ns2 = nsl + 11 = ns1 + T - 1, that is,
the time to reach the no-skip state at N2 is exactly T - 1
slots later than ns1. So the bound in Theorem 1 is a tight
bound for ns.

The no-skip state is important for the destination node to
decide when to start to deliver the packets to the application.
Before the last intermediate node Nh-1 reaches the no-skip
state, the destination node N h receives packets with no pre-
dictable pattem. The receiving rate is lower than n packets
per T slots because of the skipping. In order to guaran-
tee the destination continuity requirement, Nh cannot begin
processing until it is sure that the receiving buffer will not
underflow in the future (i.e., there is always a packet for it
to process when it needs to).

Once the last intermediate node Nh-1 reaches the no-
skip state, it transmits packets to the destination node Nh
according to the allocation pattern of Nh- 1 which guaran-
tees n packets every T slots. So Nh can detect that Nh-1
has reached the no-skip state when it receives n packets
within T time slots. We call this the detecting discipline.
It can be simply implemented by using a FIFO queue of
length n - 1 to store the receiving time of the last n - 1
packets, as described in the following.

risk 5 nsk-1+ T - 1.

detecting discipline
1. The arrival times of the first n - 1 packets are en-

queued.
2. When Nh receives a new packet, it compares the re-

ceiving time with the one at the front of the queue.

3. If the difference is smaller than or equal to T, then Nh
has received n packets within T time slots. Nh imme-
diately starts to deliver the packets to the processing
application.

4. Otherwise, Nh dequeues the front element and en-
queues the new receiving time at the end.

Because Nh-1 reaches the no-skip state at time nsh-1,
the detecting discipline decides that Nh can start the pro-
cessing at time nsh-1 +T- 1. In Figure 2(a), N3 can detect
the no-skip state of N2 by receiving 4 packets from time 18
to time 26. So the start-up time decided by the detecting
discipline is 26, which is equal to 17.92 + 11. According to
Theorem 1, it is guaranteed that Nh- 1 can reach the no-skip
state at a time no later than t o + (h - 1)(T - l), where to
is the time when NO starts to transmit the first packet. The
ETE delay upper bound provided by the detecting discipline
is thus h(T - 1).

Before Nh detected the no-skip state, Nh receives pack-
ets at some unpredictable rate. The accumulation in the re-
ceiving buffer can be used to allow for an earlier start-up.

Since the no-skip state must be reached at Nh-1 by time
t o + (h - 1) (T - l), we consider this time as the bound of
the latest time for Nh to start-up. If, at a certain time, there
is already enough packets in the buffer for Nh to process
at the rate of one packet in every avgD time slots until the
bound is approached, then the start-up decision can be made
immediately. We name this start-up scheme the approach-
ing discipline which is described as follows. Note that the
source node can transmit a packet containing to before it
starts to deliver the data packets to inform the destination
node of to. The destination node will discard the first packet
after reading the value of t o from it.

approaching discipline

Once Nh receives the first packet, it sets a time-out
value to be to + (h - 1)(T - 1).
When a new packet arrives, decrease the time-out
value by awgD. This means that Nh can start awgD
time slots earlier, since it has one more packet to pro-
cess before reaching the time-out value.
If the current time is smaller than or equal to the time-
out value, Nh starts to deliver the packets to the appli-
cation.

The ETE delay bound provided by the approaching dis-
cipline is (h - 1)(T - 1). In the example of Figure 2(a),
N I starts to transmit the packets at time 1. So the estimated
bound is 1 + 2 x 11 = 23. When N3 receives the 4th
packet at time 13, the time-out value has been decreased to
11. So it can immediately start to deliver the packets to the
processing application at time 13.

