
Dilation Based Biddin Schemes
For Dynamic Load E f alancing

On Distributed Processing Systemsf-/-

Taieb F. Znatit, Rami G. Melhem, Kirk R. Pruhs.
Computer Science Department

(t Telccomrnunication)
University of Pittsburgh
Pittsburgh, PA 15260

Abstract
This paper is concerned with sender-initiated

load balancing algorithms for parallel architecture
that take into consideration the dilation between the
sender and the receiver of the migrated task. The
basic scheme proposed in this paper, uses a load
contention number that accounts for the dilation
among processors. This mechanism is generalized to
reflect the specijic requirements of different environ-
ments. W e also describe variations of the basic
scheme that aim at reducing the interaction over-
head among contending processors.

1 Introduction
The full potential of any distributed processing sys-

tem can be realized by equally sharing the computational
load among all processors. The uniform distribution of the
load among the various processing nodcs maximizes
resource utilization and enhances the total throughput of
the system. This problem is referred to in the literature as
Load Balancing [13.

Load balancing strategies may be eithcr static or
dynamic. In a static approach, the distributed process is
viewed as a collection of tasks each of which can bc car-
ried out by any one of the hosts. The tasks and their
dependencies are known a priori. Consequently, load
balancing can be realized by statically assigning the tasks
to different hosts in order to achieve system wide objcc-
tives such as minimum average response time, minimum
interprocess communication traffic and maximum
throughput. Once assigned to a particular process, the task
is bound to run on that proccss until completion [1,2,3].
The problem of finding optimal assignment of tasks to
hosts so that some performance criteria is achieved is
known to be NP-complete [4]. Several hcuristics based on

tt This research was partially supported by the
National Science Foundation under Grant CDA-8920839.

0-8186-2290-3/91/0oO0/0129/$01 .oO 0 1991 IEEE

graph theory, queueing theory and network flow theory
have been proposed [5]. In general these approaches pro-
vide a suboptimal task assignment.

Dynamic load balancing may be modeled by a
dynamically created task precedence graph. In this
approach, tasks may be spawned dynamically by exploit-
ing concurrent executions embedded in the program. The
ncwly spawned tasks which can be executed on other idle
processors may, in turn, spawn more tasks requiring
further dispersal of the system load [6,7].

The preformance of the dynamic load balancing
strategy depends upon the process migration mechanism
and the size of information domain analyzed for load dis-
tribution. In essence, dynamic load balancing may be
viewed as an ongoing decision process in which indivi-
dual processors attempt to utilize a local view of the glo-
bal state of the system to make independent decisions
aimed at meeting global objectives. The performance
associated with the dynamic load balancing strategy is a
function of the collection of decisions made at the physi-
cally distributed nodes. The efficiency of the strategy
depends on the cost of interprocess communication, the
logical complexity introduced and the need to maintain
global state information at each host involved in the pro-
cess of balancing the load. Different strategies that strike
a balance between a high level of performance and low
overhead have been suggested in the literature. Most of
the exisling schemes, however, employ a cenrralized
model, a fully distributed model, or a semi distributed
model. This classification is described in Figure 1.

In a centralized model, a dedicated node is respon-
sible for maintaining a global state of the system. Based
on the gathered information, the central node schedules
tasks to individual nodes. Centralized models have the
potential of yielding high pcrformance in systems of
small to moderate sizes. However, for large systems, the

129

Figure 1. Taxonomy Of Load Balancing Models

computational overhead generated by the need to main-
tain the global state of the system, and the storage
requirements to store the state become prohibitive. The
overhead usually causes the controlling node to become
the bottleneck of the system. In addition, centralization of
the control makes the entire system prone to the central
node failure.

In a fully distributed model, nodes of the system
build their own views of the system global state, and
makes autonomous scheduling decisions based on the
information exchanged with other nodes of the system.
Several topology dependent and hierarchical schemes
have been proposed to improve the performance of the
model. In general, however, the communication delays
prohibit any node of the system from building an exact
view of the global state of the system. Consequently, the
decision can only be based on a partial view of the global
state, and may lead to suboptimal decisions.

