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AbstractÐReal-time systems are being increasingly used in several applications which are time-critical in nature. Fault tolerance is an

essential requirement of such systems, due to the catastrophic consequences of not tolerating faults. In this paper, we study a scheme

that guarantees the timely recovery from multiple faults within hard real-time constraints in uniprocessor systems. Assuming earliest-

deadline-first scheduling (EDF) for aperiodic preemptive tasks, we develop a necessary and sufficient feasibility-check algorithm for

fault-tolerant scheduling with complexity O�n2 � k�, where n is the number of tasks to be scheduled and k is the maximum number of

faults to be tolerated.
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1 INTRODUCTION

THE interest in embedded systems has been growing
steadily in the recent past, especially those systems in

which timing constraints are essential for the correct
execution of the systems. Examples include autopilot
systems, satellite and launch vehicle control, as well as
robots, whether in collaborating teams or not. For some of
these systems, termed hard real-time systems (HRTSs), the
consequences of missing a deadline may be catastrophic.
The ability to tolerate faults in HRTSs is crucial since a task
can potentially miss a deadline when faults occur. In case of
a fault, a deadline can be missed if the time taken for
recovery from faults is not taken into account during the
phase in which tasks are submitted/accepted to the system.
Clearly, accounting for recovery from faults is an essential
requirement of HRTSs.

When dealing with such HRTSs, permanent faults can be

tolerated by using hot-standby spares [14] or they can be

masked by modular redundancy techniques [25]. In addi-

tion to permanent faults, tolerance to transient faults is very

important since it has been shown to occur much more

frequently than permanent faults [11], [12], [5]. In a study,

an orbiting satellite containing a microelectronics test

system was used to measure error rates in various

semiconductor devices including microprocessor systems

[4]. The number of errors, caused by protons and cosmic ray

ions, mostly ranged between 1 and 15 in 15-minute intervals

and was measured to be as high as 35 in such intervals.

More examples of such safety critical applications can be

found in [17]. Transient faults can be dealt with through

temporal redundancy, that is, allowing extra time (slack) in

the schedule to reexecute the task or to execute a recovery
block [10].

The problem solved in this paper is as follows: Given a
set of n aperiodic tasks, T � f�1; . . . ; �ng, we seek to
determine if each task in the set T is able to complete
execution before its deadline under EDF scheduling, even if
the system has to recover from (at most) k faults. We
consider a uniprocessor system and assume that each task
may be subjected to multiple transient faults.

A simple solution would be to check the feasibility of
each of the schedules generated by the O�nk� possible
combination of faults using the approach described in [18]
for each schedule. The high complexity of this scheme
provides the impetus for searching for a more efficient
solution. The solution presented in this paper develops an
optimal (necessary and sufficient) feasibility check that runs
in O�n2 � k� time in the worst case.

Although we consider aperiodic tasks, we note that the
technique presented in this paper can be used to verify the
fault tolerance capabilities of a set of periodic tasks by
considering each instance of a periodic task as an aperiodic
task within the Least Common Multiple of the periods of all
the periodic tasks. Moreover, scheduling aperiodic tasks is
the basis for scheduling periodic tasks in frame-based
systems, where a set of tasks (usually having precedence
constraints) is invoked at regular time intervals. This type of
systems is commonly used in practice because of its
simplicity. For example, in tracking/collision avoidance
applications, motion detection, recognition/verification,
trajectory estimation, and computation of time to contact
are usually component subtasks within a given frame
(period) [3]. Similarly, a real-time image magnification task
might go through the steps of nonlinear image interpola-
tion, contrast enhancement, noise suppression, and image
extrapolation during each period [20]. Even though these
are periodic tasks, the system period is unique and,
therefore, the scheduling of the each instance (correspond-
ing in our nomenclature to an ªaperiodicº task) can be done
within a specific time interval.
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The rest of this paper is organized as follows: In Section 2,
we present the model and notation for the aperiodic, fault-
tolerant scheduling problem. In Section 3, we introduce an
auxiliary function that will aid in the presentation of our
solution. In Section 4, we describe the feasibility tests for a
set of tasks under a specific fault pattern and generalize it in
Section 5 for any fault pattern, examining the worst case
behavior with respect to k faults. In Section 6, we survey
some strongly related work and, in Section 7, we finalize the
paper with concluding remarks.

