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Realizing Common Communication Patterns
in Partitioned Optical Passive Stars (POPS)

Networks
Greg Gravenstreter and Rami G. Melhem, Senior Member, IEEE

Abstract—We consider the problem of realizing several common communication structures in the all-optical Partitioned Optical
Passive Stars (POPS) topology. We show that, often, the obvious or “natural” method of implementing a communication pattern in
the POPS does not efficiently utilize its communication capabilities. We present techniques which distribute the communication load
uniformly in the POPS for four of the most common communication patterns (all-to-all personalized, global reduction operations,
ring, and torus). We prove that these techniques provide optimal performance in the sense that they minimize the time required to
deliver the messages from each node to its neighbors.

Index Terms—Optical interconnections, passive stars, embedding, all-to-all communications, reduction operations, multiplexing.
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1 INTRODUCTION

HE ever-increasing needs of new multiprocessor inter-
connection networks have created an interest in optical

fiber technology. The characteristics of optical fiber links are
well suited to resolve several of the most serious problems
in electronic networking. These advantages include optical
fiber’s power efficiency, lack of reactive loading factors, and
a relatively high noise immunity. The striking rise in de-
mand for network throughput, which is the most challeng-
ing network requirement, is driven by both large increases in
system size and higher node interactions. Initially, optical
fiber links were incorporated into existing network designs.
Throughput bottlenecks and high latencies resulting from
electronic/optical conversions and processing at intermedi-
ate hops still limited the capacities of these networks. “All-
optical” networks were specifically developed to address
these issues. Those networks can be implemented with pas-
sive optical technology and can provide enormous potential
throughput with very low latencies.

New all-optical networking designs are needed that pre-
sent multiple data channels which are physically concur-
rent [6]. Wavelength division multiplexing (WDM) is one
method for achieving these concurrent multiple channels. A
large amount of research has been accomplished on WDM-
based systems [4], [13]. The majority of this has been to de-
velop multiple-access multiple-channel protocols on star
architectures using tunable transmitters and receivers [7].
Theoretically, WDM has remarkable potential, yet sub-
stantial progress is needed to achieve acceptable tuning
speeds (nanoseconds) over necessary ranges (hundreds of

nanometers). More progress is also needed on solutions to
power budget problems in large WDM systems.

The Partitioned Optical Passive Stars (POPS) topology
[1], [5] is a topological approach to providing multiple
physical data channels. It is an interconnection architecture
that uses multiple nonhierarchical stars to implement sin-
gle-hop networks [2], [3]. It is an all-optical topology con-
structed exclusively with passive optical technology and
benefits from all the corresponding characteristics, such as
no intermediate electronic/optical conversions, no reactive
factors, and high noise immunity. All data channels in a
POPS network may use the same fixed wavelength. Fixed
transmitters and fixed receivers using current technologies
may be chosen based on cost, mechanical, or other factors.
Further, the design flexibility of a POPS topology can be
used to avoid power budget problems. Established multi-
plexing methods and control protocols, such as those used
in time-division multiplexing (TDM) or wavelength-
division multiplexing (WDM) designs, may be applied to
any or all of the data channels on a POPS network.

A POPS topology is configured at design time to provide
a fixed number of physically concurrent data channels, each
of which is capable of high capacity in a circuit-switched
system. The number of such channels is not absolutely lim-
ited and is a key engineering trade-off. This design flexibil-
ity provides for a customized optimization between lower
total system complexity versus the combination of higher
system throughput, lower power budgets, and lower net-
work control overheads. An analysis in [5] confirms that,
independent of the number of channels configured, POPS
network data channels can be efficiently utilized for ran-
dom permutation-based communication patterns.

Beyond random communication patterns, multiproces-
sor applications frequently exhibit regular communication
patterns. Topologies that are appropriate for interconnec-
tion networks must efficiently accommodate these commu-
nication structures. All-to-all personalized (complete)
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communication and global reduction operations are exam-
ples of structures that are commonly used in practical ap-
plications. Their implementations on different network to-
pologies have been widely studied [9], [11], [15]. Array-type
communications are other examples of regular communi-
cation patterns that are frequently generated in multiproc-
essing applications. These applications include image proc-
essing, the numeric solution of partial differential equa-
tions, and a wide range of scientific modeling problems.
Numerous embeddings of rings and meshes into different
topologies have been reported in the literature [8], [12], [10],
[14], [16]. In this context, an embedding is a mapping of the
nodes and edges in a graph representing the communica-
tion requirements of an application onto the nodes and
links of the physical communication network.

This paper discusses the capability of POPS networks to
support application communication structures. After the
introduction, the second section describes the components,
parameters, and notation for a POPS topology. The third sec-
tion presents preliminary results about the general capabili-
ties of POPS networks. The fourth section examines all-to-all
personalized (complete) communications in a POPS topol-
ogy. The fifth section considers global reduction operations.
The sixth section examines the embeddings of a ring com-
munication structure in a POPS topology. The seventh sec-
tion considers the embedding of a two-dimensional torus. A
conclusion summarizes key points about all these structures.

2 DESCRIPTION OF THE POPS TOPOLOGY

A small POPS network is shown in Fig. 1. Source nodes
relay messages through optical links to passive optical cou-

plers. These couplers send the messages through other op-
tical links to the destination nodes. A minimal set of two
independent parameters completely determines a POPS
network implementation. The first parameter, a measure of
the system size, is the number of nodes and is denoted by n.
The second parameter, a measure of the coupler complexity,
is the degree of each coupler and is denoted d . It will be
assumed that both n and d are powers of two. Each coupler
is a d × d passive optical star which equally distributes the
optical power on any of its d inputs to all of its d outputs.

The set of n source nodes are partitioned into g = n/d
equal-sized source groups. Similarly, the set of n destination
nodes are partitioned into g destination groups. Each source
group and each destination group consists of d = n/g nodes.
The g groups of source nodes are called source node-groups
and are denoted by SNG0, ..., SNGg−1, and the g groups of
destination nodes are are called destination node-groups
and are denoted by DNG0,..., DNGg−1.

A set of c = g2 = n2/d2 couplers is partitioned into g
groups of g couplers each. The g couplers in the ith coupler

group, 0 ≤ i < g , are denoted by Ci,0,..., Ci,g−1. The d inputs

for a given coupler, Ci,j , are connected to the d nodes in

SNGj, and the d outputs of Ci,j are connected to the d nodes

in node-group DNGi .
Each source node, x , 0 ≤ x < n, has g transmitters, de-

noted by Tx,0, ..., Tx,g−1, where Tx,j is connected to a coupler
in the jth coupler group and, thus, is used to communicate
with nodes in DNGj. Similarly, each destination node y has
g receivers, denoted by Ry,0, ..., Ry,g−1, where Ry,j is con-
nected to a coupler which provides communication with

Fig. 1. An n = 16, d = 8 POPS network (g = 2).
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nodes in SNGj. Note that POPS networks are different from
electronic switching networks that have similar intercon-
nections. The difference is that POPS use d × d passive cou-
plers rather than d × d cross-bar switches. Consequently, at
most one input to a given coupler should carry a signal at
any one time in order to prevent collisions.