A semidistributed model aims at exploiting the
advantages of both centralized and distributed models.
This is usually achieved by dividing the the system into
different regions. Within each region, a centralized
scheduling strategy aims at balancing the load within the
region. A higher level scheduling mechanism is used to
migrate tasks among regions. The performance of this
strategy strongly depends on the criteria used to partition
the nodes into separate regions.

In an attempt to provide high performancc and
effioiency, load balancing strategies may adopt a sender
initiated approach or receiver initiated approach. In the
first strategy, an overloaded sender seeks an undcrloadcd
receiver to which some of the excess load may be pro-
cessed. In the second strategy, underutilized processors
search for overloaded processors from which excessive
load may be transferred. Analytical and simulated perfor-

mance studies show that sender initiated policies perform
efficiently in an environment with light to moderate load,
while receiver initiated policies are preferable in a heavily
loaded systems [1,3]. In addition, receiver initiated poli-
cies may incur substantial migration cost by requesting
the transfer of tasks that only achieved partial execution.
Sender initiated policies guarantee that load balancing is
only performed when new tasks are spawned, reducing
thereby the migration cost to a minimum. This paper is
concerned with sender-initiated load balancing algorithms
for parallel architecture that take into consideration the
dilation between the sender and the receiver of the
migrated task. The basic scheme may be adapted to han-
dle a fully distributed or a semidistributed laod balancing
model.

In the remainder of this paper, we describe the
basic characteristics of the environment and provide a
profitabiliry model to assess the performance of dynamic
load balancing schemes. We then describe a basic scheme
to achieve dynamic load balancing for a distributed mul-
tiprocessing systems. We finally show how this scheme
can be tuned to control the relative emphasis of load and
distance, and produce different strategies for load balanc-
ing.

2 Environment Characteristics and Assess-
ment Model.

The proposed scheme assumes a loosely coupled
large scale multiprocessing system with a number of pro-
cessing elements interconnected through a broadcast
based communication subnet, such as two dimensional
spanning bus hypercube, hypertree or cube connected
cycles [8]. In addition, we assume that the network com-
munication protocol is completely scparated from the
inter-task communication policy.

The processing elements are homogeneous, in the
sense that a task my be processed at any node of the sys-
tem. The behavior of the nodes, however, is heterogene-
ous in that tasks are spawned, terminated or newly gen-
eratcd at arbitrary rates in different nodes. Messages
interchanged between different hosts may be of two
types, inter-task communication messages, and control
messages, We assume that the nodes have the capability
of distinguishing between different types of messages
when operating in asynchronous mode.

Since messages involve overhead both in time and
space, they become the primary component of dynamic
load balancing performance. The main objective of any
dynamic schcmc is to strike a balance between the over-
head of synchronization and the degree of global state
knowledge. In addition, local communication dependen-
cies must be taken into consideration. In other words, an

130

efficient solution must ensure that applications comprised
of tasks with high degree of local communication depen-
dencies are allocated to closely connected processors.

Task allocation in dynamic load balancing schemes
must include mechanisms to assess the profitability of the
decision made with respect to the current system load,
determine the migration strategy and select the appropri-
ate task to be migrated [9]. In the next section, we present
a formal modcl of the system and discuss the profitability
assessment functions adopted for this study.

2.1 Formal Model
We assume that the topology of the system is

represented by an undirected graph, G =<N ,E >, where
N represents the set of nodes, and E the the set of edges.
Every node represents a processor, and every edge
represents a communication link. We use 6(s,d) to
denote the shortest path between nodes s and d , and A to
represent the diameter of the graph. Let U s (t) be the
unfinished work at processor s at time t . This represents
the computation and communication load required by all
the tasks assigned to processor s at time t . The current
load of a processor dynamically changes as ncw tasks are
forked. For a given task, 2, forked at processor s ,
E s <P , where P is the cardinality of N , we define

0 n, (2) as the cost of processing z at processor s ,
0 V(Z) as the number of messages caused by the
migration of z from s to another processor. These
messages are required to handle the initiation of the
task z on the new processor, and the communica-
tion between z and its parent task.
Two performance criteria may be used to evaluate

the performance of the load balancing strategy. The first
measures the migration and communication overhead,
C, (z), involved in achieving the migration of a process
from a sender node s to a receiver node d . It is clear,
that the migration of 2 form s to d can only be con-
sidered if the cost of processing Z at s exceeds c, ,d (2).
The second evaluates the ability of the strategy to achieve
load balancing. In the following sections, we describe the
model used to evaluate the migration cost C, ,d (7) and
discuss profitability assessment strategies for load balanc-
ing.

