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Abstract 
This paper is concerned with sender-initiated 

load balancing algorithms for  parallel architecture 
that take into consideration the dilation between the 
sender and the receiver of the migrated task. The 
basic scheme proposed in this paper, uses a load 
contention number that accounts for the dilation 
among processors. This mechanism is generalized to 
reflect the specijic requirements of different environ- 
ments. W e  also describe variations of the basic 
scheme that aim at reducing the interaction over- 
head among contending processors. 

1 Introduction 
The full potential of any distributed processing sys- 

tem can be realized by equally sharing the computational 
load among all processors. The uniform distribution of the 
load among the various processing nodcs maximizes 
resource utilization and enhances the total throughput of 
the system. This problem is referred to in the literature as 
Load Balancing [ 13. 

Load balancing strategies may be eithcr static or 
dynamic. In a static approach, the distributed process is 
viewed as a collection of tasks each of which can bc car- 
ried out by any one of the hosts. The tasks and their 
dependencies are known a priori. Consequently, load 
balancing can be realized by statically assigning the tasks 
to different hosts in order to achieve system wide objcc- 
tives such as minimum average response time, minimum 
interprocess communication traffic and maximum 
throughput. Once assigned to a particular process, the task 
is bound to run on that proccss until completion [1,2,3]. 
The problem of finding optimal assignment of tasks to 
hosts so that some performance criteria is achieved is 
known to be NP-complete [4]. Several hcuristics based on 
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graph theory, queueing theory and network flow theory 
have been proposed [5].  In general these approaches pro- 
vide a suboptimal task assignment. 

Dynamic load balancing may be modeled by a 
dynamically created task precedence graph. In this 
approach, tasks may be spawned dynamically by exploit- 
ing concurrent executions embedded in the program. The 
ncwly spawned tasks which can be executed on other idle 
processors may, in turn, spawn more tasks requiring 
further dispersal of the system load [6,7]. 

The preformance of the dynamic load balancing 
strategy depends upon the process migration mechanism 
and the size of information domain analyzed for load dis- 
tribution. In essence, dynamic load balancing may be 
viewed as an ongoing decision process in which indivi- 
dual processors attempt to utilize a local view of the glo- 
bal state of the system to make independent decisions 
aimed at meeting global objectives. The performance 
associated with the dynamic load balancing strategy is a 
function of the collection of decisions made at the physi- 
cally distributed nodes. The efficiency of the strategy 
depends on the cost of interprocess communication, the 
logical complexity introduced and the need to maintain 
global state information at each host involved in the pro- 
cess of balancing the load. Different strategies that strike 
a balance between a high level of performance and low 
overhead have been suggested in the literature. Most of 
the exisling schemes, however, employ a cenrralized 
model, a fully distributed model, or a semi distributed 
model. This classification is described in Figure 1. 

In a centralized model, a dedicated node is respon- 
sible for maintaining a global state of the system. Based 
on the gathered information, the central node schedules 
tasks to individual nodes. Centralized models have the 
potential of yielding high pcrformance in systems of 
small to moderate sizes. However, for large systems, the 
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Figure 1. Taxonomy Of Load Balancing Models 

computational overhead generated by the need to main- 
tain the global state of the system, and the storage 
requirements to store the state become prohibitive. The 
overhead usually causes the controlling node to become 
the bottleneck of the system. In addition, centralization of 
the control makes the entire system prone to the central 
node failure. 

In a fully distributed model, nodes of the system 
build their own views of the system global state, and 
makes autonomous scheduling decisions based on the 
information exchanged with other nodes of the system. 
Several topology dependent and hierarchical schemes 
have been proposed to improve the performance of the 
model. In general, however, the communication delays 
prohibit any node of the system from building an exact 
view of the global state of the system. Consequently, the 
decision can only be based on a partial view of the global 
state, and may lead to suboptimal decisions. 

A semidistributed model aims at exploiting the 
advantages of both centralized and distributed models. 
This is usually achieved by dividing the the system into 
different regions. Within each region, a centralized 
scheduling strategy aims at balancing the load within the 
region. A higher level scheduling mechanism is used to 
migrate tasks among regions. The performance of this 
strategy strongly depends on the criteria used to partition 
the nodes into separate regions. 