Given a fixed system size, n, the choice of coupler de-
gree, d, allows for a wide range of system characteristics. As
the coupler degree approaches n, the system assumes the
nature of a single passive star, which includes low system
cost and complexity, restricted throughput, and increased
power dissipation. As the coupler degree approaches one,
the system becomes a completely connected topology, with
very high system cost and optimal performance. In this
paper, we will assume that d n≥  since this implies that
c ≤ n. That is, the number of couplers is not larger than the
number of nodes. If d n< , then there are more couplers
than nodes, and it is not possible to efficiently utilize the
communication capabilities of the POPS when each node
can send only one message at a time.

The POPS topology shown in Fig. 1 has a fairly large
coupler degree (d n= 2 ). In Fig. 2, another example POPS
topology, with the same number of nodes as in Fig. 1 but a
smaller coupler degree, is given for comparison.

3 THE GROUP COMMUNICATION CAPABILITIES OF
POPS

In a POPS network, the determination of the route for a
specified message is simple. Specifically, consider a single

message, denoted Mx,y, which originates at source node x in

node-group SNGξ and terminates at node y in node-group

DNGη, where ξ = x/d and η = y/d . Source node x uses

transmitter Tx,η to send the message. Coupler Cη,ξ trans-

ports the message, and destination node y uses receiver Ry,ξ
to get the message. Thus, any specific message has a unique
path composed of a transmitter, a coupler, and a receiver,

(Tx,η, Cη,ξ, Ry,ξ). Moreover, for any two given messages,

Mx yi i,  and Mx yj j, , where xi ≠ xj and yi ≠ yj , the only possi-

ble point of conflict in the path of the two messages is the
coupler.

Only a single message per coupler can be delivered in a
fixed time period, which we call a time slot. Thus, a maxi-
mum of c messages can be delivered by a POPS network
implementation in a single time slot. Either wave-division
multiplexing (WDM) or time-division multiplexing (TDM)
may be applied when multiple messages require the same
coupler. WDM uses multiple wavelengths, while TDM uses
multiple time slots. Thus, a sequence of wavelengths or a
sequence of time slots is required. In this paper, we will
assume that TDM is used, with the understanding that
similar results may be achieved if WDM were to be used.
Hence, messages that cannot be delivered in one time slot
will be delivered over a sequence of time slots, where, in
each time slot, some nonzero number of couplers will de-
liver one message each.

The merit of an interconnection network can be studied by
analyzing its capability for realizing different communication

Fig. 2. An n = 16, d = 4 POPS network (g = 4).
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structures. In general, a communication structure can be
defined as a set, 0 =

− −
{ , , }, ,M Mx y x ym m0 0 1 1

K  of m mes-

sages to be delivered. In this paper, we will determine the
minimum number of time slots, s, needed to deliver the
messages in 0. The same results directly apply if M is a set
of connections that are to be established in a time-
multiplexed manner in the POPS. In this case, s represents
the minimum degree of multiplexing which allows all the
connections in M to be established in the POPS. Finally, if
WDM is to be used, then s would be the minimum number
of wavelengths needed to simultaneously establish the
connections in M.

In [5], POPS networks delivering random message sets
that are permutations or subsets of permutations were
shown to be highly efficient. The following sections of this
paper examine some regular communication structures.
Techniques for realizing all-to-all personalized, global re-
duction, ring, and torus communication patterns in POPS
networks are presented and proven to be optimal. In this
context, optimality means 100 percent coupler utilization
during every time slot and/or minimum theoretical num-
ber of time slots. The following definition and lemmas will
simplify subsequent discussions. In the remainder of this
paper, we will use +u and −u to denote the addition and
subtraction modulo u operations. That is, a +u b = (a + b) mod u
and a −u b = (a − b) mod u .

DEFINITION 1. The Group Offset, or simply the Offset, for a
message Mx,y from source node x in node-group ξ = x/d
to destination node y in node-group η = y/d is η −g ξ.

Any message originating in node-group ξ, with an offset
of f, uses C

g fξ ξ+ , . That is, the ξth coupler in coupler group

ξ +g f . Further, the subset of g couplers that consists of the
ξth coupler in each coupler group is required for delivery of
g messages originating in node-group ξ when each of the
messages have different offsets. Hence, we have the fol-
lowing lemma:

LEMMA 1. A set of g messages originating at different nodes in
the same node-group can be delivered in one time slot if and
only if the offsets of the messages are all different.

Consider g of the sets described in Lemma 1, each origi-
nating at a different node-group. Lemma 1 implies that a set
of c = g2 messages can be delivered in one time slot if and
only if

1)� exactly g messages originate in each of the g node-
groups, and

2)� in every set of g messages originating at the same
node-group, each message has a different offset.

The following lemma states these two conditions in a
slightly different form.

LEMMA 2. A set, 0, of c = g2 messages that originate at different
nodes and terminate a different nodes can be delivered in
one time slot if and only if:

1)� for each f, 0 ≤ f < g , exactly g messages in 0 have off-
set f,

2)� the g messages that have a given offset f originate at
different node-groups.

In other words, in a single time slot, each source node-
group can communicate with each destination node-group
exactly once. This all-to-all personalized (complete) group
communication is possible for all POPS topologies. Lemma 2
directly leads to the following more general result:

LEMMA 3. A set, 0, of kg2 messages can be delivered in k time
slots if:

1)�For each f, 0 ≤ f < g , exactly kg messages in 0 have
offset f,

2)�Exactly k messages with a given offset f originate at each
node-group,

3)�At most k messages originate at each node and at most k
messages terminate at each node.

Lemma 3 is easily proven by decomposing the set 0
into k sets of g2 messages each, such that each set satisfies
the conditions of Lemma 2.

Given a specific set of messages, these messages are de-
livered in a short sequence of time slots if communication
in each time slot emphasizes both intergroup communica-
tions and no more than one message between any
source/destination node-group pair. High coupler utiliza-
tions are achieved when communication in each time slot
approaches a complete group communications pattern.

The following property is also a direct result of the abil-
ity of POPS to achieve complete group communication in
one time slot.