2.2 Communication Cost
Based on the specification parameters of the sys-

tem, we can define the average cost, c, ,d (Z), caused by
migrating 2 from node s to node d as follows:

cs,d(z)=Ms,d(Z) -t

where M, p (z) = v(z)Xp x 6(s ,d) represents the com-
munication cost, 6.1 represents the overhead rcquired to

determine the destination d to which z is to be migrated,
and p is the cost of sending a message between two adja-
cent nodes in the network.

2.3 Profitability Assessment Strategies
As stated previously, an important factor which

must be taken into consideration in the load balancing
strategy assesses the profitability of migrating a given
task z from the source node to another node in the system.
This factor can be defined as a Profrtubility Assessment
Function (PAF) and relates to the degree of loud imbal-
ance factor (LIB) at step t , @(t). Several memcs have
been used in the literature to define Q(t). Some of the pro-
posed schemes attempt to reduce the difference among
unfinished works at different nodes of the system. In this
case, the @(t) is defined as the root mean square differ-
ence in unfinished work average over all hosts [lo]. More
specifically,

I

Other metrics aim at reducing the difference
between the most loaded processor and the least loaded
processor. In this case, $(f) may be formulated as

$(U 1 (t),U2(t + I UP (t 1) = imSlxui (t '-";buj (t)I

In our scheme, we adopt the second metric. Based
on the above criteria, the dynamic load balancing algo-
rithm can be conceptually defined as in Figure 2.

For each task, Z, forked on s at time t do
begin

d = PAF(t , Z, s);
if dics migrate z to d .

end

Figure 2. Dynamic Load Balancing Strategy

The Profitability Assessment Function, PAF, can
be described as in Figure 3.

It is obvious that some of the parameters involved
in the computation of of PAF, such as v(z), may not be
available during the time of the decision. However, it is
clear that a mechanism that keeps highly interacting tasks
within a domain of small radius will preserve the local
communication dependencies of the application. In this
paper, we propose load balancing strategies that attempts
to achieve dynamic load balancing taking into considera-
tion the load distribution among processors, and the local
communication dependency requirements of the underly-
ing application. In the next section we provide a descrip-

131

Function PAF(t , z, s)
Begin
Find d that minimizes

@(U 1 (t +l),U2(t +1) ..., U p (t +l)),where

Ui (t+l) = Ui (t),forOli <P ,i 1;~ ,i #d ,

us (t+l) = us (t)+Ms ,d (z) ,(s #d
and

u d (t+l> = u d (r)+Ms ,d (z)+nd (7)

if M, d (z) < its (z) then
return (d)

else
return (s)

end

Figure 3. Profitability Assessment Function

tion of the proposed basic load balancing algorithm, and
proceed to describe variations of the basic algorithm.

3. Basic Dynamic Load Balancing Scheme
The algorithm implements a sender initiated load

balancing strategy. The main purpose of the algorithm is
to migrate tasks from a heavily loaded processors to
lightly loaded processors in the system. The basic scheme
insures that the communication overhead, M, ,d (z), is
reduced to a minimum, taking into consideration the
importance of the communication architecture with
respect to the processing capabilities of the processors.
This is reflected by the migration condition in the PAF
procedure. The satisfaction of the above condition ensures
that it is more profitable to migrate the task then to pro-
cess it locally. In addition, since migration will only take
place if the recipient of the task has a lighter load,
$(Ul(t) ,U2(t) , ..., U p @)) is reduced.

The above objective is achieved using a Load Con-
tention Number (LCN). The LCN is a factor of the
current load of the processor and the distance between the
sender of the task and the rcceiver of the task, Based on
the LCN , the load balancing strategy is reduced to deter-
mining the processor currently holding the minimum
LCN.