In an attempt to provide high performancc and 
effioiency, load balancing strategies may adopt a sender 
initiated approach or receiver initiated approach. In the 
first strategy, an overloaded sender seeks an undcrloadcd 
receiver to which some of the excess load may be pro- 
cessed. In the second strategy, underutilized processors 
search for overloaded processors from which excessive 
load may be transferred. Analytical and simulated perfor- 

mance studies show that sender initiated policies perform 
efficiently in an environment with light to moderate load, 
while receiver initiated policies are preferable in a heavily 
loaded systems [1,3]. In addition, receiver initiated poli- 
cies may incur substantial migration cost by requesting 
the transfer of tasks that only achieved partial execution. 
Sender initiated policies guarantee that load balancing is 
only performed when new tasks are spawned, reducing 
thereby the migration cost to a minimum. This paper is 
concerned with sender-initiated load balancing algorithms 
for parallel architecture that take into consideration the 
dilation between the sender and the receiver of the 
migrated task. The basic scheme may be adapted to han- 
dle a fully distributed or a semidistributed laod balancing 
model. 

In the remainder of this paper, we describe the 
basic characteristics of the environment and provide a 
profitabiliry model to assess the performance of dynamic 
load balancing schemes. We then describe a basic scheme 
to achieve dynamic load balancing for a distributed mul- 
tiprocessing systems. We finally show how this scheme 
can be tuned to control the relative emphasis of load and 
distance, and produce different strategies for load balanc- 
ing. 

2 Environment Characteristics and Assess- 
ment Model. 

The proposed scheme assumes a loosely coupled 
large scale multiprocessing system with a number of pro- 
cessing elements interconnected through a broadcast 
based communication subnet, such as two dimensional 
spanning bus hypercube, hypertree or cube connected 
cycles [8]. In addition, we assume that the network com- 
munication protocol is completely scparated from the 
inter-task communication policy. 

The processing elements are homogeneous, in the 
sense that a task my be processed at any node of the sys- 
tem. The behavior of the nodes, however, is heterogene- 
ous in that tasks are spawned, terminated or newly gen- 
eratcd at arbitrary rates in different nodes. Messages 
interchanged between different hosts may be of two 
types, inter-task communication messages, and control 
messages, We assume that the nodes have the capability 
of distinguishing between different types of messages 
when operating in asynchronous mode. 

Since messages involve overhead both in time and 
space, they become the primary component of dynamic 
load balancing performance. The main objective of any 
dynamic schcmc is to strike a balance between the over- 
head of synchronization and the degree of global state 
knowledge. In addition, local communication dependen- 
cies must be taken into consideration. In other words, an 
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efficient solution must ensure that applications comprised 
of tasks with high degree of local communication depen- 
dencies are allocated to closely connected processors. 

Task allocation in dynamic load balancing schemes 
must include mechanisms to assess the profitability of the 
decision made with respect to the current system load, 
determine the migration strategy and select the appropri- 
ate task to be migrated [9]. In the next section, we present 
a formal modcl of the system and discuss the profitability 
assessment functions adopted for this study. 

2.1 Formal Model 
We assume that the topology of the system is 

represented by an undirected graph, G =<N ,E >, where 
N represents the set of nodes, and E the the set of edges. 
Every node represents a processor, and every edge 
represents a communication link. We use 6(s,d) to 
denote the shortest path between nodes s and d ,  and A to 
represent the diameter of the graph. Let U s ( t )  be the 
unfinished work at processor s at time t . This represents 
the computation and communication load required by all 
the tasks assigned to processor s at time t . The current 
load of a processor dynamically changes as ncw tasks are 
forked. For a given task, 2, forked at processor s ,  
E s  <P , where P is the cardinality of N , we define 