LEMMA 4. If a set of messages, {Mx,y} can be delivered in one time
slot, then the set of messages, {My,x}, which is obtained by
interchanging sources and destinations, can also be deliv-
ered in one time slot.

An n-node communication structure can be formally
specified by a graph G = (S, D, E), where S and D are sets of
n nodes and E = {<u, v> : u ∈ S, v ∈ D} is a set of edges con-
necting nodes from S to nodes from D. A POPS can realize
the structure G in a sequence of s time slots if the set of
messages 0 = {Mu,v : <u, v> ∈ E} can be decomposed into
s subsets, 0 = 01 < … < 0s, where each subset 0i, i = 1,
..., s, satisfies the conditions of Lemma 2. If the POPS net-
work is used to interconnect the inputs and outputs of n
processing elements, then S = D, and the structure is speci-
fied by G = (V, E), where V = S = D. In this case, the source
nodes and destination nodes in the POPS are the same and,
thus, both a source node-group, SNGi, and the correspond-
ing destination node-group, DNGi, will be denoted by NGi.

Given a POPS network, some communication structures
cannot be efficiently implemented without appropriately
remapping the nodes in V to the nodes in the networks,
that is, without embedding the structure in the network.
Formally, an embedding of a structure G = (V, E) onto an n-
processor POPS topology is a one-to-one mapping function
µ : V → {0, …, n − 1} which maps each node in V onto a
node in the POPS network. An optimal embedding is thus
defined as an embedding which minimizes the length of the
sequence needed to deliver the message set 0 = {Mµ(u),µ(v) :
<u, v> ∈ E} , thus satisfying the requirement of the commu-
nication structure in minimal time.

Given that nodes in POPS networks are divided into
equal size node-groups, a mapping function µ can be
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expressed in terms of two functions, µg and µn. For any
node v in V, µg(v) specifies the node-group to which v is
mapped, and µn(v) specifies a particular node within the
node-group. That is, µ(v) = d * µg(v) + µn(v) . From Lemma 2,
it is clear that the conditions necessary to deliver a set of
messages in one time slot do not depend on the actual
source nodes and destination nodes of the messages.
Rather, they depend on the source node-groups and the
destination node-groups, as long as the messages originate
and terminate at different nodes. Thus, the sequence length
(number of time slots) needed to deliver the messages in an
embedded communication structure does not depend on
µn, as long as µ is a one-to-one function.

The above discussion argues that the sequence length re-
sulting from embedding communication structures onto POPS
networks can be derived even if only the group-mapping
function, µg, is specified. Hence, in the following sections, we
will only specify group-mapping functions. However, only
functions, µg, that map exactly d nodes of V to each node-
group will be considered, since such group-mapping functions
will lead to one-to-one mapping functions, µ.

4 ALL-TO-ALL PERSONALIZED COMMUNICATIONS

A major communications pattern is all-to-all personalized
(complete) communications represented by a completely
connected graph G. Here, each node sends a unique mes-
sage to every node in the system. That is, 0 = {Mu,v : u, v =
0, ..., n − 1}. This complete communication requires a total of
n2 messages. If all couplers are utilized during every time
slot required to deliver these messages, the sequence length
is the minimum possible and the all-to-all personalized
communications is considered optimal.

For a POPS topology, an optimal complete communica-
tions requires all c couplers to be used during each time slot
needed to deliver the n2 messages. If d n< , then n < c.
Thus, since only n messages are possible per time slot (one
per node), not all couplers can be utilized simultaneously,
and all-to-all personalized communications can not be op-
timal. However, as we stated earlier, we will assume that
d n≥ . This implies that n ≥ c and that an optimal com-
plete communications is always possible, as stated in the
following theorem.

THEOREM 1. In any POPS topology where n and d are powers of
two and d n≥ , all-to-all personalized communications is

optimal, and requires a sequence of length s = d2.

PROOF. Partition the n nodes into p = n/c subsets, denoted

1i, 0 ≤ i < p , where each subset contains n/p = c
nodes evenly distributed among the node groups.

Specifically, each 1i contains c/g = g nodes from each

of NG0, ..., NGg−1. For example, we may define

1 1i i
j

j

g
=

=

−

0

1
U , where 1 i

j ig jd k k g= + + ≤ <{ : }0

contains g nodes from node-group NGj. Since d2/n ≥ 1

from d n≥ , and both d2 and n are powers of two,
then p is a positive integer.

The all-to-all personalized communication pattern

will be accomplished in p2 phases denoted 3r, r = 0, …,

p2 − 1. One source subset 1 is
, 0 ≤ is < p, completely

communicates with one destination subset 1 id
, 0 ≤ id

< p, in a single phase. That is, consecutive time slots in
a phase are exclusively used to deliver all messages in

a set 0 1 1i i u v i
j

j

g
i
q

q

g

s d s d
M u v, , : ,= ∈ ∈%&'

()*=

−

=

−

0

1

0

1
U U ,

which is the set of messages originating from any
node in 1 is

, and terminating at any node in 1 id
.

One possible choice for is and id for phase 3r is is =

r/p and id = r mod p .

Now, 0i is d, �contains g4 messages. Specifically, for

each value of j and q, where 0 ≤ j < g and 0 ≤ q < g,
there are g2 messages in 0i is d, �originating at nodes in

1 i
j
s
 and terminating at nodes in 1 i

q
d

. These g2 mes-

sages have offset q −g j. Moreover, for a given f be-
tween 0 and g − 1, there are exactly g possible pairs of

values for q and j such that q −g j = f. Hence, the first
two conditions of Lemma 3 are satisfied for 0i is d,

with k = g2. The third condition of Lemma 3 is also

satisfied since 0i is d, � contains exactly g2 messages

originating at each node in 1 i
j

j

g

s=

−

0

1
U . Hence, the set

0i is d, �can be delivered in k = g2 time slots.

Thus, all-to-all communications can be accom-
plished in (n/c)2 phases, each requiring g2 = c time
slots, for a total of n2/c time slots. This is optimal for
the delivery of n2 messages using c couplers. o

Fig. 3 illustrates the all-to–all communications in the
POPS given in Fig. 1 for which g = 2 and c = 4. Messages are
drawn as arrows from sources to destinations. Out of the
(n/c)2 = 16 phases needed for the all-to-all communications,

only phases 30, 32, and 315 are shown. Each phase requires
four time slots, and the messages in each phase satisfy the
conditions of Lemma 3, while the four messages within
each time slot satisfy the conditions of Lemma 2. The sets
1 i

j , i = 0, ..., 3, j = 0, 1, are indicated in the figure where

1 1 1

1 1 1

1 1 1

1 1 1

0 0
0

0
1

1 1
0

1
1

2 2
0

2
1

3 3
0

3
1
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= =

= =

= =

= =

U U

U U

U U

U U

, , ,

, , ,

, , ,

, , .

