
Using Spanning-Trees for Balancing 
Dynamic Load on Multiprocessors 

Rami G. Melhem, Kirk R. Pruhs, and Taieb F. Znati 
Computer Science Department 

University of Pittsburgh 
Pittsburgh, PA 15260 

Abstract 

We consider the problem of load balancing t o  mini- 
mize the cost of dynamic computations, including the 
cost of migrations. We analyze the costs associated 
with diffusion based algorithms for several common ar- 
chitectures. We introduce the Ripple load balancing 
paradigm, which has several advantages over diffusion 
methods, including flexibility and faster convergence. 

1 Introduction 

We consider the problem of balancing dynamically 
changing loads on a processor graph assuming that 
execution proceeds in steps, with a local load balanc- 
ing attempt after each step. We use Li>t to  denote 
the load on node i at step t ,  and assume that the 
load is initially balanced. We make the standard as- 
sumption that there is a large number of tasks so that 
the load may be treated as a continuous variable [2]; 
This assumption can be removed by using the bank- 
ing mechanism described in [6]. We will use c to  de- 
note the relative cost of a migration to computation; 
specifically, the cost of migrating a task between two 
neighboring processors is c times the cost of execut- 
ing the task on a processor. The goal of a load bal- 
ancing algorithm is thus to  minimize the total com- 
putation time, taking into consideration the cost of 
migrations. Specifically, if the computation requires 
T steps, then the total computation cost is given by 
Ct,l(max{Li,t} +c max{Xi,t}), where Xi , t  is the load 
migrated, at step t ,  from processor i to any neigh- 
boring processor. The inclusion of the migration cost 
in the analysis distinguishes this work from previous 
work on dynamic load balancing. 

We propose the following criteria as a framework 
within which we can formally assess the effectiveness 
of load balancing algorithms. These criteria are de- 
fined with respect to a point of quiescence, ie. during 

T 

load balancing no new tasks are created or consumed. 
The minimum conditions that a load balancing algo- 
rithm should meet are stability, the load eventually 
reaches a fixed distribution, and levelness, the load at 
all the processors is equal at  the fixed distribution. 
The following measures determine the cost incurred 
to  reach stability, which is our main concern in this 
paper: 

1. Time to Reach Stability - The number t^ of load 
balancing steps necessary to  reach stability. 

2. Migration Cost - The time spent in migrating load 
until stability is reached. More formally, the migration 
cost is M = cCtZl max {Xi , t } .  

3. Load Imbalance Cost - The delay experienced in 
the computation steps due to  load imbalance until lev- 
eling. Let Lt be the average load over all the proces- 
sors at time t .  The the load imbalance cost is formally 
defined as G = 

While these criteria are defined from a point of qui- 
escence, they can still be used to  assess many aspects 
of the dynamic behavior of load balancing algorithms. 
This is because the dynamic behavior of the load bal- 
ancing algorithms we consider can be described by su- 
perimposing the static behavior resulting from each 
load change. 

i 

i max{Li,t - i t } .  

2 Diffusion Algorithms 

A standard class of local load balancing algorithms 
is diffusion (or sometimes called gradient) algorithms 
[2, 3, 7, 81. Let Lt be a column vector with ith co- 
ordinate Li, t .  In a diffusion algorithm the loads are 
updated according to  the formula Lt+l = ALt,  where 
A is an n by n nonnegative doubly stochastic matrix 
with A i j  representing the fraction of the load at Pj 
that is given to  Pi. Cybenko [3] gives necessary and 

0-8186-2290-3/91/0000/0233/$01.00 0 1991 IEEE 233 



sufficient condition for a diffusion algorithm to be lev- 
eling. In the standard diffusion algorithm, on a degree 
d regular processor graph each, Ai,i = Aj,i = l / (d+ 1) 
for all Pj adjacent to  Pi. If neighboring processors Pi 
and Pj want to  exchange load at  some time t ,  this 
can be implemented as follows. If Li,t > Lj,t then Pi 
migrates Aj,iLi,t - Ai,,Lj,t units of load to  Pj. 

As shown in Table 1, the standard diffusion algo- 
rithm may incur asymptotically nonoptimal costs in 
reaching leveling. The parameter d denotes the diam- 
eter of the graph; for a linear processor array d = n ,  
for a 2-dimensional grid d2 = n,  and for the hypercube 
2d = n. Note that the entries in this table assume that 
a load change of n occurs in one Pi, which can easily 
be seen to  be the worst case for diffusion. These val- 
ues were computed by noting the relationship between 
diffusion and random walks [5, 11. In a random walk 
a particle moves from a node to  an adjacent node at  
discrete time intervals. At each point it chooses each 
neighboring vertex with equal probability. If the par- 
ticle starts at  a vertex i the convergence t i m e  is defined 
to be the time until the probability that the particle 
is at vertex v is O(l/n), for all vertices v. Then, one 
can see that the convergence time of the standard dif- 
fusion algorithm is bounded below by the convergence 
time of the random walk. 