0 n, (2) as the cost of processing z at processor s , 
0 V(Z) as the number of messages caused by the 
migration of z from s to another processor. These 
messages are required to handle the initiation of the 
task z on the new processor, and the communica- 
tion between z and its parent task. 
Two performance criteria may be used to evaluate 

the performance of the load balancing strategy. The first 
measures the migration and communication overhead, 
C, (z), involved in achieving the migration of a process 
from a sender node s to a receiver node d .  It is clear, 
that the migration of 2 form s to d can only be con- 
sidered if the cost of processing Z at s exceeds c, ,d (2). 
The second evaluates the ability of the strategy to achieve 
load balancing. In the following sections, we describe the 
model used to evaluate the migration cost C, ,d (7) and 
discuss profitability assessment strategies for load balanc- 
ing. 

2.2 Communication Cost 
Based on the specification parameters of the sys- 

tem, we can define the average cost, c, ,d (Z), caused by 
migrating 2 from node s to node d as follows: 

cs,d(z)=Ms,d(Z) -t 

where M,  p (z) = v(z)Xp x 6(s ,d) represents the com- 
munication cost, 6.1 represents the overhead rcquired to 

determine the destination d to which z is to be migrated, 
and p is the cost of sending a message between two adja- 
cent nodes in the network. 

2.3 Profitability Assessment Strategies 
As stated previously, an important factor which 

must be taken into consideration in the load balancing 
strategy assesses the profitability of migrating a given 
task z from the source node to another node in the system. 
This factor can be defined as a Profrtubility Assessment 
Function (PAF) and relates to the degree of loud imbal- 
ance factor (LIB) at step t ,  @(t). Several memcs have 
been used in the literature to define Q(t). Some of the pro- 
posed schemes attempt to reduce the difference among 
unfinished works at different nodes of the system. In this 
case, the @(t)  is defined as the root mean square differ- 
ence in unfinished work average over all hosts [lo]. More 
specifically, 

I 

Other metrics aim at reducing the difference 
between the most loaded processor and the least loaded 
processor. In this case, $(f  ) may be formulated as 

$(U 1 (t ),U2(t + I  UP ( t  1) = imSlxui (t '-";buj (t )I 

In our scheme, we adopt the second metric. Based 
on the above criteria, the dynamic load balancing algo- 
rithm can be conceptually defined as in Figure 2. 

For each task, Z, forked on s at time t do 
begin 

d = PAF(t , Z, s); 
if dics migrate z to d .  

end 

Figure 2. Dynamic Load Balancing Strategy 

The Profitability Assessment Function, PAF,  can 
be described as in Figure 3. 

It is obvious that some of the parameters involved 
in the computation of of PAF, such as v(z), may not be 
available during the time of the decision. However, it is 
clear that a mechanism that keeps highly interacting tasks 
within a domain of small radius will preserve the local 
communication dependencies of the application. In this 
paper, we propose load balancing strategies that attempts 
to achieve dynamic load balancing taking into considera- 
tion the load distribution among processors, and the local 
communication dependency requirements of the underly- 
ing application. In the next section we provide a descrip- 
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Function PAF(t , z, s)  
Begin 
Find d that minimizes 

@(U 1 (t +l),U2(t +1) ..., U p  (t +l)),where 

Ui (t+l) = Ui (t),forOli <P ,i 1;~ ,i #d , 

us (t+l) = us (t )+Ms ,d (z) ,(s #d 
and 

u d  (t+l> = u d  ( r  )+Ms ,d (z)+nd (7) 

if M, d (z) < its (z) then 
return (d ) 

else 
return (s) 

end 

Figure 3. Profitability Assessment Function 

tion of the proposed basic load balancing algorithm, and 
proceed to describe variations of the basic algorithm. 

3. Basic Dynamic Load Balancing Scheme 
The algorithm implements a sender initiated load 

balancing strategy. The main purpose of the algorithm is 
to migrate tasks from a heavily loaded processors to 
lightly loaded processors in the system. The basic scheme 
insures that the communication overhead, M, ,d (z), is 
reduced to a minimum, taking into consideration the 
importance of the communication architecture with 
respect to the processing capabilities of the processors. 
This is reflected by the migration condition in the PAF 
procedure. The satisfaction of the above condition ensures 
that it is more profitable to migrate the task then to pro- 
cess it locally. In addition, since migration will only take 
place if the recipient of the task has a lighter load, 
$(Ul(t) ,U2(t) ,  ..., U p @ ) )  is reduced. 