< A < A
< A < A
< A < A
< A < A

5 GLOBAL REDUCTION (TREE-ORIENTED)
COMMUNICATIONS

Many applications require global data reductions. These
operations generate a single data value from data spread
across all system nodes. In systems where each node can
transmit and receive only one message at a time, a global
reduction algorithm requires a minimum of log n phases,
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where the logarithm is base 2. When all phases are com-
pleted, a single node (typically, node 0) in the system has
the result of the reduction.

The simplest implementation in a POPS topology of a
global reduction operation, called a natural global reduc-
tion, is as follows: During phase 3i of the reduction algo-
rithm, 1 ≤ i ≤ log n , the set of messages is given by

M k j j
k k

i n i
i+

−
− = ≤ <

2 1 2 0 2
,

log: , 1 6J L .

Fig. 4a shows the messages required in the five phases of
the global reduction operation for a network with n = 32.
For example, in the first phase, 31 , the messages in set
{M1,0, M3,2, M5,4, ..., M29,28, M31,30} are delivered. 32 has the
message set {M2,0, M6,4, M10,8, ..., M26,24, M30,28} , and the last
phase 35 has the message set {M16,0} .

THEOREM 2. In any POPS topology, a natural global reduction
requires a sequence of length s = (d − 1) + (log g) ≥ log n .

PROOF. For the natural global reduction described above,
each of the first log d phases requires the delivery of
messages for which the destination node-group is the
same as its source node-group. Specifically, in each
group, there are d data values to be reduced to one,
with only a single message possible per time slot.
Thus, the log d phases require

d d d d d di

i

d

2 4 2 1
1

+ + + = = −
=
∑K
log

time slots.
During the phases log d + 1, ..., log n, each phase

requires communication where each message’s desti-
nation node-group is different than its source node
group. Hence, each of these phases can be completed
in one time slot, and the entire natural global reduc-
tion takes (d − 1) + (log n − log d) = (d − 1) + (log g)
time slots. o

As is clear from Theorem 2, the natural global reduction
operation is not optimal because each of the first log d − 1
phases require more than one time slot each, while some of
the couplers are not utilized. If the POPS has at least n/2
couplers, then there are enough couplers to deliver the n/2
messages of the first phase in one time slot. Given that the
number of messages delivered in subsequent phases is less
than n/2, then, for a POPS with at least n/2 couplers
(d n≤ 2 ), an optimal global reduction should be completed
in log n time slots. This is achievable, as described next.

THEOREM 3. In any POPS topology where d n≤ 2 , global re-
duction is possible in a sequence of length s = log n.

Fig. 3. Complete communications in a POPS with n = 16 and d = 8 (g = 2).
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PROOF. Let d n b= 2 , for some integer b > 0. Thus, each of
the g groups in the POPS contains d = 2g/b nodes.
That is, they contain at most 2g nodes. Partition the

nodes in each node-group NGj, 0 ≤ j < g, into two par-
titions. The first partition,

1 j
R dj t t d1, 0 2 1= + = −: , ,K 2 7= B

contains the first d/2 nodes, and the second partition,

1 j
T dj d t t d1, 2 0 2 1= + + = −2 7 2 7= B: , ,K

contains the last d/2 nodes. During the first phase, 31,

nodes in 1 j
T1,  transmit messages and nodes in 1 j

R1,

receive messages. However, in order to distribute the
communication load on all the couplers, each of the
d/2 messages originating from 1 j

T1,  is sent to a dif-

ferent 1 j
R1, , i = 0, ..., g − 1. This can be easily accom-

plished if node dj + (d/2) + t sends a message to node

d(j +g t) + t, for j = 0, ..., g − 1 and t = 0, ..., (d/2) − 1.

This type of communication pattern has gd/2 = n/2 ≤ g2

messages which all involve a different source/destination
node-group pair. These n/2 messages form a subset
(proper subset only if b > 1) of the set of g2 messages

described in Lemma 2, thus ensuring that 31 requires
one time slot.

After 31 is complete, all nodes in 1 j
T1, , 0 ≤ j < g,

become inactive during succeeding phases, while all

nodes in 1 j
R1, , remain active. Each phase, 3i, 1 < i ≤

log d, follows a process similar to 31. At the beginning

of the phase, 1 j
i R−1,  is partitioned into two equal-

sized partitions,

1 j
R dj t t d i1, 0 2 1= + = −: , ,K 2 7= B

of receiving nodes, and

1 j
T dj d i t t d i1, 2 0 2 1= + + = −2 7 2 7= B: , ,K

        (a)        (b)

Fig. 4. Global reduction communications in a POPS with n = 32 and d = 8. (a) Natural reduction. (b) Optimal reduction.
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of sending nodes. Each node dj + (d/2i) + t sends a
message to node d(j +g t) + t, for j = 0, ..., g − 1, t = 0, ...,
d/2i. The resulting message set is always a subset of
the one specified in Lemma 2 and, thus, communica-
tion in 3i can be accomplished in one time slot.

After log d phases, there is a single active node left
in each node-group. Similar to the natural embedding
above, these g nodes may be reduced to one in log g
time slots. Thus, the entire sequence requires log d +
log g = log n time slots. o

Fig. 4b illustrates a minimal global reduction, as defined
above, in a POPS topology with n = 32, d = 8 (g = 4). The
reduction from the nine time slots needed for the natural
reduction of Fig. 4a to the five time slots for the optimal
embedding of Fig. 4b is obvious.

If d n> 2 , then c = g2 < n/2, and the number of cou-
plers is smaller than the number of messages that are to be
exchanged in phase 1. Specifically, if d bn= 2 , where b > 1,

then d = 2bg and gd/2 = bg2 messages are to be exchanged
in Phase 1 of the global reduction. By using the same parti-
tioning described in the proof of Theorem 3, we obtain a
message set which satisfies the conditions of Lemma 3 with
k = b. That is, Phase 1 of the global reduction can be accom-
plished in b time slots. In general, phase i for i < log b will
require b/i time slots, which means that the first b − 1
phases require a total of 2(b − 1) time slots. Each of the re-
maining phases will require one time slot and, thus, the
total global reduction can be accomplished in log n + 2(b − 1)
− log b time slots.