2 MODEL AND NOTATION

We consider a uniprocessor system to which we submit a set
T of n tasks: T � f�1; . . . ; �ng. A task �i is modeled by a tuple
�i � hRi; Ci;Dii, whereRi is the ready time (earliest start time
of the task), Di is the deadline, and Ci is the maximum
computation time (also called worst case execution time). The
set of tasks that become ready at a given time t is denoted by
RS�T ; t�. That is, RS�T ; t� � f�i 2 T : Ri � tg.

We assume EDF scheduling with ties in deadlines
broken arbitrarily. The schedule of T is described by the
function

EDF �T ; t� �
�i if EDF schedules �i between t and t� 1

" if EDF does not schedule any task between t and t� 1;

�
where t � 0; 1; 2; . . . represents time. We will use EDF �T �
to refer to the EDF schedule of T .

We define ei to be the time at which task �i completes
execution in EDF �T � and we define the function
slack�t1; t2� to be the number of free slots between t � t1
and t � t2 in EDF �T �. That is, the number of slots for which
EDF �T ; t� � " (excluding the slot that starts at t2).
EDF �T � is said to be feasible if ei � Di for all i � 1; . . . ; n.

It is assumed that faults can be detected at the end of the
execution of each task. The time required by the fault
detection mechanism can be added to the worst case
computation time Ci of the task and does not hinder the
timeliness of the system. Many mechanisms have been
proposed for fault detection at the user level, the operating
system level, and the hardware level. At the user level, a
common technique is to use consistency or sanity checks,
which are procedures supplied by the user, to verify the
correctness of the results [9], [28]. For example, using
checksums, checking the range of the results or substituting
a result back into the original equations can be used to
detect a transient error.

Many mechanisms exist in operating systems and
computer hardware for error detection and for triggering
recovery. Examples are the detection of illegal opcode
(caused by bus error or memory corruption), memory range
violation, arithmetic exceptions, and various time-out
mechanisms. Hardware duplication of resources can also
be used for detecting faults through comparison of results.
It should be noted, however, that while each of the
mechanisms described above is designed for detecting
specific types of faults, it has been long recognized that it is
not possible for a fault detection mechanism to accomplish a
perfect coverage over arbitrary types of faults.

When a fault is detected, the system enters a recovery
mode where some recovery action must be performed before
the task's deadline. We assume that a task �i recovers from a
fault by executing a recovery block [10], [16], �i;1, at the
same priority of �i. A fault that occurs during the execution
of �i;1 is detected at the end of �i;1 and is recovered from by
invoking a second recovery block, �i;2, and so on. It is
assumed that the maximum time for a recovery block of �i
to execute is Vi. The recovery blocks for each task may have
a different execution time from the task itself; in other
words, the recovery is not restricted to reexecution of the
task. Recovery blocks can be used for avoiding common
design bugs in code, for providing a less accurate result in
view of the limited time available for recovery, or for
loading a ªsafeº state onto memory from some stable source
(across the network or from shielded memory).

We shall denote a pattern of faults over T as a set F �
ff1; . . . ; fng such that fi is the number of times the task
�i 2 T or its recovery blocks will fail before successful
completion. We use EDFF �T � to denote the EDF schedule
of T under the fault pattern F , that is, when �i is forced to
execute fi recovery blocks. EDFF �T � is said to be feasible
if, for all i � 1; . . . ; n, task �i and its fi recovery blocks
complete by Di. Note that EDFF �T � cannot be feasible if
Di ÿRi < Ci � fi � Vi for any i.

Given a task set T and a specific fault pattern F , we
define two functions. The first function, W �T ; t�, defines the
amount of work (execution time) that remains to be
completed at time t in EDF �T �. This work is generated
by the tasks that became ready at or before time t, that is, by
the tasks in f�i 2 T : Ri � tg. Specifically,

W�T ; t� �P
�i2RS�T ;t� Ci if t � 0

W �T ; tÿ 1� _ÿ 1 � P
�i2RS�T ;t� Ci for all t � 1; 2; . . . ;

(
where the _ÿ operator is defined as a _ÿb � max�aÿ b; 0�. At
a time t, any positive amount of work in W�T ; tÿ 1�
decreases by one during the period between tÿ 1 and t,
while, when a task becomes ready at t, the work increases
by the computation time of this task.