The above objective is achieved using a Load Con- 
tention Number (LCN). The LCN is a factor of the 
current load of the processor and the distance between the 
sender of the task and the rcceiver of the task, Based on 
the LCN , the load balancing strategy is reduced to deter- 
mining the processor currently holding the minimum 
LCN. 

Let s be the processor attempting to migrate a load. 
At the occurrence of the new task, the originating node, 
s ,  computes its LCN and advertises it in an attcmpt to 
determine the processor where the spawned task may be 
executed. The search for the recipient of thc newly 
spawned task results in the beginning of a Load Conten- 

tion Phase (LCP). During this phase, all processors that 
are currently holding a LCN smaller than the currently 
advertized LCN will express their eligibility to host the 
newly generated task by advertizing their own LCN. The 
search continues until the closest least loaded processor is 
identified. Notice that the termination detection of the bid- 
ding process depends on the type of environment support- 
ing the computation. In a broadcast based communication 
subnet, we assume that the time is slotted. A slot is 
defined to be the maximum amount of time it takes a pro- 
cessor to successfully transmit a control message over the 
communication subnet. In this environment, the bidding 
process continues until an empty slot is observed over the 
subnet. The occurrence of such a slot signals the end of 
the LCP and determines uniquely the processor to which 
the newly generated task is to be migrated. In a hyper- 
cube based configwition, Ihe contention phase consists in 
determining the minimum of a set of numbers, and can be 
achieved in logz(P) steps. 

3.1. Load Contention Number Generation 
In this section , we describe the mechanism used by 

all processors to compute their contention numbers. We 
first derive the contention number for the general case. 
We then proceed to generalize the mechanism to handle 
different strategies of load balancing. 

Let s, 0 9  <PI be the identity of the processor 
where the newly created task originated, and d the iden- 
tity of any processor contending for the migration of the 
new task. If the newly generated task was to be migrated 
to d , the unfinished work of node s , and d , U, ( t+l )  and 
ud (t +l), respectively, become: 

Us(t+l)=U,(t)+Ms,d(Q 

U d  (t+l> = u d  ( t )  M d p  (z) + z d  (z) 
where Mi j (7) = (~(z )  x 1 X 6(i j )  + 0) represents the 
communication cost between node i and node j .  It is 
clear that the migration of the task z is profitable, if : 

ud ( t )  Md,s ( t )  z d  (7) < us ( t )  -I- Ms ,d ( t )  (i> 

xs (7) > Ms ,d (z) (ii) 
However, for a homogeneous systems, zs (7) = z d  (7). 
Consequently, the migration of task z to d is profitable if: 

u d ( t ) + a ( s , d ) x v ( z ) x p <  Us(t) 

Based on the above observation, for a given process 
q , currently holding a load U, ( t )  and contending to 
migrate a task from processor s , the contention number 
LCrV,"(s) is givcn by the following formula: 

LCN&) = 1 ( t )  + 6(s ,q)xv(z) 
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The load balancing strategy can then be formulated as 
described in Figure 4. 

Load, ud ( t )  

0 

determine processor q that minimizes 

LCN,*(~ = 1 U, (t + s(s ,q )XV(Z) 
CL 

If q ZS migrate z to processor q 

6(s ,d) 

0 1  1 1  2 1  3 1  4 
0 1  1 1  2 1  3 1  4 

Figure 4. LCN Based Load Balancing Strategy 

Notice that in the above formula, p reflects the 
impact of the underlying communication architecture. In 
other words, if p is negligible, the cost is dominated by 
the load. However, if p is set to the Maximum Loud of a 
processor, the migration cost is dominated by the com- 
munication. The parameter V(Z), on the other hand, 
reflects the degree of task interaction. For a structured 
computation, V(Z) is uniform among all tasks. In this 
case, the load balancing strategy will consist in minimiz- 
ing -Uq ( t )  + 6(s ,q), which is equivalent to minimiz- 

ing U, ( t )  + p&s ,q) .  In either case, the quantity to be 
minimized will be refered to as LCN, (s ). 