We combine both the detecting discipline and the ap-
proaching discipline at Nh. So Nh starts delivery to the
processing application either because it has detected the no-
skip state, or it has reached the timeout. Consider a situa-
tion where for each node Nk, nsk = risk-1 + T - 1. That
is, the no-skip state is reached at the latest possible time.
In this case, the detecting discipline is not efficient for Nh
start up. However, a late skipping before nsk implies that
the receiving buffer is empty at Nk, and all the received
packets have been transmitted toward the destination before
the skipping. So Nh should have a fast accumulation in its
receiving buffer, and the approaching discipline can decide
an earlier start-up time. On the other hand, a slow accu-
mulation at Nh implies that the intermediate nodes skips at
the beginning of the template, which results in an early ns.
In this case, the detecting discipline is more efficient than
the approaching one. So these two disciplines complement
each other.

In summary, the NED protocol is abstracted as follows.
At the connection establishment stage, each intermedi-
ate node finds the schedule using min-jitter.

When the message stream starts to be transmitted, each
intermediate node sends the packets at the earliest pos-
sible slot based on the schedule.

The destination node applies the detecting and the ap-
proaching disciplines to make the start-up decision.

227

The ETE delay bound of the NED protocol scheme is
(h - 1)(T - l), the smaller of the two bounds provided
by the detecting discipline and the approaching discipline.
However, scheduling jitter at the intermediate nodes largely
influences the ETE delay. A small scheduling jitter leads
to a small probability of skipping in the intermediate nodes,
thus to a small start-up delay at the destinationnode. For ex-
ample, when the scheduling jitter is 0, that is, the instances
of the stream are uniformly allocated in the templates of all
the intermediate nodes, then slot skipping does not occur.
Since our scheduling algorithm minimizes the scheduling
jitter, the simulation results in section 5 will show that by
applying the min-jitter algorithm and the NED protocol, the
ETE delay is typically much smaller than the worst case
bound.

4.2 Delivery With Extra Delay at intermediate
node (WED)

As presented in the previous section, protocol NED
transmits each packet at the earliest possible slot, such that
the buffering delay at each intermediate node is minimized.
However, slot skipping at the intermediate nodes makes it
hard for the destination node to predict the arriving pattem.
In this section, the objective of scheme WED is to get rid
of skipping by introducing extra delay before the transmis-
sion of the first packet at each intermediate node. Since by
doing this, the input/output patterns at all the nodes are pre-
dictable, the destination node can start to deliver packets to
the application as early as possible.

For a stream M , we define a local delay pair at node Nk
as (S , y), which means that if the first packet of the stream
arrives at Nk at time slot S (S E [l, TI), then it needs to be
delayed at least y time slots to prevent slot skipping in the
future at Nk. Any delay value that is smaller than y time
slots will cause future skipping.

Since it is not certain when the first packet will arrive at
node Nk, we need to construct a set of n local delay pairs
at node Nk, in which every element corresponds to a os
sible arrival time for the first packet at Nk. We use sj to
denote the time slot allocated to the j t h instance of A4 in
the template of node Nk. The set {St-', $-', ..., $-'}
contains all the possible time slots at which N k - 1 may de-
liver the first packet to node Nk in the interval [l, TI. If the
first packet is received by Nk at time Sj"- ', and is transmit-
ted by Nk at time s," so that no future skipping will occur
at Nk, then the local delay pair at Nk is (Sj-', yj) where
y j = St - Sj"-'. The set of local delay pairs at node Nk,

p k = {(S;-', y j) , ~ ' E [l, n]} , can be found from the fol-
lowing algorithm.

construct-pairs

! -

1. Assume that n packets arrive at Nk in the slots
{St-' , ..., S:-'}. Find (21, ..., z ,} , the set of time
slots for Nk to transmit these n packets if each packet
is transmitted immediately in the next available allo-
cated slot at Nk, as would be done in NED scheme.

2. Assume that z, = Sg", which means that the nth re-
ceived packet is transmitted by Nk at the location of
the g t h instance. Then {Si-,+', ..., S,"} is the set of
time slots at which each packet will be transmitted by
Nk without slot skipping. The j t h packet received at
time $-' will be transmitted at time sg"-,+j by Nk,
for j E [l , n].