We now briefly explain how the costs for diffusion 
were computed. For the random walk, define p t ( k )  to 
be the probability that the particle is at  a fixed vertex 
k units from the origin after t steps. One can show 
that on the line p t ( 0 )  = @ ( l / ~ ) ,  for t < n. On the 
grid p t ( 0 )  = O ( l / t ) ,  for t < n. On the hypercube 
p t ( 0 )  = 0(2-d( l  + e - z t / d ) d )  [l]. In each architecture] 
for all t ,  pt(IC) is a monotone decreasing function of 
k. These facts suffice to  compute the time to reach 
stability and the load imbalance cost. Computing the 
migration cost of diffusion is not so easy because the 
maximum of the may occur at a different Pi for 
each t .  

3 Ripple Algorithms 

We introduce a class of algorithms, called Ripple 
algorithms that reach leveling in time linear in the 
diameter of the processor graph. Ripple algorithms 
are based on the simple idea that if the load in the 
network is initially balanced] then, any load increase 
(or decrease) in one processor should be equally dis- 
tributed among all the processors. We begin by de- 
scribing the Ripple paradigm for a linear processor 
array. In particular] we present two algorithms; The 
first algorithm, Tortoise ,  minimizes migration cost, 

and the second algorithm, Hare, minimizes load im- 
balance cost. 

A Ripple algorithm is constructed by superimpos- 
ing n simple distributed load balancing algorithms, 
AI, .  . .,A,, where each Ai is an algorithm that is 
specifically designed to  distribute the load forked at  Pi 
uniformly to  all other processors. Let fi,o be a change 
in load at Pi at time 0 ,  and let di be the algorithm fol- 
lowed by the j t h  processor in Ai. Note that f i , ~  could 
be negative. In the Ripple paradigm we distinguish 
between two types of load changes that a processor 
can experience. New load is load created or lost in a 
processor. Passed load is load that the processor gives 
to  or receives from a neighbor. In Ai, processor Pi 
keeps its fair share of the new load and passes the rest 
to Pi-1 and Pi+1. A neighbor that receives a passed 
load, keeps its fair share of that  load and continues 
passing the rest in the original direction. 

When passing loads to neighboring processors we 
may not want to pass all the load in one step. Instead, 
we may want to schedule some of the load to  be passed 
at future times. Different schedules will yield differ- 
ent Ripple algorithms. To implement this idea! each 
processor Pj maintains two tables T j ( t )  and q’(t) of 
reals, with 0 5 t 5 m, where m is the amount of time 
that it takes any di to balance the load. The variable 
t represents the current time. Each processor begins 
with t = 0 and increments t each balance step. The 
value of T,!(IC) and ?’(IC) represent the load that Pj 
will send to  the right and left, respectively, at time IC. 

If Pi changes its load at some time t ,  other than 
0 ,  then the same tables can be used in a circular 
way. More specifically, the entry corresponding to t 
in the above tables will be t mod rn. The algorithms 
AI, . , . ,A,  may use the same tables to schedule the 
load to be passed. 

Following is an informal description of di at time 
t for Tortoise. 

SI .  If i = j and fi,t is nonzero then: 
Tortoise schedules the load to  be passed to the left 
and the right. Specifically, it sets c ( t  + a mod n)  = 
q(t + a m o d  n)  + f t , t /n ,  for a = 0, ..., i - 2, and 
sets Tj(t + a mod n)  = Tj(t + a mod n)  + f i , t /n ,  for 
a = O ,  ..., n - i -  1. 
S 2 .  Pj sends q’(t mod n)  units of load to  the left 
and T,!(t mod n)  units of load to  the right. Pj then 
sets 1;j(t mod n)  and Tj(t mod n)  to 0. 

S 3 .  If Pj receives pr and p~ units of load from the 
right and left, respectively, it sets q’(t + 1 mod n)  = 
T/ (t + 1 mod n )  + pr (j - l ) / j  and T,! (t  + 1 mod n)  = 
T,!(t + 1 mod n)  + pl(n - j ) / ( n  - j + 1). 

234 



Note that in step S1, after scheduling the loads in 
and Tj, Pi ends up keeping f i , l /n  units of load, 

which is its fair share of f i , t .  Also note that in step 
S3 ,  after scheduling the loads in @ and T!, Pj ends 
up keeping p, / j  + pl / (n  - j + 1) units of load, which 
is its fair share of pr and pl. 