1 
P 

4 Strategies For Load Balancing 
In the following sections, we show that the Loud 

Contention Number can be tuned to control the relative 
emphasis of load and distance, resulting thereby in a spec- 
trum of different strategies for load balancing. 

It is clear that if p = 0, the LcNd(S)  generated by 
a processor d contending for the migration of a task 
forked at node s is rcduced to Ud(t).  The strategy 
resulting from the above contention number, which is frc- 
quently encountered in the literature, uses the load as the 
only criteria to achieve load balancing [3]. On the othcr 
hand, a strategy of no migration, regardless of the system 
state, can be obtained by setting the value of p to the 
maximum possible load achievable by a processor. In the 
latter case, LCNd(s) is reduced to U d ( t )  + px&s ,d), 
where p represents the maximum load in the system. An 
example of the possible contention numbers generated by 
different processors, OId <P , is describcd in Table 1. 
The rows in the table represent all possible processor 
loads and the columns represent the distance between any 
contending processor d and processor s , where the newly 
created task originated. A contending processor, d uses 
its current load, U d ( t ) ,  and its distance 6(s,d) with 
respect to processor s , to generate its conlention number 
LCNd (s ). In this example, A = 4, and p is 10. It is clear 

from the entries of the table, that irrespective of the load, 
the processor where the newly created task originated will 
always produce a smaller contention number. 

Table 1. LCN: No Migration Strategy 

In the remainder of this section, we present other 
load balancing strategies that aim at striking a balance 
between the load and the distance in order to satisfy dif- 
ferent performance criteria as prescribed by the computa- 
tion environment and the communication cost. 

4.1 Load Predominant Strategy 
For many applications, the main objective of the 

load balancing algorithm is to distribute the load evenly 
among different processors. For this class of algorithms, 
the load is the predominant factor in the decision, and the 
distance between the sender and the receiver is only used 
to break the tie in favor of the closest least loaded proces- 
sor in the system. This strategy can be achieved by setting 
p to -. Consequently, the contention number reduces to 

Lchrd (S) = A X ud ( t )  4- 6(S ,d) 

The resulting contention numbers for the case where 
A = 4 is reported in Table 2. 

1 
A 

Table 2. LCN: Load Predominant Strategy 

The resulting table shows that the load contention number 
increases as the load of the processors increases. Conse- 
quently, the least loaded processors generate the smallest 
contention numbers. Furthermore, the table shows that if 
more than one processor holds the smallest load in the 
system, the closest to the processor where the newly 
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created task originated will produce the smallest contcn- 
tion number. 

1 
2 

4.2 Distance and Load Based Strategy 
A closer look at the above scheme reveals that the 

effect of the distance in the computation of the LCN is 
reduced to breaking the ties among two contending pro- 
cessors currently holding the same load. In some 
instances, however, it is desirable to add more weight to 
the factor distance in the migration decision. More 
specifically, a mechanism whereby a unit of distance 
equates k units of load is required. The resulting load 
balancing strategy may obtained by setting p to k . In this 
case, the value of the LCN becomes 
u d  ( t )  + k X 6(s ,d). An example describing the result- 
ing contention numbers when k=2 is illustrated in Table 
3. 

1 1 P+l  P+l  
2 2 P+2 P+2 

7 9 11 
4 6 8 

I I I  I I I I 
I ~~~~ ___ ~ ~~ 

Table 3. LCN : Unit Distance is 5 to k Units Load 

It is clear that as k increases, the weight of the distance in 
the migration decision increases, and becomes totally 
predominant when k=Maximum Load. In this case, the 
closest processor will always prevail regardless of the 
value of the current load at the contending processors. 
Consequently, no load is migrated between processors 
resulting into a degenerated load balancing algorithm. In 
essence, the factor k defines a load band, L , L +k , such 
that no gain can be realized by migrating a task from one 
processor to another, if the two processors are currently 
holding a load within the band. However, moving from 
one load band to the upper adjacent one achieves a gain 
of a unit dilation. A similar observation can be made for 
the lower range of the parameter k .  As k decreases, the 
emphasis of the load increases, and becomes predominant 
when k=-. In this case, the load always prevail over 

distance, and the latter is only used to break ties between 
equally loaded contending processors. 