6 RING EMBEDDINGS IN A POPS TOPOLOGY

In a ring communication structure, each node in the ring
sends a unique message to the succeeding node. That is, in
an n-node ring, node k sends a message to node k +n 1,
where +n is the addition operation modulo n. Formally, a
ring communication structure is given by (V, E), where V =
{0, …, n − 1}, and E = {<u, u +n 1> : u ∈ V}. We will consider
only unidirectional rings in this section, since Lemma 4
provides a means for extending the results to bidirectional
rings in which a node, k, sends messages to both node k +n 1
and node k −n 1.

An obvious embedding of a ring, which we shall call the

natural embedding, is given by µ(k) = k. With that embed-
ding, the set of messages for the ring communication is
given by 0 = = −+{ : , , },M k nk k n 1 0 1K . The following

lemma shows that the natural embedding of the ring onto a
POPS network is not optimal.

LEMMA 6. Using the natural embedding of ring nodes onto a
POPS network, the ring communication requires a se-
quence of length s = d − 1.

PROOF. For the natural embedding described above, each
POPS topology node-group contains d consecutive
ring elements. During each iteration of the ring com-
munication, d messages originating from nodes in a
given node-group are sent to the next node in the
ring. Of these d messages, all but one are sent to
nodes within the given node-group. The d − 1 mes-
sages from the given node-group to the same node-
group all use the same coupler. At most one message,
however, is sent from any specific node-group to a
different node-group. Thus, the natural embedding of
the ring communication structure requires a sequence
length of d − 1. o

Ideally, a sequence length equal to max{1, n/c} should be
enough to deliver the n messages in the ring communica-
tion structure, where c = g2 is the number of couplers in the
POPS. Given that d = n/g, it follows that d − 1 > max{1, n/c}
for d > 2. Thus, the natural embedding does not lead to a
minimal sequence length. Another embedding, which we
shall call the alternating-pair embedding, will be shown to
be optimal.

The idea of the alternating-pair embedding is as follows:
First, partition the n ring elements into p = n/c subsets,

called sections, and denoted 1i, 0 ≤ i < p. Note that p is a

positive integer if d n≥  and both d2 and n are powers of

two. Each section, 1i, contains n/p = c consecutive ring
elements. The assignment algorithm given below, assigns

the c ring elements in each section 1i to node-groups in the
POPS network. This algorithm yields an identical sequence
of group assignments for each section in the ring.

Second, within a given single ring section 1i, partition
the c ring elements into g/2 subsets, called subsections, and
denoted 1 i

J , 0 ≤ J < g/2. Since g is a power of two, g/2 is a

Fig. 5. Overview of the alternating-pair embedding for a ring.
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positive integer. Each subsection, 1 i
J , contains c/(g/2) = 2g

consecutive ring elements. Fig. 5 shows the partitioning of
the ring elements into sections and subsections.

Third, within a given single subsection of a given single
ring section, the algorithm assigns the first element in the
subsection to node-group 0 , then increments of 2J and 2J + 1
are alternately (and cumulatively) added to generate suc-
cessive node-group assignments. Following is the assign-
ment algorithm.
node = 0 ;

for section = 0,. .., n/c − 1 do
for J = 0, ..., g/2 − 1 do /* map nodes in subsection J*/

µg (node) = 0; /* assign the first node in subsection J
                             to node-group 0 */
node = node + 1;
for i = 1, ..., 2g − 1 do

if i is odd
then µg(node) = µg(node − 1) +g 2J
else µg(node) = µg(node − 1) +g 2J +g 1;

node = node + 1;

A different way of presenting the above algorithm is to
assign the first node in the ring to node-group zero (µg(0) =
0) and, then, specify the offsets φ(k) = µg(k +n 1) −g µg(k) for
the nodes k = 0, …, n − 1. The following algorithm deter-
mines the offsets.
node = 0;

for section = 0, ..., n/c − 1 do
for J = 0, ..., g/2 − 1 do /* consider nodes in subsection J*/

for i = 0, ..., 2g − 1 do
if i is odd

then φ(node) = 2J +g 1
else φ(node) = 2J;

node = node + 1;

Note that if u and v are the first nodes in two consecutive
subsections, then v − u = 2g and, thus, µg(v) is equal to µg(u)
plus the sum of all the 2g offsets φ(i), i = u, …, v − 1. Out of
these offsets, g are equal to J and g are equal to 2J + 1 and,
thus, their sum (modulo g) is zero. Hence, µg(v) = µg(u) = 0,
since µg(0) = 0. This proves that the offsets calculated by the
above algorithm leads to the node-group assignment given
in the previous algorithm.

In Fig. 6, we show the application of the algorithm to the
embedding of a 16-node ring into the POPS shown in Fig. 2.
In this case, g = 4 and n = c = 16. Thus, there is only one
section, which is composed of two subsections. The first
node in each subsection is assigned to node-group 0, and
the group assignments of subsequent nodes in subsection 0
are obtained by incrementing the group assignments by the
offsets 0 and 1 alternatively. The group assignments of the
nodes in subsection 1 are obtained by incrementing the
group assignments by the offsets 2 and 3. The assignment
of nodes within groups is done arbitrarily. From Fig. 7, it is

Fig. 6. Node group assignments for a ring embedding (n = 16, d = 4).

Fig. 7. A ring embedding for an n = 16, d =4 POPS network.
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clear that all 16 messages from node µ(u) to node µ(u +16 1),
u = 0, …, 15, can be delivered in one time slot without con-
flict. The following proves the optimality of the alternating-
pair embedding of rings onto POPS networks.

THEOREM 4. In any POPS topology where n and d are powers of
two, if d n≥ , then the alternating-pair embedding of a
ring is a one-to-one embedding which requires a sequence of

length s = n/c = d2/n to accomplish ring communication.
This sequence length is optimal.

PROOF. We will prove that the set of messages originating
from the c nodes within any single ring section satis-
fies the conditions of Lemma 2.

First, the offsets used in the alternating-pair em-
bedding assignment algorithm are the offsets for the c
messages in the section. Each of the g possible offsets
is used in only one of the g/2 subsections in the sec-
tion. Within the subsection where a given offset is
used, it alternates with one other offset, thus occur-
ring g times and satisfying the first hypothesis of
Lemma 2.

Second, within the subsection J where a particular
offset is used, this offset occurs in every other mes-
sage. Thus, the group assignment for the sources of
the messages with the given offset increases by units
of (2J) + (2J + 1) = 4J + 1. Since 4J + 1 is odd, and the
number of possible group assignments g is a power of
two, they are relatively prime. Consequently, exactly
one of the g messages that has the given offset origi-
nates from each node-group. This satisfies the second
hypothesis of Lemma 2, thus showing that the alter-
nating-pair embedding leads to a one-to-one mapping
of nodes {0, …, n − 1} onto a POPS.