Let s be the processor attempting to migrate a load.
At the occurrence of the new task, the originating node,
s , computes its LCN and advertises it in an attcmpt to
determine the processor where the spawned task may be
executed. The search for the recipient of thc newly
spawned task results in the beginning of a Load Conten-

tion Phase (LCP). During this phase, all processors that
are currently holding a LCN smaller than the currently
advertized LCN will express their eligibility to host the
newly generated task by advertizing their own LCN. The
search continues until the closest least loaded processor is
identified. Notice that the termination detection of the bid-
ding process depends on the type of environment support-
ing the computation. In a broadcast based communication
subnet, we assume that the time is slotted. A slot is
defined to be the maximum amount of time it takes a pro-
cessor to successfully transmit a control message over the
communication subnet. In this environment, the bidding
process continues until an empty slot is observed over the
subnet. The occurrence of such a slot signals the end of
the LCP and determines uniquely the processor to which
the newly generated task is to be migrated. In a hyper-
cube based configwition, Ihe contention phase consists in
determining the minimum of a set of numbers, and can be
achieved in logz(P) steps.

3.1. Load Contention Number Generation
In this section , we describe the mechanism used by

all processors to compute their contention numbers. We
first derive the contention number for the general case.
We then proceed to generalize the mechanism to handle
different strategies of load balancing.

Let s, 0 9 <PI be the identity of the processor
where the newly created task originated, and d the iden-
tity of any processor contending for the migration of the
new task. If the newly generated task was to be migrated
to d , the unfinished work of node s , and d , U, (t+l) and
ud (t +l), respectively, become:

Us(t+l)=U,(t)+Ms,d(Q

U d (t+l> = u d (t) M d p (z) + z d (z)
where Mi j (7) = (~(z) x 1 X 6(i j) + 0) represents the
communication cost between node i and node j . It is
clear that the migration of the task z is profitable, if :

ud (t) Md,s (t) z d (7) < us (t) -I- Ms ,d (t) (i>

xs (7) > Ms ,d (z) (ii)
However, for a homogeneous systems, zs (7) = z d (7).
Consequently, the migration of task z to d is profitable if:

u d (t) + a (s , d) x v (z) x p < Us(t)

Based on the above observation, for a given process
q , currently holding a load U, (t) and contending to
migrate a task from processor s , the contention number
LCrV,"(s) is givcn by the following formula:

LCN&) = 1 (t) + 6(s ,q)xv(z)

132

The load balancing strategy can then be formulated as
described in Figure 4.

Load, ud (t)

0

determine processor q that minimizes

LCN,*(~ = 1 U, (t + s(s ,q)XV(Z)
CL

If q ZS migrate z to processor q

6(s ,d)

0 1 1 1 2 1 3 1 4
0 1 1 1 2 1 3 1 4

Figure 4. LCN Based Load Balancing Strategy

Notice that in the above formula, p reflects the
impact of the underlying communication architecture. In
other words, if p is negligible, the cost is dominated by
the load. However, if p is set to the Maximum Loud of a
processor, the migration cost is dominated by the com-
munication. The parameter V(Z), on the other hand,
reflects the degree of task interaction. For a structured
computation, V(Z) is uniform among all tasks. In this
case, the load balancing strategy will consist in minimiz-
ing -Uq (t) + 6(s ,q), which is equivalent to minimiz-

ing U, (t) + p&s ,q) . In either case, the quantity to be
minimized will be refered to as LCN, (s).

1
P

4 Strategies For Load Balancing
In the following sections, we show that the Loud

Contention Number can be tuned to control the relative
emphasis of load and distance, resulting thereby in a spec-
trum of different strategies for load balancing.

It is clear that if p = 0, the LcNd(S) generated by
a processor d contending for the migration of a task
forked at node s is rcduced to Ud(t). The strategy
resulting from the above contention number, which is frc-
quently encountered in the literature, uses the load as the
only criteria to achieve load balancing [3]. On the othcr
hand, a strategy of no migration, regardless of the system
state, can be obtained by setting the value of p to the
maximum possible load achievable by a processor. In the
latter case, LCNd(s) is reduced to U d (t) + px&s ,d),
where p represents the maximum load in the system. An
example of the possible contention numbers generated by
different processors, OId <P , is describcd in Table 1.
The rows in the table represent all possible processor
loads and the columns represent the distance between any
contending processor d and processor s , where the newly
created task originated. A contending processor, d uses
its current load, U d (t) , and its distance 6(s,d) with
respect to processor s , to generate its conlention number
LCNd (s). In this example, A = 4, and p is 10. It is clear

from the entries of the table, that irrespective of the load,
the processor where the newly created task originated will
always produce a smaller contention number.