1 
A 

4.3 Region and Load Band Based Strategies 
As stated earlier, the state based load balancing 

algorithm tends to improve the systcm throughput by 

avoiding idle or lightly loaded processors. However, the 
interaction cost may still be excessive since all processors 
are involved in the bidding algorithm. The purpose of the 
following strategy is to define the notion of Balancing 
Region. For a given processor, a balancing region R , may 
defined as the set of all neighboring prospective candi- 
dates for receiving tasks. Consequently, the bidding pro- 
cess is restricted to the balancing region of every process. 
This restriction can be easily translated into the load con- 
tention number by setting p=p R, resulting in 

LcNd(S)  = Ud( t )  + x p. 

where p =Maximum Load. Notice that, in this scheme 
the load is only important within the region. Furthermore, 
using 16(s ,d)/R] in LcNd (s) eliminates the effect of 
distance within the region. In either case, however, nodes 
outside the region are excluded from the migration con- 
tention. An example showing the resulting contention 
numbers based on 

LCNd = Ud(t)+16(S,d)/RJ 

for R =2 is illustrated in Table 4. 

I t 0 I I  0 I 0 II D I D 

P II P 1 . 11 
Table 4. LCN: Regions of Influence Based Strategy 

For some applications, the profitability of migrating 
a task from one processor to another may be limited if the 
differcnce in the the processors load is small. In this case, 
it migration may only take place if the difference of the 
loads exceeds a certain parameter B ,  referred to as the 
band-of-influence. This strategy may be obtained by set- 
ting p=B IA, resulting in 

LcNd(S)=AX - U d ( t )  +6(s,d) 

Furthermore, using ud (t )/B in LcNd (s ) eliminates 
the effect of the distance within the load band, resulting in 
a threshold based strategy. An example describing the 
contention numbcrs obtained for B=2, and A=3 is 
described in Table 5. The result shows that the loads are 
grouped in bands of two. Within the same band, only the 
distance has an effect upon the contention number. 

i j B  
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I I I 

1 II 0 I 1 1 2  I 3 1  

Load, ud (t ) 

0 

Table 5. LCN Load Band Based Srrategy 
S(s ,d) 

0 II 1 2 3 
0 11 1 2 3 

4.4 State Based and Node Specified Strategies 
As stated previously, dynamic load balancing calls 

for an optimal task distribution in a configuration space 
with conflicting demands. The algorithm described above 
attempts to avoid processor thrashing by spreading out 
tasks evenly over all nodes. In addition, the algorithm 
takes into consideration the distance separating the sender 
and the receiver of the task. However, the above algo- 
rithm may cause excessive interactions among processors 
since the load balancing procedure is invoked every time 
a new task is created. In order to minimize the interaction 
among processor, state based load balancing algorithms 
have been proposed [6]. In this case, the load of each pro- 
cessor is determined by the number of tasks currently 
being served, blocked at a synchronization point, or 
queued at the processor site. For each processor, we 
define a threshold load to represent the loading condition 
for a processor such that further addition of tasks to its 
current load does not lead to any further improvement of 
its utilization. Based on the instantaneous load, we define 
the loading states of a processor as light, optimal, or 
heavy. When the state of a processor becomes heavy, the 
processor seeks to transfer some of its load to a lightly 
loaded processor. The mechanism used to migrate the 
load is similar to the bidding procedure uscd in the basic 
load balancing algorithm described above. When a pro- 
cessor moves into a heavily loaded state, it advertizes its 
Load Contention Number in an attempt to iaentify a set of 
lightly loaded processors to which excessive load may be 
transferred. Upon completion of the LCP, the hcavily 
loaded processor gradually disperses its load among the 
set of eligible processors, until the optimal state is 
reached. 