Lemma 2 now implies that the communication gen-
erated by a single section can be achieved in a single
time slot. Thus, the p sections in the entire ring require
p = n/c time slots. This is the minimum theoretical se-
quence length to deliver n messages with c couplers,
and implies a 100 percent coupler utilization. o

A modified version of the proof of Theorem 4 may be
applied to prove that the alternating-pair embedding is
optimal even if d n≤ . In this case, n < c and there is only
one section. If we partition this section into n/2g subsec-
tions of 2g nodes each, we may apply the same embedding
algorithm and show that the n messages in the ring struc-
ture can be delivered in one time slot.

7 TORUS EMBEDDINGS IN A POPS TOPOLOGY

Another particularly important regular communication
structure is the two-dimensional torus. Here, each torus
element sends four unique messages, one to each of its im-
mediate neighbors (up, down, left, and right). We will con-
sider only unidirectional tori since Lemma 4 can extend our
result to bidirectional tori. Specifically, we will consider the
communication structure (V, Eh < Ev), where V = {0, …, n − 1}
and

E u u u V u

u u n u V u

h n

n

= < + > ∈ + ≠

< − + > ∈ + =

, : &

, : &

1 1 0

1 1 0

> C
> C

U

represents wrapped around horizontal communications,
and E u v n u Vv n= < + > ∈, := B represents wrapped

around vertical communications. Given an embedding, µg,

of the nodes in V onto a POPS, let 0h and 0v be the set of

messages corresponding to Eh and Ev, respectively.
As for the ring communication structure, obvious em-

beddings exist for the two-dimensional torus in a POPS
topology. Also, as for the ring, these simple embeddings for
the torus can be shown to have relatively high sequence
lengths and poor coupler utilization. For example, in Fig. 8,
we consider the 4 × 4 torus communication in the 16-node
POPS shown in Fig. 1, in which d = 8. In Fig. 8a, where the
natural embedding is used, it is clear that row communica-
tion requires eight time slots while column communication
can be done efficiently in four time slots. In Fig. 8b, where
the alternating-pair embedding is used, it is clear that row
communication can be done efficiently in four time slots,
while the column communication requires eight time slots.
Neither embedding is optimal since, in an optimal embed-
ding, both row and column communication should be ac-
complished in four time slots each. Such an optimal em-
bedding is shown in Fig. 8c.

The alternating-pair embedding, introduced for the ring
communication structure and shown to be optimal there, can
be modified for embedding the two-dimensional torus in a
POPS topology. An additional restriction, namely d n≥ 2 ,
is required in the proof that the modified alternating-pair
torus embedding is optimal.

The modified alternating-pair embedding is as follows:
First, partition the n torus elements into p = n/c subsets,

called sections, and denoted 1i, 0 ≤ i < p. Each section, 1i,
contains c consecutive torus elements, or, stated differently,
c n  consecutive torus rows. The assignment algorithm

given below, assigns the c torus elements in each section 1i,
0 ≤ i < p, to node-groups in the POPS network. This algo-
rithm yields an identical sequence of group assignments for
each section in the torus.

Second, within a given single torus section 1i, partition
the c torus elements into g/2 subsets, called subsections,
and denoted 1 i

J , 0 ≤ J < g/2. Since g is a power of two, g/2

is a positive integer. Each subsection, 1 i
J , contains c/(g/2)

= 2g consecutive torus elements. It is a requirement that at
least one complete subsection fits within each row of the
torus, thus, 2g n≤  and d n≥ 2 . Fig. 9 shows the parti-
tioning of the torus elements into sections and subsections.

Third, the algorithm which assigns torus elements to
POPS network node-groups is similar to that for the ring
embedding, but with an additional final step. In essence, as
is the case for the ring, the first element in any subsection is
assigned to node-group 0, then increments of 2J and 2 J +g 1
are alternately (and cumulatively) added to generate suc-
cessive node-group assignments. Unlike the ring case, how-
ever, a final step is added in which assignments in row r are
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rotated r positions to the left. Following is the algorithm
that assigns node-groups to the elements of a section.

node = 0;
for J = 0, ..., g/2 − 1 do /* map nodes in subsection J */

τ (node) = 0; /* assign the first node in subsection J to
                             node-group 0 */
node = node + 1;
for i = 1, ..., 2g − 1 do

                    

(a)� (b)

(c)

Fig. 8. Torus communication in POPS with n = 16 and d = 8. (a) Natural embedding. (b) Alternating pair embedding. (c) Optimal embedding.
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if i is odd
then τ (node) = τ (node − 1) +g 2J
else τ (node) = τ (node − 1) +g 2J +g 1;

node = node + 1;
for r n= −0 1, ,K  do /* rotate the assignments of rows
                                               r n= −0 1, ,K */

for m n= −0 1, ,K  do

If (m − r < 0) then µ τg nr m r nr m+ − = +3 8 3 8
   else µ τg n r m r nr m+ + − = +10 53 8 3 8;

For example, consider the embedding of a 256-torus into
a POPS with d = 32. In this case, g = 8, c = 64 and, thus,
there are four sections, each containing four subsections of
16 nodes each. Here, a subsection spans an entire row.
Fig. 10 shows the group assignment for the nodes in any of
the four subsections, before and after the row rotation step.

A simpler example is the one for which n = 16 and d = 8.
In this case, there are four sections, each containing a single
subsection of four elements. That is, each row of the torus is
a subsection and, thus, in each row, the four nodes are as-
signed to groups 0, 0, 1, and 1, respectively. The assignment
in each row, r, 0 ≤ r < 4, is thus rotated to the left by r posi-
tions, yielding the group assignment 0, 0, 1, 1 for the first
row, 0, 1, 1, 0 for the second row, 1, 1, 0, 0 for the third row,
and 1, 0, 0, 1 for the last row. The node assignment shown
in Fig. 8c follows the above group assignment.

Each node, µg(u), in the POPS contributes one message to

the set 0h of horizontal messages and another message to the

set 0v of vertical messages. Let φh(u) be the offset of the for-

mer message and φv(u) be the offset of the latter. As was done

for the ring case, an algorithm which specifies the offsets τ (u +n

1) −g τ(u) for each node may be given. Noting that τ assigns
group 0 to the first node in each row, we conclude that
τ τ τ τu u u n un g g+ − = − −12 7 0 5 3 8 0 5  if u is the last node in a

row. Hence, the set of horizontal offsets {φh(u) : u = 0, …, n − 1}
obtained after rotating the assignments of row r is equal to the

set of offsets, {τ(u +n 1) −g τ(u) : u = 0, …, n − 1}, obtained before
the rotation. In Theorem 1, it was shown that such a set can be
delivered in n/c time slots. This proves that the set of hori-

zontal messages in the torus communication structure, 0h,
can also be delivered in n/c time slots. In the next theorem, we

will show that, if d n≥ 2 , the set 0v can also be delivered in
n/c time slots, thus proving the optimality of the alternating-
pair embedding for the torus communication structure.