The second function, WF �T ; t� is defined in a similar
way except that we include time for the recovery of failed
tasks at the point they would have completed in the fault-
free schedule. Specifically,

WF �T ; t� �P
�i2RS�T ;t� Ci if t � 0

WF �T ; tÿ 1� _ÿ1

�P�i2RS�T ;t� Ci � fj � Vj
if t � ej for some �j 2 T

WF �T ; tÿ 1� _ÿ1�P�i2RS�T ;t� Ci otherwise:

8>>>><>>>>:
The two functions defined above will be used to reason

about the extra work needed to recover from faults. Note
that, although task �i may complete at a time different than
ei in EDFF �T �, the function WF has the important
property that it is equal to zero only at the beginning of
an idle time slot in EDFF �T �. This, and other properties of
the two functions defined above, are given next.
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Property 1. W�T ; t� � 0 if and only if EDF �T ; t� � " . That is,

W�T ; t� � 0 if and only if there is no work to be done at time t

in EDF �T �, which means that any task with Ri � t finishes

at or before time t in the fault-free case.

Property 2. WF �T ; t� � 0 if and only if there is no work to be

done at time t in EDFF �T �, which means that any task with

Ri � t finishes at or before time t when the tasks are subject to

the fault pattern F .

Property 3. WF �T ; t� �W�T ; t�. That is, the amount of work

incurred when faults are present is never smaller than the

amount of work in the fault-free case.

Property 4. t � ei )W�T ; tÿ 1� > 0. That is, the slot before

the end of a task is never idle.

The above four properties follow directly from the

definition of W�T ; t� and WF �T ; t�.

3 THE �-FUNCTION

In order to avoid explicitly deriving the EDF schedule in the

presence of faults, we define a function, �, which loosely

corresponds to the ªextraº work induced by a certain fault

pattern, F .

��T ; t;F� �WF �T ; t� ÿW�T ; t�: �1�
Intuitively, ��T ; t;F� is the amount of unfinished ªextraº

work that has been induced by the fault pattern F at time t.

In other words, it is the work needed above and beyond

what is required in the fault-free schedule for T . The idle

time in the fault-free EDF schedule is used to do this extra

work.
The �-function will play an important role in the process

of checking if each task meets its deadline in EDFF �T �.
Following is a method for computing � directly from the

fault-free EDF schedule of T and the fault pattern F .

��T ; t;F� �
0 t � 0
��T ; tÿ 1;F� � Vj � fj t � ej for some �j 2 T
��T ; tÿ 1;F� _ÿ1 EDF �T ; tÿ 1� � "
��T ; tÿ 1;F� otherwise:

8>><>>:
�2�

In order to show that the above form for ��T ; t;F� is
equivalent to WF �T ; t� ÿW �T ; t�, we consider the four
different cases above.

Case 1: At t � 0, no task can end and, thus, t0 6� ej for any j.
From the definitions of W and WF , this implies that
W �T ; 0� �WF �T ; 0� and, thus, ��T ; 0;F� � 0.

Case 2: When t � ej for some �j 2 T , Property 4 implies that
W �T ; tÿ 1� > 0, which by Property 3 implies that also
WF �T ; tÿ 1� > 0. Hence,

��T ; t;F� � WF �T ; tÿ 1� ÿ 1�
X

�i2RS�T ;t�
Ci � fj � Vj

0@ 1A
ÿ W �T ; tÿ 1� ÿ 1�

X
�i2RS�T ;t�

Ci

0@ 1A
� ��T ; tÿ 1;F� � fj � Vj:

Case 3: When EDF �T ; tÿ 1� � " , Property 1 states that
W �T ; tÿ 1� � 0 and Property 4 states that t 6� ej for all j.
In this case,

��T ; t;F� � WF �T ; tÿ 1� _ÿ1�
X

�i2RS�T ;t�
Ci

0@ 1Aÿ X
�i2RS�T ;t�

Ci

�WF �T ; tÿ 1� _ÿ1

� ��T ; tÿ 1;F� _ÿ1:

Case 4: When t 6� ei andEDF �T ; tÿ 1� 6� " , then Property 1
implies that W�T ; tÿ 1� > 0, which by Property 3
implies that also WF �T ; tÿ 1� > 0. Hence, the _ÿ opera-
tions in the definitions of W and WF reduce to the usual
subtraction and it is straightforward to show that
��T ; t;F� � ��T ; tÿ 1;F�.
For illustration, Fig. 1 shows an example of a task set and

the corresponding values of the � function for a specific F .
In this example, we consider the case in which only �1 and
�3 may be subject to a fault. Note that the value of �

decreases when EDF �T � is idle and increases at the end of
each task that is indicated as faulty in F .

As we have mentioned above, the � function is an
abstraction that represents the extra work to be performed
for recovery. This extra work reduces to zero when all ready
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tasks complete execution and recovery, as demonstrated by
the following theorem.

Theorem 1. If ��T ; tÿ 1;F� > 0 and ��T ; t;F� � 0, then, in
both EDF �T � and EDFF �T �, any task with Ri � t finishes
at or before time t.

Proof. If ��T ; tÿ 1;F� > 0 and ��T ; t;F� � 0 then, from (2),
this decrease in the value of the �-function is only
possible if EDF �T ; t� � " , which, from Property 1, leads
to W�T ; t� � 0. Thus, (1) gives WF �T ; t� � 0 and the
proof follows from Properties 1 and 2. tu

4 FEASIBILITY TEST FOR A TASK SET UNDER A

SPECIFIC FAULT PATTERN

Given a task set, T , and a fault pattern, F , we now present a
method for checking whether the lowest priority task,
denoted by �` 2 T , completes by its deadline in EDFF �T �.
Theorem 2. Given a task set, T , and a fault pattern, F , the

lowest priority task, �`, in T completes by D` in EDFF �T �, if
and only if ��T ; t;F� � 0 for some t, e` � t � D`.

Proof. To prove the if part, assume that t0 is the smallest
value such that e` � t0 � D` and ��T ; t0;F� � 0. If
��T ; t;F� � 0 for every t � 0; . . . ; t0, then EDFF �T � and
EDF �T � are identical from t � 0 to t � t0, which implies
that �` completes by e` � D` in both schedules. If,
however, ��T ; t;F� > 0 for some 0 � t < t0, then let �t be
the latest time before t0 such that ��T ; �t;F� > 0. Note that
�t < e` (since t0 is the first value after e` at which � � 0)
and that ��T ; �t� 1;F� � 0 (by the definition of �t). Hence,
by Theorem 1, all tasks that are ready before �t finish
execution by �t in both EDF �T � and EDFF �T �. More-
over, ��T ; t;F� � 0 for t � �t� 1; . . . ; t0, which means that
W�T ; t� �WF �T ; t� and, thus, EDF �T � is identical to
EDFF �T � in that period. But, �` completes in EDF �T � at
e`, which means that it also completes at e` in EDFF �T �.

We prove the only if part by contradiction: Assume
that ��T ; t;F� > 0 for all e` � t � D` and yet �` finishes in
EDFF �T � at �t for some e` � �t � D`. The fact that the
lowest priority task, �`, executes between time �tÿ 1 and �t
means that no other task is available for execution at
�tÿ 1 and, thus, WF �T ; �tÿ 1� � 1. Given the assumption
that ��T ; �tÿ 1;F� > 0, Property 3 implies that
W�T ; �tÿ 1� � 0, which, by Property 1, implies that
EDF �T ; �tÿ 1� � " and (2) leads to ��T ; �t;F� � 0, which
is a contradiction. tu

The next corollaries provide conditions for the feasibility
of EDFF �T � for the entire task set, T .

Corollary 1. A necessary and sufficient condition for the
feasibility of EDFF �T � for a given T and a given F can be
obtained by applying Theorem 2 to the n task sets T j,
j � 1; . . . ; n, where T j contains the j highest priority tasks
in T .