In a different algorithm, Hare, the goal is to  achieve 
a load imbalance cost of O(nlogn),  which may be 
shown to be optimal. In each Ai, if the load change 
occurred at time 0, a schedule for Hare can be derived 
by imposing the condition that Lj,t is at most j i ,o/t ,  if 
li - j l  5 t and zero otherwise. In Figure 1, we assume 
that L is the part of the load forked at Pi that should 
be equally distributed among Pi, . . . , P,,. 

0 0 0 0 0  
L 
T 

@ O O O O  
L L  L 
T-3- 7 

L L  'L.-p -ici"&$G a-3 3 

Figure 1 - Minimizing the load imbalance in Hare 

So far we have considered only linear interconnec- 
tions. Given a general, point-to-point interconnection 
between n processors, PI, . . . , P,, a Ripple algorithm, 
Ai, may be used to  distribute any load forked at  Pi 
to all other processors uniformly. For this, a subset 
of the interconnection links should be chosen to  form 
a spanning tree, Si, rooted at Pi and connecting all 
the processors. Each processor, Pj should know the 
link, In!, which connects it to  its parent on Si (if 
j # i) and the set of links, Out!, which connect it to 
its children on Si. Pj should also keep a scheduling 
table T/,l for each link l in Out! and should know the 
size of the subtree of Si rooted at each of its children. 
Specifically, for each link, e in Out! connecting Pj to 
the root of a subtree of Si, we denote the number of 

processors spanned by this subtree by 
require that Pj knows Sire{,l .  

When a load ji,t forks on Pi, Pi keeps 1/n of that 
load, and, for each e in Outf, it schedules Sizei,[/n of 
f i , t  in c,l to  be passed on link e. When a processor, 
Pj receives a passed load, p,  on In!, it keeps l / (u  + 1) 
of that load, where U is the sum of 
in Out!, and schedules S i ~ e { , ~ / ( u  + 1) of p in qj,l to 
be passed to  e. As in the linear case, different algo- 
rithms may result from different scheduling of forked 
and passed loads. 

Given that a different spanning tree Si is associ- 
ated with each forking processor, Pi, each processor 
Pj should keep a record of In:, Out: and for 
each i = 1,. . . , n .  Moreover, the scheduling tables, 
T,:L at Pj may not generally be combined into one ta- 
ble, Ti ,  because when Pj passes a load p on a link e, 
it should pass with it the identity of Si that is being 
used to propagate p. Fortunately, this book-keeping 
may be greatly simplified if the n spanning trees, Si, 
i = 1,. . . , n ,  satisfy the following condition: 

For any j, if In! = Injk, then Out! = Outk. 
More descriptively, this condition states that, if two 
trees si and sk are incident to  Pj at the same incoming 
link, then the subtrees of Si and sk rooted at  Pj are 
identical. Note that this implies that the maximum 
number of spanning trees passing by Pj is at  most 
equal to  the number of links connected to  Pj. More- 
over, the identity of the tree on which a load is being 
propagated need not be explicitly identified. When 
Pj receives a passed load p,  the subtree on which p is 
to  be propagated is uniquely identified by the link at  
which p was received. With this, only one scheduling 
table Tj is needed for each link e connected to Pj. 

In order to illustrate this concept, we consider an 
n = d2 processor grid, P,,j, i, j = 1 , .  . . , d. The above 
condition is satisfied if the spanning tree Si,j rooted 
at Pi,j consists of all the links connecting processors 
in row i, and all the links connecting two processors 
in different rows. Note that the same undirected trees 
underlie S,,j and S i , k ,  for j ,  k = 1, . . . , d. For example, 
the trees S2,3 and S 4 , 2  in the 16 node grid are shown 
in Figure 2. 

In Figure 3,  we consider P3,3 and for each incoming 
link, we show the subtrees used to  propagate a received 
load. Let Si, j(k,  1) denote the subtree of Si,j rooted at  
Pk,l. Figure 3(a) shows S3,4(3,3). Figure 3(b) shows 
S3,~(3,3) S3,2(3,3), which are identical. Figure 3(c) 
shows Si, j(3,3),  for i = 1,2 and j = 1 , .  . . ,4. Finally, 
Figure 3(d) shows S4,j(3,3), for j = 1,. . . , 4 .  