3. Construct the set Pk with pairs (s;-', yj) for all j E

[l, n], where yj = Ss-n+j - Sj k k - 1 .

The method first finds the output slots corresponding to
the n arrivals at node Nk as if NED is a plied. If the nth

ted at the location s:, then there must be g - n skipped slots
at Nk in the interval [I, Si]. So instead of delivering the
first packet immediately at time 21, and skipping allocated
slots later, WED skips the first g - n allocated slots at the
beginning, and delays the transmission of the first packet
until the location of the (g - n + l)th instance, such that
packets 441, ..., M, are transmitted by il'k at n continuously
allocated slots Sg"-T"+l ,..., Si.

By applying this method to Example 2, Figure 2(a)
shows that if N1 receives 4 packets at slots { 1,4 ,7 , lo},
then by applying NED, the 4th input corresponds to the
5th allocated slot at N I , which indicates that 1 skipping
has occurred. So the first packet needs to be delayed un-
til the 2nd instance to avoid the skipping, as shown in
Fig 2(b) where M1 is delivered by N1 at the second al-
located slot. In this case, the set of local delay pairs is

If the first packet of message stream 44 arrives at node
Nk at a time that is later than T , we can easily decide how
long it needs to be delayed at Nk. Assume that the first
packet M1 is received by node N k at time t. We define
a function mod(t) that returns the modulus of the division
o f t by T if it is not 0. Otherwise, mod retums T. Let
t' = mod(t). So t' E [l, TI, and t - t' = i x T for some
integer i. Because of the template repetition, an arrival at
t is equivalent to an arrival at t'. Hence, find a local delay
pair ($-', yj) at Nk in the set pk such that $-' = t'.
Then y j is the shortest amount of time that the first packet
needs to be delayed at node Nk to avoid slot skipping.

Note that in WED, each intermediate node needs to guar-
antee that no allocated slot is skipped during transmission.
This is similar to the destination continuity requirement, in
the sense that both need to continuously deliver the packets
in a certain pattem once the delivery starts. So the des-
tination node can also use the set of local delay pairs to
determine the start-up time. When the destination node re-
ceives the first packet of the stream at time t , it can decide
the start-up time according to mod(t) and the set ph, in the
same way as described for the intermediate node.

The set of local delay pairs provides a way to calculate
the exact ETE delay that is needed to achieve the destina-
tion continuity requirement. It relies on the fact that all the
packets of the stream have the same ETE delay, because the
packets are delivered regularly at the rate of 1 packet ev-

packet that is received by Nk at time Slf- P will be transmit-

{ (La) , (4, a) , (7,2), (10,3)}.

228

ery awgD slots at both the source node and the destination
node. So we only need to trace the delay of one packet, as
described in the algorithm exact-ETE-delay. The ETE de-
lay of a packet is calculated by using an accunzulated delay
pair (z , U) at each node Nk, which means that the packet
transmitted by Nk at time 2 has experienced an accumu-
lated delay of U time slots from the source node to Nk.

exact-ETE-delay
1. At the first node N I , assume that a local delay pair

(x , y) is in P I , indicating that an input at 2 is delayed
at NI by y slots and is transmitted at time z = x + y.
Then form an accumulated delay pair (2, y).

2. The accumulated delay pair is transmitted to the next
node.

3. When node Nk (1 < k 5 h) receives the accumulated
delay pair (z , U), it finds a local delay pair (x j , yj) in
pk such that xj = mod(z) . The accumulated delay
pair is updated to (z + yj , U + yj), and transmitted to
the next intermediate node.

4. After executing the previous step at the destination
node, the exact ETE delay is equal to U in the final
result of (z , U).