Proof. The proof is by induction. The base case is trivial,
when j � 1, since there is only a single task. For the
induction step, assume that EDFF �T j� is feasible and
consider T j�1 � T j

Sf�`g, where �` has a lower priority
than any task in T j. In EDFF �T j�1�, all tasks in T j will

finish at exactly the same time as in EDFF �T j� since �`
has the lowest priority. Hence, the necessary and
sufficient condition for the feasibility of EDFF �T j�1� is
equivalent to the necessary and sufficient condition for
the completion of �` by D`. tu

Corollary 2. A sufficient (but not necessary) condition for the
feasibility of EDFF �T � for a given T and a given F is

8�i 2 T ; 9 ei � ti � Di such that ��T ; ti;F� � 0:

Proof. Note that the proof of the only if part in Theorem 2
relies on the property that �` is the lowest priority task,
which, in EDF, means the task with the latest deadline.
The if part of the theorem, however, is true even if �` is
not the lowest priority task. Hence, any �i 2 T completes
by Di in EDFF �T � if ��T ; t;F� � 0 for some t,
ei � t � Di, which proves the corollary. tu

We clarify the conditions of the above corollaries by
examples. First, we show that the condition given in
Corollary 2 is not necessary for the feasibility of
EDFF �T �. That is, we show that, for any given �i, it is
not necessary that ��T ; ti;F� � 0 for some ei � ti � Di, in
order for �i to finish by Di in EDFF �T �. This can be seen
from the example task set and fault pattern shown in
Fig. 1. The value of ��T ; t;F� is not zero between e1 � 2
and D1 � 4 or between e2 � 5 and D2 � 7. Yet, as shown in
Fig. 2, �1 and �2 will finish by their deadlines in EDFF �T �.
In other words, the condition that ��T ; t;F� � 0 between ei
and Di, as stated in Theorem 2, is necessary and sufficient
for the feasibility of only the lowest priority task in
EDFF �T � (task �4 in the above example).

Next, we show that, as stated in Corollary 1, we have to
repeatedly apply Theorem 2 to all task sets T j, j � 1; . . . ; n,
to obtain a sufficient condition for the feasibility of the
entire task set. In other words, it is not sufficient to apply
Theorem 2 only to T . This can be demonstrated by
modifying the example of Fig. 1 such that D3 � 7. Clearly,
this change in D3 may still result in the same EDF schedule
for T and thus will not change the calculation of ��T ; t;F�.
Although the application of Theorem 2 guarantees that �4

will finish by its deadline in EDFF �T �, the recovery of �3

will not finish by D3 � 7, as seen in Fig. 2.
Assume, without loss of generality, that the tasks in a

given task set, T , are numbered such that e1 � e2 � . . . � en
and define �i�T ;F� � ��T ; ei;F� to be the extra work that
still needs to be done due to a fault pattern F , at time t � ei.
Noting that ��T ; t;F� increases only at t � e1; . . . ; en, (2) can
be rewritten using the slack�� function defined in Section 2
as follows:

��T ; t;F� � �i�T ;F� _ÿ slack�ei; t� ei � t < ei�1; �3�
where
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�i�T ;F� � V1 � f1 i � 1
�iÿ1�T ;F� _ÿ slack�eiÿ1; ei� � Vi � fi i � 2; 3; . . .

�
�4�

The application of Theorem 2 for a given T and F
requires the simulation of EDF �T � and the computation of
ei, i � 1; . . . ; n as well as slack�eiÿ1; ei�. The values of �i
computed from (3) and (4) can then be used to check the
condition of the theorem. Each step in the above procedure
takes O�n� time, except for the simulation of the EDF
schedule. Such simulation may be efficiently performed by
using a heap which keeps the tasks sorted by deadlines.
Each task is inserted into the heap when it is ready and
removed from the heap when it completes execution. Since
each insertion into and deletion from the heap takes O�logn�
time, the total simulation of EDF takes O�nlogn� time.
Thus, the time complexity of the entire procedure is
O�nlogn�.

Hence, given a task set, T , and a specific fault pattern, F ,
a sufficient and necessary condition for the feasibility of
EDFF �T � can be computed using Corollary 1 in O�n2logn�
time steps. This is less efficient than simulating EDFF �T �
directly, which can be done in O�nlogn� steps. However, as
will be described in the next section, simulating EDF �T �
only is extremely advantageous when we consider arbitrary
fault patterns rather than a specific fault pattern.