THEOREM 5. In any POPS topology where n and d are powers of
two, if d n≥ 2 , then the alternating-pair embedding of a
torus communication structure requires a sequence of

length s = 2n/c = 2d2/n, which is optimum.

Fig. 9. Overview of the alternating-pair embedding for a torus.

Fig. 10. Node group assignments for a torus embedding (n = 256, d = 32).



1010 IEEE TRANSACTIONS ON COMPUTERS,  VOL.  47,  NO.  9,  SEPTEMBER  1998

PROOF. Appropriately, the proof is similar to, though more
intricate than, the proof of optimality in the ring em-
bedding. Consider a single torus section. For the c
horizontal messages in the section, we have shown
that these messages are identical to those in a single
section of a ring with the same n and d and, thus, can
be achieved in a POPS network in a single time slot.
We will prove that the c vertical messages also satisfy
the hypothesis of Lemma 2. In order to simplify the
discussion, we will define the rs-section, 1 i

J  to be a

version of 1 i
J  which is rotated to match the row ro-

tation in the alternating-ring embedding. In other
words, if 1 i

J  contains the nodes u, …, u + 2g − 1, in

row r , then 1 i
J  contains the nodes u − r, …, u + 2g −

1 − r, where the left rotation wraps around nodes in
the same row. In the rest of this proof, we will refer to
horizontal offsets by h-offsets and to vertical offsets by

v-offsets. We will also drop the subscripts from +g and

−g, with the understanding that all additions and
subtractions on offsets are modulo g .

First, it will be shown that the first hypothesis of
Lemma 2 is true, that is, each possible v-offset is used
g times. The v-offsets for these messages are deter-
mined by the group assignments of the source nodes
in one rs-section and the destination nodes in another
rs-section. These assignments are, in turn, determined
by alternating pairs of different h-offsets. For example,
the h-offsets in rs-section J are 2J and 2J + 1. Since there
are n g2  rs-sections in each torus row, the h-offsets
for the rs-section J n g+ 2 , which is immediately be-

low rs-section J, are 2J n g+  and 2 1J n g+ +3 8 .

These offsets are depicted in Fig. 11.
These facts, combined with the effect of the row ro-

tation in the assignment algorithm, cause the first v-
offset for the Jth rs-section to be 2J n g+ , where 0 ≤ J
< g/2. Further, succeeding offsets within the rs-section
alternately (and cumulatively) increase by n g3 8 + 1

and n g3 8 − 1. This pattern of increase in the v-

offsets is independent of which rs-section in the sec-
tion is involved.

Since

n g n g n g3 8 3 8+ + − =1 1 2

and

2 22n g g n g3 84 9 = ,

the v-offsets repeat after g n2 2  increments. Thus,
the 2g v-offsets in a rs-section are divided into 2 n g

sets of g n2 2  v-offsets each. These sets of v-offsets,
which we shall call cycles, are identical within an rs-
section.

The set of all g2 v-offsets in a section is, thus, di-

vided into n g  cycles of g n2 2  v-offsets each.
These cycles can be shown to be disjoint or identical.

If the same v-offset occurs both at even or both at odd
locations in different cycles (counting from 0 at the
cycle beginning), then the same sequence of incre-
ments (starting with either n g3 8 + 1 or n g3 8 − 1,

respectively) will be applied. These two cycles will
consequently be identical. If the same v-offset occurs
at an even location in one cycle and an odd location in
another cycle, then, since both increments are odd, the
first v-offset in one of the cycles is odd. This is a con-
tradiction, since the first v-offset, as previously
shown, is always even. Thus, the n g  cycles are
disjoint or identical.

Each of the different cycles can also be shown to oc-
cur once in the cycles of the first n g  rs-sections in
any section. Consider the specific v-offset which begins
the cycles which occur in rs-section J1, 0 1< <J d n . If
this offset occurred in the cycles of a previous rs-
section J2, 0 2 1≤ < <J J n g  , then

n g J n g J l n g3 8 3 8+ = + +2 21 2 .

Here, l is the location of the v-offset within the cycle.
Since even locations have even v-offsets and odd lo-
cations have odd v-offsets (the first v-offset is even
and the v-offset increments are both odd), the location
of the v-offset in rs-section J2 must be even. Now,
J J l n g1 2 2= + , but, since J n g1 < , then l must be

0 and J1 = J2. Thus, the n g  cycles partition the g
possible v-offsets.

A similar argument shows that in each consecutive
disjoint set of n g  rs-sections (two rows of the torus),
each of the different cycles occurs once. In the entire
section, each cycle occurs in g n g g n2 222 7 3 8 =

rs-sections. Since a cycle occurs 2 n g  times in an rs-
section and a specific v-offset occurs once per cycle, a
cycle occurs g times per section. This satisfies the first
hypothesis of Lemma 2.

Second, it will be shown that the second hypothe-
sis of Lemma 2 is true. That is, for each of the possible
v-offsets, exactly one message originates in each
source node-group. Consider one of the g possible v-
offsets, say f. As a v-offset, f occurs in g n2 2  rs-
sections, and occurs once in each of the 2 n g  cycles
within each of these rs-sections. Define a collection of
nodes with v-offset f to be a matrix of nodes which
consists of g n2 2  rows. The nodes in each row are
those nodes that belong to the same rs-section and
have f as a v-offset. Hence, a collection is an g n2 2
by 2 n g  matrix. We will show that any two nodes in
a collection have different group assignments.

Denote by nr,c the node in row r and column c of a
collection and recall that this node is assigned to

group µg(nr,c). Consider two nodes nr c1 1,  and nr c2 2,  in

the same collection. The relationship between both
nodes and node nr c1 2,  will be used to demonstrate that
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µ µg r c g r cn n
1 1 2 2, ,4 9 4 9≠ . If µ µg r c g r cn n

1 1 2 2, ,4 9 4 9= , it must

be that µ µ µ µg r c g r c g r c g r cn n n n
1 1 1 2 2 2 1 2, , , ,4 9 4 9 4 9 4 9− = − .

Thus, a specification of the difference between group
assignments for collection nodes in the same row and
nodes in the same column is needed.

In a collection, the difference between group as-
signments for adjacent nodes in the same row is a
function of n , g, the number of the rs-section, J0, that
contributes the first node in the entire collection, and
the number of the collection row r that contains the
nodes. All of these, except r, are constant for all nodes
in the collection. Specifically, it can be shown that the
group assignment difference

µ µg r c g r cn n g n r n g J, ,+ − = + +1
2

02 4 4 13 8 3 8 4 93 8 .
This reduces to g n J2

02 4 14 92 7+ , since 2rg = 0 mod g.