Table 1. LCN: No Migration Strategy

In the remainder of this section, we present other
load balancing strategies that aim at striking a balance
between the load and the distance in order to satisfy dif-
ferent performance criteria as prescribed by the computa-
tion environment and the communication cost.

4.1 Load Predominant Strategy
For many applications, the main objective of the

load balancing algorithm is to distribute the load evenly
among different processors. For this class of algorithms,
the load is the predominant factor in the decision, and the
distance between the sender and the receiver is only used
to break the tie in favor of the closest least loaded proces-
sor in the system. This strategy can be achieved by setting
p to -. Consequently, the contention number reduces to

Lchrd (S) = A X ud (t) 4- 6(S ,d)

The resulting contention numbers for the case where
A = 4 is reported in Table 2.

1
A

Table 2. LCN: Load Predominant Strategy

The resulting table shows that the load contention number
increases as the load of the processors increases. Conse-
quently, the least loaded processors generate the smallest
contention numbers. Furthermore, the table shows that if
more than one processor holds the smallest load in the
system, the closest to the processor where the newly

133

created task originated will produce the smallest contcn-
tion number.

1
2

4.2 Distance and Load Based Strategy
A closer look at the above scheme reveals that the

effect of the distance in the computation of the LCN is
reduced to breaking the ties among two contending pro-
cessors currently holding the same load. In some
instances, however, it is desirable to add more weight to
the factor distance in the migration decision. More
specifically, a mechanism whereby a unit of distance
equates k units of load is required. The resulting load
balancing strategy may obtained by setting p to k . In this
case, the value of the LCN becomes
u d (t) + k X 6(s ,d). An example describing the result-
ing contention numbers when k=2 is illustrated in Table
3.

1 1 P+l P+l
2 2 P+2 P+2

7 9 11
4 6 8

I I I I I I I
I ~~~~ ___ ~ ~~

Table 3. LCN : Unit Distance is 5 to k Units Load

It is clear that as k increases, the weight of the distance in
the migration decision increases, and becomes totally
predominant when k=Maximum Load. In this case, the
closest processor will always prevail regardless of the
value of the current load at the contending processors.
Consequently, no load is migrated between processors
resulting into a degenerated load balancing algorithm. In
essence, the factor k defines a load band, L , L +k , such
that no gain can be realized by migrating a task from one
processor to another, if the two processors are currently
holding a load within the band. However, moving from
one load band to the upper adjacent one achieves a gain
of a unit dilation. A similar observation can be made for
the lower range of the parameter k . As k decreases, the
emphasis of the load increases, and becomes predominant
when k=-. In this case, the load always prevail over

distance, and the latter is only used to break ties between
equally loaded contending processors.

1
A

4.3 Region and Load Band Based Strategies
As stated earlier, the state based load balancing

algorithm tends to improve the systcm throughput by

avoiding idle or lightly loaded processors. However, the
interaction cost may still be excessive since all processors
are involved in the bidding algorithm. The purpose of the
following strategy is to define the notion of Balancing
Region. For a given processor, a balancing region R , may
defined as the set of all neighboring prospective candi-
dates for receiving tasks. Consequently, the bidding pro-
cess is restricted to the balancing region of every process.
This restriction can be easily translated into the load con-
tention number by setting p=p R, resulting in

LcNd(S) = Ud(t) + x p.

where p =Maximum Load. Notice that, in this scheme
the load is only important within the region. Furthermore,
using 16(s ,d)/R] in LcNd (s) eliminates the effect of
distance within the region. In either case, however, nodes
outside the region are excluded from the migration con-
tention. An example showing the resulting contention
numbers based on

LCNd = Ud(t)+16(S,d)/RJ

for R =2 is illustrated in Table 4.