5 FEASIBILITY TEST FOR A TASK SET UNDER ANY

FAULT PATTERN

We now turn our attention to determining the feasibility
of a given task set for any fault pattern with k or less
faults. We use Fw to denote a fault pattern with exactly w
faults. That is, X

fi2Fw
fi � w:

We also define the function �w�T ; t�, which represents the
maximum extra work at time t induced by exactly w faults
that occurred at or before time t. In other words, it is the extra
work induced by the worst-case fault pattern of w faults:

�w�T ; t� � max
Fw
f��T ; t;Fw�g:

Note that, although the use of Fw in the above definition
does not specify that all w faults will occur at or before time
t, the value of ��T ; t;Fw� will reach its maximum when all
possible w faults occur by time t.

Theorem 3. For a given task set, T , a given number of faults w,
and any fault pattern, Fw, the lowest priority task, �`, in T
completes by D` in EDFF

w�T �, if and only if �w�T ; t� � 0 for
some t, e` � t � D`.

Proof. This theorem is an extension of Theorem 2 and can
be proven in a similar manner. tu

In order to compute �w�T ; t� efficiently, we define the
values

�wi �T � � max
Fw
f�i�T ;Fw�g i � 1; 2; . . .

and use them to compute

�w�T ; t� � �wi �T � _ÿ slack�ei; t� ei � t < ei�1; �5�
which is directly derived from (3).

The value of each �wi �T � is defined as the maximum extra
work at t � ei induced by any fault pattern with w faults.
This maximum value can be obtained by considering the
worst scenario in each of the following two cases:

. All w faults have already occurred in �1; . . . ; �iÿ1.
Hence, the maximum extra work at ei is the
maximum extra work at eiÿ1 decremented by the
slack available between eiÿ1 and ei.

. wÿ 1 faults have already occurred in �1; . . . ; �i and
one additional fault occurs in �i. In this case, the
maximum extra work at ei is increased by Vi, the
recovery time of �i.

Hence, noting that e1; . . . ; en and the function slack�� are
derived from EDF �T � and do not depend on any particular
fault pattern, the values of �wi �T � can be computed for i �
1; . . . ; n and w � 1; . . . ; k using the following recursive
formula:

�wi �T � �
0 w � 0

w V1 i � 1

maxf�wiÿ1�T � _ÿslack�eiÿ1; ei� ; �wÿ1
i �T � � Vig otherwise:

8><>:
�6�

The computations in (6) can be graphically represented
using a graph, G, with n columns and k rows, where each
row corresponds to a particular number of faults, w, and
each column corresponds to a particular ei (see Fig. 3b). The
node corresponding to row w and column ei will be denoted
by Nw

i . A vertical edge between Nw
i and Nw�1

i represents the
execution of one recovery block of task �i and thus is labeled
by Vi. A horizontal edge between Nw

iÿ1 and Nw
i means that

no faults occur in task �i, and thus is labeled by
_ÿslack�eiÿ1; ei� to indicate that the extra work that remained

at eiÿ1 is decremented by the slack available between eiÿ1

and ei. Then, each path starting at N0
1 in G represents a

particular fault pattern (see Fig. 4). The value of �wi
corresponding to the worst case pattern of w faults at t �
ei is computed from (6), which corresponds to a dynamic
programming algorithm to compute the longest path from
N0

1 to Nw
i .

Fig. 3 depicts an example of the computation of �wi for a
specific task set and w � 0; 1; 2. The value of �wi is written
inside node Nw

i . We can see that, for this example, �2
4�T � � 3

and, thus, from (5), �2�T ; 10� � 0, which satisfies the
condition of Theorem 3, and thus, the lowest priority task,
�3, will finish before D3 � 10 in the presence of up to any
two faults.

Similar to Corollary 1 discussed in the last section, a
necessary and sufficient condition for the feasibility of
EDFF �T � requires the repeated application of Theorem 3.