Now, since g g n n g2 2 24 9 =  is a power of two,

and 4J0 + 1 is odd, they are relatively prime. Thus, the
2 n g  nodes in any given collection row have dis-
tinct group assignments and are uniformly distributed
among the g possible node assignments. Then, by a re-
arrangement of the columns in the collection, the group
assignment difference becomes g n2 2 . This is the dif-
ference for any two adjacent nodes in the rearranged
collection, regardless of which row or which columns
are involved. The difference between group assign-
ments for two nodes that are in the same row but not

adjacent is µ µg r c g r cn n g c c n, ,2 1

2
2 1 24 9 4 9 2 7− = − .

In a collection, the difference between group as-
signments for adjacent nodes in the same column is a
function of n , g, the number of the rs-section J0 that
contributes the first node in the entire collection, the
position l of the offset within the cycle, and the number

of the collection row r that contains the upper node.
All of these, except r, are constant for all nodes in the
collection. Specifically, it can be shown that the group
assignment difference

µ µg r c g r cn n n g l r J+ − = − − − +1, 02 4 2 4 13 8 3 8 3 81 6 2 7, .

This difference, which we will denote Vr, is independ-
ent of which column in the collection contains the
nodes. The difference between group assignments for
two nodes that are in the same column but not adja-
cent is

µ µg r c g r c rn n V n r r g r r
2 1 1

8 12 1 2 1, ,4 9 4 9 2 74 92 7− = − − − − .

Given nodes nr c1 1,  and nr c2 2,  in a collection, if

µ µg r c g r cn n
1 1 2 2, ,4 9 4 9= ,

then
µ µ µ µg r c g r c g r c g r cn n n n

1 1 1 2 2 2 1 2, , , ,4 9 4 9 4 9 4 9− = − .

This would imply that

g n c c V n r r g r rr
2

2 1 2 1 2 12 8 1
14 92 7 2 74 92 7− = − − − − .

Since 2 4 2n l r g− −1 6  is an even number and 4J + 1 is
odd, then Vr1

 is odd. Further, since 8 12 1n r r g− −2 7  is

even, V n r r gr1
8 12 1− − −2 7  is also odd. On the other

hand, since g n2 2  is a power of two, then it must be

that g n r r2
2 12 ≤ − . This is a contradiction, since

0 22 1
2≤ − <r r g n . Thus, any two distinct nodes in

any collection must have different group assignments,
and each of the g possible v-offsets must have distinct
source node-group assignments. This satisfies the
second hypothesis of Lemma 2 and, thus, proves that
that the communication generated in the vertical di-
rection by torus nodes in a single section can be
achieved in a single time slot.

Fig. 11. The relation between v-offsets and h-offsets in rs-sections.
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Hence, the communication generated in the verti-
cal direction in the entire torus requires p = n/c time
slots. The result of the theorem follows by adding to
this the n/c time slots required for the horizontal
communications. The 2n/c is the minimum theoretical
sequence length to deliver 2n messages with c cou-
plers, and implies a 100 percent coupler utilization. o

8 CONCLUSION

The Partitioned Optical Passive Stars (POPS) Topology pro-
vides multiple data channels in an all-optical design that
utilizes non-hierarchical passive stars. A key design con-
figurability provides for a powerful optimization between
lower total system complexity versus the combination of
higher system throughput and lower power budgets. This
paper has characterized the general communication capa-
bility of POPS networks. The group communication capa-
bilities of POPS has been described and used to analyze the
efficiency of embedding four of the most common and im-
portant regular communication patterns.

It was shown that all-to-all personalized communication
in a POPS network is optimal when d n≥ . Similarly, it
was shown that log n global reduction operation is always
possible if the POPS contains enough couplers to support
the required message exchange in each step of the reduc-
tion. The obvious or “natural” global reductions were
shown to be inefficient.

The alternating-pair method of embedding the ring
communication pattern in a POPS topology was presented.
This embedding was shown to be optimal in any given
POPS network. The ring embedding was extended to pro-
vide for embedding two-dimensional tori in POPS topolo-
gies. The extended embedding was shown to be optimal
when d n≥ 2 .

The optimal nature of an alternating-pair embedding of
the ring or torus communication pattern in a POPS topol-
ogy was shown to be independent of the unidirectional or
bidirectional aspect of the communications. Further, since
the linear array is a subset of the ring and the mesh is a
subset of the torus, the alternating-pair method is similarly
efficient for embedding these patterns into POPS topolo-
gies. Additionally, results not presented here demonstrate

the applicability of the alternating-pair method to three-
dimensional tori embeddings in various POPS topologies.
The extension of the embedding algorithm from two- to
three-dimensional torus is similar to the extension from the
ring to the two-dimensional torus.

The inherent high utilization and high performance of a
POPS topology is well matched to common application
requirements. Wide ranges of POPS topology parameters
have been shown to support these communication struc-
tures with 100 percent coupler utilization and/or minimal
sequence lengths. Table 1 summarizes the POPS topology
support for the various communication patterns discussed
assuming that d n≥ . That is, assuming that the number of
couplers is not larger than the number of processors.

In [5], it has been shown that an n-node POPS handles
random communication patterns efficiently, especially
when the coupler degree, d, is proportional to n . Hence,
choosing d n= 2  for POPS efficiently supports random
traffic and optimally supports the regular communication
patterns discussed in this paper. The efficiency of POPS
networks to support other regular communication patterns
is open for further studies. Another issue that is open for
further studies is the comparison of the different ways of
adding redundant paths to POPS network for purposes of
fault-tolerance or congestion control. Finally, the benefits of
using a limited degree of WDM in POPS networks need to
be weighted against the hardware and control complexity
introduced when both WDM and TDM are combined.
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TABLE 1
POPS TOPOLOGY SUPPORT

Communications Pattern Range Sequence Length
All-to-All Person. Group 1
All-to-All Personalized d

2

Natural Global Reduction (d − 1) + (log2 g)

Optimal Global Reduction d n≤ 2 log n

d bn= 2 , b > 1 log n + 2(b − 1) − log b

Natural Unidirectional Ring d − 1
Natural Bidirectional Ring 2d − 2
Optimal Unidirectional Ring d

2
/n

Optimal Bidirectional Ring 2d
2
/n

Optimal Unidirectional Torus d n≥ 2 2d
2
/n

Optimal Bidirectional Torus d n≥ 2 4d
2
/n
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