-

In the exact-ETE-delay algorithm, NI initiates the ac-
cumulated delay pair according to a randomly picked local
delay pair. On every subsequent node Nk, a received pair
< z , U > indicates that the packet which is transmitted by
Nk - 1 and received by Nk at time z has experienced a delay
of U slots when it reaches Nk. So Nk finds the local delay
value yj for this packet, which implies that the packet will
be transmitted by N,+ at time z + yj, and the accumulated
delay value for this packet is increased to U + yj at Nk.

In summary, the following steps abstract the behavior of
the protocol WED. Figure 2(b) shows the result of apply-
ing WED to Example 2. Since the packets are delayed by
the exact amount to achieve continuity at the destination,
the ETE delay is shorter than the one shown in Figure 2(a),
where the worst-case estimate is used.

1. At the connection establishment stage, each intermedi-
ate node Nk needs to execute the following steps. The
destination node only executes the second and the third
steps.

(a) Find the allocation pattem { St, . . . , S:] based on
the scheduling algorithm min-jitter.

(b) Construct the set of local delay pairs pk.
(c) Calculate the accumulated delay pair.
(d) Transmit the local allocation pattem and the ac-

cumulated delay pair to the next node.

2. Upon receiving the first packet of the stream, each
node, including the destination node, decides how long
it needs to be delayed according to the set of local de-
lay pairs.

3. Once node N, starts to deliver M I , it will deliver the
subsequent packets at the next allocated slots.

The ETE delay bound is determined by the scheduling
jitter. The effect is illustrated in Figure 3. Figure 3(a) shows
the best case where the scheduling jitter is 0 and the in-
stances of the stream are distributed uniformly in the tem-
plate at each node. So the largest delay a packet can experi-
ence at one node is awgD - 1. The ETE delay bound in this
case is (h - l) (awgD- 1). Figure 3(b) shows the worst case
where the scheduling jitter is the largest and the instances
of the stream are all clustered together in the template at
each node. So the largest delay a packet can experience at
one node is T - n. The ETE delay bound in this case is
(h - 1)(T - n).

temulate of size ‘I

avgD-1

(a) with 0 jitter

L template of size T
I I , I

c
T-n

(b) with the largest jitter

Figure 3. the best and the worst case

5 Performance evaluation

We presented two delivery protocols in the previous sec-
tion. They are compared in terms of connection control,
intermediate node processing and ETE delay as follows.

1. NED has a simpler connection establishment scheme
than WED, since WED needs more overhead to find
the local delay pairs, to transmit additional informa-
tion, and to store the additional information at each in-
termediate node.

2. During the transmission stage, the delivery schemes of
NED is straightforward. WED needs to deliberately
delay the first packet according to the set of delay pairs
stored at each node.

3. In terms of ETE delay, WED achieves a shorter ETE
delay than NED to satisfy the destination continuity
requirement, subject to the allocation pattem on each
intermediate node.

We simulated the NED and WED protocols in a dis-
tributed system consisting of 20 nodes with dynamic mes-
sage arrivals and departures. At each node, random dy-
namic traffic are generated to achieve a certain average sys-
tem workload. An ETE stream randomly selects h - 1 nodes

229

as the intermediate nodes, where h is uniformly distributed
in the range [5,20]. We apply the min-jitter scheduling al-
gorithm to generate the allocation pattern at each interme-
diate node. Both NED and WED are applied to deliver an
ETE stream under the same system configuration, and the
ETE delay of the stream is measured for each case. More-
over, in order to illustrate the impact of scheduling jitter
over ETE delay, we also simulated two other scheduling
algorithms, namely, FIFO-schedule and random-schedule.
At each node, FIFO-schedule allocates the first n avail-
able time slots in the template to message stream M , and
random-schedule randomly picks n vacant slots in the tem-
plate. Thus, the 6 combinations of applying the three
scheduling algorithms and two delivery protocols are sim-
ulated, under a system with an average workload of lo%,
30%, 50%, 70% and 90%, respectively. In each system con-
figuration, ETE delay of 5,000 streams are measured.