Table 1 shows the asymptotic costs of two Ripple 

and we 

for all 

235 



algorithms for the grid. The Hare (Tortoise) algo- 
rithm for the tree Si,j uses the linear Hare (Tortoise) 
algorithm to distribute the load evenly in the ith row, 
and also uses the linear Hare (Tortoise) algorithm to 
distribute the load in each column. 

s4.2 s 2,3 

Figure 2 - Spanning trees S2,3 and S4,2 

0 

0 

0 M 0 
0 0 0 0  0 

0 0  0 0 

0 0 

O O i  0 0  0 0 

(c) 

Figure 3 - Spanning Subtrees at  P3,3 

Figure 4 - The eight trees in a 3-D cube 

For an n = 2* processor hypercube, the spanning 
binomial tree [4] rooted a t  a processor Pi may be used 
for Si. This tree is constructed by connecting Pi to 
Nk(Pi), k = 1,.  . . , d, where Nk(pi) denotes the neigh- 
bor of Pi across dimension k. Each Nk(Pi) is then 
connected to Nu(Nk(pi)) for U = 1,. . . , k- 1, and the 
process continues recursively. For example, the eight 
trees for a 3-dimensional cube are shown in Figure 4. 
Clearly, with these trees, a processor which receives a 
load p from the link across dimension k, keeps 1/2k-1 
of p and passes 2u-1/2k-1 of p to  its neighbor across 
dimension U ,  for U = 1,. . . , k - 1. 

Architecture Time to Imbalance Migration 

Algorithm Stability cost cost 
~ 

Line 
Diffusion d 2  d2  ? 

Tortoise d d 2  d 
Hare d d logd d logd 

Grid 

Diffusion d2 d2 log d ? 

Tortoise d d 3  d2 

Hare d d 2  d2 log d 

Hypercube 
Diffusion d logd 2 d  ? 

Ripple d 2 d  2 d  

Table 1 

Table 1 gives the asymptotic costs for different Rip- 
ple algorithms for various architectures. We briefly 
describe how these costs were computed. Clearly, the 
time to stability is O(d)  in each case. Assume that 
f i , ~  = n. First, we consider a linear processor ar- 
ray. The maximum load migrated by Hare in step t 
is n/t .  Hence the migration cost is Cr=l n/t = n H,, 
where H,, is the nth Harmonic number. Note that 
H,, = O(1ogn). By the design of Hare, the maximum 
load at  time t is n/t .  Hence the load imbalance cost is 
E,"=, n/t  = O(n log n). The maximum load migrated 
by Tortoise in step t is 1, and hence the migration cost 
is O(n) .  In Tortoise, the maximum load a t  time t oc- 

236 



curs at Pi and is n - t .  Hence the load balance cost is 
Cy=“=,n - t) = O(n2). 

Costs for the grid can easily be computed from the 
costs on linear processor array. For the hypercube the 
maximum load at  time t is less than 2d/2t, for t < d, 
and hence the load imbalance cost is 0(2d) .  Similarly, 
since the load transferred at time t is less than n/2t, 
the load migration cost is @ ( a d ) .  

4 Conclusion 

The Ripple technique introduced here has many ad- 
vantages; its time to  st,ability is O(d), it can be viewed 
as both sender initiated and receiver initiated [7], and 
its scheduling mechanism allows it to be very flexible. 

References 

[l] Aldous, D., “Minimization Algorithms and Ran- 
dom Walk on the d-Cube,” Annals of Probability, 
Vol. 11, pp. 403-413, 1983. 

[a] Bertsekas, D.P. , and Tsitsiklis, J.N., Parallel 
and Distributed Computation: Numerical Meth- 
ods, Prentice Hall, 1989. 

[3] Cybenko, G., “Dynamic Load Balancing fur Dis- 
tributed Memory Multiprocessors,” Journal of 
Parallel and Distributed Computing, Vol. 7, pp. 
279-301, 1989. 

[4] Johnsson L. and Ho. C., ”Spanning Graphs for 
Optimal Broadcasting and Personalized Commu- 
nications in Hypercubes”, IEEE Transactions on 
Computers, Vol. 38, pp. 1249-1268, 1989. 

[5] Kemeny, J.G., and Snell, J.L. Snell, Finite 
Markov Chains, D. Van Nostrand Co., Princeton, 
N.J., 1960. 

[6] Pruhs, K., Melhem, R., and Znati, T. ,  “Dynamic 
Mapping of Adaptive Computations onto Linear 
Arrays”, to appear in Proceedings of Workshop on 
Unstructured Scientific Computation on Scalable 
Multiprocessors, 1990. 

[7] Willebeek-LeMair, M., and Reeves, A.P., “Dy- 
namic Load Balancing Strategies for Highly Par- 
allel Multicomputer Systems”, Technical Report, 
EE-CEG-89-14, Dec. 1989. 

[8] Willebeek-LeMair, M., and Reeves, A.P., Inter- 
national Conference on Parallel Processing, 1990. 

231 