I t 0 I I 0 I 0 II D I D

P II P 1 . 11
Table 4. LCN: Regions of Influence Based Strategy

For some applications, the profitability of migrating
a task from one processor to another may be limited if the
differcnce in the the processors load is small. In this case,
it migration may only take place if the difference of the
loads exceeds a certain parameter B , referred to as the
band-of-influence. This strategy may be obtained by set-
ting p=B IA, resulting in

LcNd(S)=AX - U d (t) +6(s,d)

Furthermore, using ud (t)/B in LcNd (s) eliminates
the effect of the distance within the load band, resulting in
a threshold based strategy. An example describing the
contention numbcrs obtained for B=2, and A=3 is
described in Table 5. The result shows that the loads are
grouped in bands of two. Within the same band, only the
distance has an effect upon the contention number.

i j B

134

I I I

1 II 0 I 1 1 2 I 3 1

Load, ud (t)

0

Table 5. LCN Load Band Based Srrategy
S(s ,d)

0 II 1 2 3
0 11 1 2 3

4.4 State Based and Node Specified Strategies
As stated previously, dynamic load balancing calls

for an optimal task distribution in a configuration space
with conflicting demands. The algorithm described above
attempts to avoid processor thrashing by spreading out
tasks evenly over all nodes. In addition, the algorithm
takes into consideration the distance separating the sender
and the receiver of the task. However, the above algo-
rithm may cause excessive interactions among processors
since the load balancing procedure is invoked every time
a new task is created. In order to minimize the interaction
among processor, state based load balancing algorithms
have been proposed [6]. In this case, the load of each pro-
cessor is determined by the number of tasks currently
being served, blocked at a synchronization point, or
queued at the processor site. For each processor, we
define a threshold load to represent the loading condition
for a processor such that further addition of tasks to its
current load does not lead to any further improvement of
its utilization. Based on the instantaneous load, we define
the loading states of a processor as light, optimal, or
heavy. When the state of a processor becomes heavy, the
processor seeks to transfer some of its load to a lightly
loaded processor. The mechanism used to migrate the
load is similar to the bidding procedure uscd in the basic
load balancing algorithm described above. When a pro-
cessor moves into a heavily loaded state, it advertizes its
Load Contention Number in an attempt to iaentify a set of
lightly loaded processors to which excessive load may be
transferred. Upon completion of the LCP, the hcavily
loaded processor gradually disperses its load among the
set of eligible processors, until the optimal state is
reached.

Let L 1-1 be the maximum amount of load a lightly
loaded processor may have, and 152-1 the maximum load
optimal processor may accumulate. We also assume that
we use the Load Predominant Strategy (p.=l/A), as
described previously. Consequently, the objeclive of the

1
2

strategy would be to select the closest lightly loaded pro-
cessor for the execution of the newly generated task. This
can be accomplished using using

L c N d (S) = EliXL\XUd -t a
where =S(S ,d)Eli +((A+l)X~)(&2i+~3i), Eij represents
the Kronecker function, and i is determined such that

The resulting contention numbers, when L1 is 10,
and L 2 is 20, assuming p=30 and A=3, are shown in
Table 6.

Li-lSud <Li ,(LO&)).

3 4 5 6
6 7 8 9

10
11
12

63 63 63 33
63 63 63 63
63 63 63 63

20
21
22

63 63 63 63
63 63 63 63
63 63 63 63

Table 6. LCN State Based Strategy

Other variations of the above basic scheme may be
obtained based on the the mechanisms described to define
the region and to specify the load bands. It is clear that
these parameters can be either Global, where R and B
are fixed for the entire systems, or Local, where each
node i specifies its own region of influence and its load
band, (Ri ,Bi). This flexibility may be used to reflect the
currcnt status of the processors.