Corollary 3. A necessary and sufficient condition for the
feasibility of EDFF �T � for a given T and any fault pattern F
with k or less faults can be obtained by applying Theorem 3 to
the n task sets T j, j � 1; . . . ; n, where T j contains the j
highest priority tasks in T .
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Fig. 5 shows the computation of � for an example with
three tasks. Note that, although the application of Theorem 3
to this example shows that the lowest priority task, �3, will
finish by its deadline in the presence of any two faults, the
set of three tasks is not feasible in the presence of two faults
in �1 since, in this case, either �1 or �2 will miss the deadline.
This is detected when Theorem 3 is applied to the task set
T 2 � f�1; �2g.

To summarize, given a task set T � f�1; . . . ; �ng and the
maximum number of faults, k, the following algorithm can
be used to optimally check if EDFF �T � is feasible for any
fault pattern of at most k faults.

Algorithm ªExactº

. Let T 1 � f�1g, where �1 is the highest priority task in
T /* the one with earliest deadline */,

. Let ` � 1 /* �` is the lowest priority task (the only
task) in T 1 */

. For j � 1; . . . ; n do

1. Simulate EDF �T j� and compute e1; . . . ; ej as
well as slack��,

2. Renumber the tasks in T j such that e1 � . . . � ej,

3. Compute �wi for i � 1; . . . ; j and w � 1; . . . ; k
from (6),

4. Let ej�1 � D` /* this is just for computational
convenience */

5. If �wi _ÿ slack�ei; ei�1� > 0 for all i � `; . . . ; j, then
EDFF �T � is not feasible ; EXIT.

6. If (j � n), then EDFF �T � is feasible ; EXIT.
7. Let �` be the highest priority task in T ÿ T j ,
8. T j�1 � T j

Sf�`g, /* note that �` is the lowest
priority task in T j�1 */

Hence, in order to determine if the lowest priority task in

a task set can finish by its deadline in the presence of at

most k faults, Steps 1-5 (which apply Theorem 3), requires

O�nlogn� nk� steps to both generate EDF �T j� and apply

(6). In order to determine the feasibility of EDFF �T �, we

repeat the for loop n times for T 1; . . . ; T n for a complexity

of O�n2logn� n2k�. Note, however, that with some care,

EDF �T j�1� can be derived from EDF �T j� in at most O�n�
steps, thus resulting in a total of O�n2k� for the feasibility

test. Compared with the O�nk�1logn� complexity required to

simulate EDF under the possible O�nk� fault patterns, our
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Fig. 3. The calculation of �1
i and �2

i for i � 1; 2; 3; 4. (a) The task set. (b) The fault-free schedule and the computation of �.

Fig. 4. Two fault patterns for the task set of Fig. 3 and the corresponding paths in G. (a) f1 � f4 � 0 and f2 � f3 � 1. (b) f1 � f2 � f4 � 0 and f3 � 2.



algorithm has a smaller time complexity, even for k � 1 (a
single fault).

As indicated in Corollary 2, a sufficient but not necessary
feasibility test may be obtained by computing � from a
simulation of EDF �T � and then making sure that, for each
task �i, � is equal to zero between ei and Di. This can be
completed in O�nlog�n� � nk� time, as shown in the
following algorithm.

Algorithm ªSufficientº

1. Simulate EDF �T � and compute e1; . . . ; en as well as
slack��,

2. Renumber the tasks in T j such that e1 � . . . � en,
3. Compute �wi for i � 1; . . . ; n and w � 1; . . . ; k from (6),
4. Let en�1 � Dn /* this is just for computational

convenience */
5. For i � 1; . . . ; n do

If �wi _ÿ slack�ei; ei�1� > 0, then declare EDFF �T �
not feasible; EXIT.

6. EDFF �T � is feasible.

The example shown in Fig. 6 shows that a task �i, i < n,
may complete by Di in EDFF �T � even if the value of �
computed from the simulation of EDF �T � does not equal

zero between ei and Di. In this example, �2
2 � 4 and, thus,

�2�f�1; �2g; t� 6� 0 for e2 � t � D2. Yet, it is easy to see that
the shown EDF schedule can tolerate any two faults (two
faults in �1, two faults in �2, or one fault in each of �1 and �2).
To intuitively explain this result, we note that, although �2

2

represents the maximum recovery work that needs to be
done at t � e2, no information is kept about the priority at
which this recovery work will execute in EDFF �T �.
Specifically, in the given example, some of the work in �2

2

will execute in EDFF �T � at the priority of �1, which is
lower than the priority of �2. Thus, it is not necessary that
�2

2 � 0 before D2 for �2 to finish before its deadline. This, in
general, may happen only because it is possible for a lower
priority task to finish before a higher priority task. That is, if
for some i and j, ei < ej while Dj < Di.