Let L 1-1 be the maximum amount of load a lightly 
loaded processor may have, and 152-1 the maximum load 
optimal processor may accumulate. We also assume that 
we use the Load Predominant Strategy (p.=l/A), as 
described previously. Consequently, the objeclive of the 

1 
2 

strategy would be to select the closest lightly loaded pro- 
cessor for the execution of the newly generated task. This 
can be accomplished using using 

L c N d ( S )  = EliXL\XUd -t a 
where =S(S ,d)Eli +((A+l)X~)(&2i+~3i), Eij represents 
the Kronecker function, and i is determined such that 

The resulting contention numbers, when L1 is 10, 
and L 2  is 20, assuming p=30 and A=3, are shown in 
Table 6. 

Li-lSud <Li ,(LO&)). 

3 4 5 6 
6 7 8 9 

10 
11 
12 

63 63 63 33 
63 63 63 63 
63 63 63 63 

20 
21 
22 

63 63 63 63 
63 63 63 63 
63 63 63 63 

Table 6. LCN State Based Strategy 

Other variations of the above basic scheme may be 
obtained based on the the mechanisms described to define 
the region and to specify the load bands. It is clear that 
these parameters can be either Global, where R and B 
are fixed for the entire systems, or Local, where each 
node i specifies its own region of influence and its load 
band, (Ri ,Bi). This flexibility may be used to reflect the 
currcnt status of the processors. 

4.5 Efficiency Improvement 
It is clear that the cost of the LCP may be prohibi- 

tive if the load changes frequently. Consequently, a 
mechanism to prevent spurious load contention phases 
may reduce the overall cost of the load balancing strategy. 
A look forward based approach may be uscd to anticipate 
future task forking, and determine a potential node for the 
migration of newly generated tasks. During an on-going 
bidding phase, every node memorizes an eventual reci- 
pient, recpt id ,  of “its” future load. In order to deter- 
mine its future load recipient, node c needs to determine 
the current load of the bidding processor. This informa- 
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tion may be easily obtained based on the advertized 
number. Let s be the processor that initiated the current 
LCP, and q the current contender. It is clear that 
LCN, (c  ) can be written as 

Load 
Based 

Schemes or 

Load Band Region NoLOad 
over Based Based Balancing 

Distance Schemes Schemes Scheme 

LCN, (c  )=Tr (LCN, (s ))=LCN, (s )-(6(c ,q )-6(s ,q )) 
where Tr() represents an operator that transforms the 
advertized contention number relative to s into a conten- 
tion number relative to c . 
Based on the above, the procedure node c executes to 
determine the potential node recipient is described as in 
Figure 5. 

Function Future-Recipient0 
Begin 

recpt-id = c 
recpt-lcn = Tr(LCN,eCq-d (S )) 
while (bidding continues ) 

recpt-id = tit-bdr 
if (Tr(LCNc,, bdr (s )) < recpt-lcn) than 

recpt-lcn = Tr(LcNcrnt-bdr (s 1) 
End 

when ( New fork ) 
start bidding with LCNrecPf - id (my-id) 

Figure 5. Improved Load Balancing Strategy 

Notice that If the load of recpr-id does not increase, 
recpt id remains eligible. If the load of rapt-id 
increases, recpt id forces a bidding phase, to determine 
the recipient of the load. 

5 Conclusion 
In this paper, we have developcd a general frame- 

work to achieve dynamic load balancing. We introduced a 
basic scheme mechanism for dynamic load balancing 
strategies. The basic scheme uses a load contention 
number that accounts for the dilation among processors. 
We have shown that the basic scheme is flexible and can 
be adapted to rcflect the meuics of basic importance in 
the system. More specifically, the scheme uses B, ud ( t ) ,  
and &,(d), to reflect the influence of the the underlying 
architecture and the degree of task interaction, taking into 
consideration the effect of processors load. The difcrent 
strategies discussed are summarized below in Table 7. 

I U 
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