Note that the parameters h and awgD unfairly affect the
ETE delay, and the ETE delay values of two streams are
not comparable if the parameters are different. We define
relative ETE delay being equal to which repre-
sents the average delay a packet experiences at each node,
normalized to avgD. Figure 4(a) shows the average rel-
ative ETE delay of all the tasks versus system workload.
The 6 curves represent the performance of the 6 combi-
nations. The ETE delay is slightly increased with the in-
crease of the system workload, because it is harder to have
a uniform allocation pattern when more time slots are oc-
cupied in the template. When the same scheduling algo-
rithm is applied, WED provides a shorter relative ETE de-
lay than NED, as expected. For each delivery protocol,
min-jitter achieves the best performance among the three
scheduling algorithms, because min-jitter tries to distribute
the instances of a stream as uniformly as possible in the tem-
plate at each node, which will benefit the ETE delay of the
stream. Moreover, uniformly distributing the instances im-
plies that the vacant slots in the template are also distributed
in a uniform manner, which will benefit the future aniv-
ing streams to obtain a smaller scheduling jitter, and thus
a smaller ETE delay. Figure 4(b) shows the standard devi-
ation of the relative ETE delay for different system loads.
It strengthens the conclusion that the combination of min-
jitter with WED is the best, since it achieve the shortest
ETE delay for most of the streams, with the smallest stan-
dard deviation.

6 Conclusion

In this paper, we address the communication QoS prob-
lem in which ETE delay of a message stream in a distributed
system needs to be guaranteed, and at the same time, the
destination continuity requirement needs to be satisfied. We
solve the problem based on a TDMA slot allocation algo-
rithm min-jitter, which satisfies the average transmission
rate requirement and minimizes the scheduling jitter. The
effect of the scheduling jitter on the ETE delay is shown us-
ing simulation results. The scheduling algorithm min-jitter
substantially improves the ETE delay when compared to

mh-jiner.WED -

,5 3 FIFO.NED
...

ui __.._.- - ..._____..... - _______-_-------
0

0.1 0.3 0.5 07 0.9
average work load

min-jiner.NED ---
rmdom.WED - - - -
random.NED .-.....

FIFO.WED
FIFONED - - -

................. ” -.----=-:
-._.-.-.:;y. 1 1 :;:J-.:- __-- ______----- ...___.___._._..-_.-.-

,U
0.1 0.3 0.5 0.7 0.9

avcmge work load

(a) average ETE delay (b) standard deviation

Figure 4. Performance of different workload

other algorithms in which scheduling jitter is not taken into
consideration. Two protocols are proposed, each of which
includes a connection establishment scheme, a buffering
scheme at the intermediate nodes, and a start-up scheme at
the destination node.

References

[l] S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari.
Scheduling periodic task systems to minimize output
jitter. international Conference on Real-Time Comput-
ing Systems and Applications, pages 62-69, November
1999.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Zn-
troduction To Algorithms. The MIT Press, Cambridge,
Massachusetts London, England, 1994.

[3] L. Dong, D. Mosse, and R. Melhem. Time Slot Alloca-
tion for Real-Time Messages with Negotiable Distance
Constrains. Proceedings of IEEE Real-time Technol-
ogy and Applications Symposium, pages 13 1-136, June
1998.

[4] T.M. Galla and R. Pallierer. Cluster Simulation-Support
for Distributed Development of Hard Real-Time Sys-
tems using TDMA-Based Communication. Proceed-
ings of EuroMicro Conference on Real-Time Systems,
June 1999.

[5] C.W. Hsueh and K.J. Lin. Schedulability Compar-
isons Among Periodic and Distance-Constrained Real-
Time Schedulers. International Conference on Real-
Time Computing Systems and Applications, pages 60-
66, October 1997.

[6] C.D. Locke. Software Architecture for Hard Real-Time
App1ications:Cyclic Executives vs. Fixed Priority Ex-
ecutives. Real-Time Systems Journal, 4:37-53,1992.

230