Finally, we note that, from the observation given in the
last paragraph, algorithm ªSufficientº will provide a
sufficient and necessary feasibility test in the special case
where tasks complete execution in EDF �T � in the order of
their priorities (deadlines). That is, if e1; . . . ; en computed
from EDF �T � satisfy ei � ei�1 and Di � Di�1. In this case,
the recovery work in any �wi would have to execute in
EDFF �T � at a priority higher than or equal to that of �i and,
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Fig. 5. An example with three tasks. (a) The task set. (b) The fault-free schedule and the computation of �.

Fig. 6. An example in which f�1; �2g can tolerate any two faults. (a) The task set. (b) The computation of �.



thus, it is necessary for this work to be completed by Di if �i
is to complete by its deadline.

6 RELATED WORK

Earlier work dealing with tolerance to transient faults for
aperiodic tasks was carried out from the perspective of a
single fault in the system [16], [14]. More recently, the fault
models were enhanced to encompass a single fault
occurring every interval of time, for both uniprocessors
and multiprocessor systems [1], [6], [7]. Further, tolerance to
transient faults for periodic tasks has also been addressed
for uniprocessors [26], [27], [22], [24], [8] and multiprocessor
systems [2], [23], [19].

In [14], processor failures are handled by maintaining
contingency or backup schedules. These schedules are used
in the event of a processor failure. To generate the backup
schedule, it is assumed that an optimal schedule exists and
the schedule is enhanced with the addition of ªghostº tasks,
which function primarily as standby tasks. Since not all
schedules will permit such additions, the scheme is
optimistic. More details can be found in [15].

Duplication of resources has been used for fault
tolerance in real-time systems [21]. However, the algorithm
presented is restricted to the case where all tasks have the
same period. Moreover, adding duplication for error
recovery doubles the amount of resources necessary for
scheduling.

In [1], a best effort approach to provide fault tolerance
has been discussed in hard real-time distributed systems. A
primary/backup scheme is used in which both the primary
and the backup start execution simultaneously and if a fault
affects the primary, the results of the backup are used. The
scheme also tries to balance the workload on each
processor.

More recently, work has been done on the problem of
dynamic dispatching algorithms of frame-based computa-
tions with dynamic priorities when one considers a single
fault. In [18], it was shown that simply generating n EDF
schedules, one for each possible task failure, is sufficient to
determine if a task set can be scheduled within their
deadlines. Also, the work in [13] describes the approach
taken by the Mars system in frame-based fault tolerance.
Mars was a pioneer system in the timeline dispatching of
tasks through the development of time-triggered protocols.
It takes into account the scheduling overhead, as well as the
need for explicit fault tolerance in embedded real-time
systems. However, MARS requires special hardware to
perform fault-tolerance related tasks such as voting and,
thus, it cannot be used in a broad range of real-time
systems.

7 CONCLUSION

We have addressed the problem of guaranteeing the timely
recovery from multiple faults for aperiodic tasks. In our
work, we assumed earliest-deadline-first scheduling for
aperiodic preemptive tasks and we developed a necessary
and sufficient feasibility-test for fault-tolerant admission
control. Our test uses a dynamic programming technique to
explore all possible fault patterns in the system, but has a

complexity of O�n2 � k�, where n is the number of tasks to be
scheduled and k is the maximum number of faults to be
tolerated.

EDF is an optimal scheduling policy for any task set T in
the sense that, if any task misses its deadline in EDF �T �,
there is no schedule for T in which no deadlines are missed.
EDF is also an optimal fault-tolerant scheduling policy.
Specifically, EDFF �T � for a fault pattern F is equivalent to
EDF �T 0� where T 0 is obtained from T by replacing the
computation time, Ci, of each task �i in T by Ci � fi � Vi.
Hence, the work presented in this paper answers the
following question optimally: Given a task set, T , is there a
feasible schedule for T that will allow for the timely
recovery from any combination of k faults?
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