4.5 Efficiency Improvement
It is clear that the cost of the LCP may be prohibi-

tive if the load changes frequently. Consequently, a
mechanism to prevent spurious load contention phases
may reduce the overall cost of the load balancing strategy.
A look forward based approach may be uscd to anticipate
future task forking, and determine a potential node for the
migration of newly generated tasks. During an on-going
bidding phase, every node memorizes an eventual reci-
pient, recpt id , of “its” future load. In order to deter-
mine its future load recipient, node c needs to determine
the current load of the bidding processor. This informa-

135

tion may be easily obtained based on the advertized
number. Let s be the processor that initiated the current
LCP, and q the current contender. It is clear that
LCN, (c) can be written as

Load
Based

Schemes or

Load Band Region NoLOad
over Based Based Balancing

Distance Schemes Schemes Scheme

LCN, (c)=Tr (LCN, (s))=LCN, (s)-(6(c ,q)-6(s ,q))
where Tr() represents an operator that transforms the
advertized contention number relative to s into a conten-
tion number relative to c .
Based on the above, the procedure node c executes to
determine the potential node recipient is described as in
Figure 5.

Function Future-Recipient0
Begin

recpt-id = c
recpt-lcn = Tr(LCN,eCq-d (S))
while (bidding continues)

recpt-id = tit-bdr
if (Tr(LCNc,, bdr (s)) < recpt-lcn) than

recpt-lcn = Tr(LcNcrnt-bdr (s 1)
End

when (New fork)
start bidding with LCNrecPf - id (my-id)

Figure 5. Improved Load Balancing Strategy

Notice that If the load of recpr-id does not increase,
recpt id remains eligible. If the load of rapt-id
increases, recpt id forces a bidding phase, to determine
the recipient of the load.

5 Conclusion
In this paper, we have developcd a general frame-

work to achieve dynamic load balancing. We introduced a
basic scheme mechanism for dynamic load balancing
strategies. The basic scheme uses a load contention
number that accounts for the dilation among processors.
We have shown that the basic scheme is flexible and can
be adapted to rcflect the meuics of basic importance in
the system. More specifically, the scheme uses B, ud (t) ,
and &,(d), to reflect the influence of the the underlying
architecture and the degree of task interaction, taking into
consideration the effect of processors load. The difcrent
strategies discussed are summarized below in Table 7.

I U

7 References
Livny, M., “The Study of Load Balancing Algo-
rithms For Decentralized Distributed Processing Sys-
tems”, Ph.D. Dissertation, Wiezmann Institute of
Science, Aug. 1983.
Barhen, J., “Combinatorial Optimization of the
Computational Load Balance For a Hypercube
Supercomputer”, pp. 71-80.
Tantawi, A.N., and Towsley, D., “Optimal Load
Balancing in Distributed Computer Systems”, Jour-
nal of the ACM, Vol. 32, No. 2, 1985, pp. 445.
Garey, M.R., and Johnson, D.S., “Computers and
Intractability: a Guide to the Theory of NP-
Completeness”, Freeman, W.H., 1979.
Lo, V., “Task Assignment in Distributed Systems”,
Technical Report, UIUCDCS-R-83-1144, Depart-
ment of Computer Science, University of Illinois,
Urbana-Champaign, 1984.
Ni, L.M., Xu, C.W., and Gendreau T.B., “Distri-
buted Drafting Algorithm for Load Balancing”,
IEEE Trans. on Software Engineering, Vol. SE-11,

Stankovic, J.A., and Sidhu, I.S., “An Adaptive Bid-
ding Algorithm for Processes, Clusters, and Distri-
buted Groups”, Proc. of the 4th Int’l Conference on
Distributed Computing Systems, 1984, pp. 49-59.
Gulati, S., Barhen, J., and Iyengar, S.S . , “The Peb-
ble Crunching Model for Load Balancing In Con-
current Hypercube Ensembles”, Journal of the ACM

Willebeek-LeMair, M., and Reeves, A.P., “Dynamic
Load Balancing Strategies for Highly Parallel Multi-
computer Systems”, Technical Report EE-CEG-89-
14, Computer Engineering Group, Cornel1 Univer-
sity, School of Electrical Engineering, December
1989.

NO. 10, Oct. 1985, pp. 1153-1161.

1988, pp. 189-199.

[lo] Ksu, C.H., and Liu, J.W.S., “Dynamic Load Balanc-
ing Algorithms In Homogeneous Distributed Sys-
tems”, CH2293-9/86, IEEE 1986.

136

