
272 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  VOL.  8,  NO.  3,  MARCH  1997

Fault-Tolerance Through Scheduling
of Aperiodic Tasks in

Hard Real-Time Multiprocessor Systems
Sunondo Ghosh, Student Member, IEEE Computer Society,

Rami Melhem, Member, IEEE Computer Society,
and Daniel Mossé, Member, IEEE Computer Society

Abstract —Real-time systems are being increasingly used in several applications which are time critical in nature. Fault-tolerance is
an important requirement of such systems, due to the catastrophic consequences of not tolerating faults. In this paper, we study a
scheme that provides fault-tolerance through scheduling in real-time multiprocessor systems. We schedule multiple copies of
dynamic, aperiodic, nonpreemptive tasks in the system, and use two techniques that we call deallocation and overloading to achieve
high acceptance ratio (percentage of arriving tasks scheduled by the system). This paper compares the performance of our scheme
with that of other fault-tolerant scheduling schemes, and determines how much each of deallocation and overloading affects the
acceptance ratio of tasks. The paper also provides a technique that can help real-time system designers determine the number of
processors required to provide fault-tolerance in dynamic systems. Lastly, a formal model is developed for the analysis of systems
with uniform tasks.

Index Terms —Real-time scheduling, fault-tolerance, operating systems, primary/backup, reliability, redundancy.

——————————   ✦   ——————————

1 INTRODUCTION

N recent years, computing systems have been used in
several applications which have stringent timing con-

straints, such as autopilot systems and satellite and launch
vehicle control. Real-time systems are systems whose correct-
ness depends not only on their logical and functional behav-
ior, but also on the temporal properties of this behavior. They
can be classified as hard real-time systems, in which the con-
sequences of missing a deadline may be catastrophic, and soft
real-time systems, in which the consequences are relatively
milder. Examples of hard real-time systems are space sta-
tions, radar for tracking missiles, systems for monitoring pa-
tients in critical condition, etc. An example of soft real-time is
on-line transaction processes used in airline reservation sys-
tems. If the tasks on these systems are not completed within a
deadline, a penalty is assessed.

In many real-time applications, fault-tolerance is also an
important issue. A system is fault-tolerant if it produces cor-
rect results even in the presence of faults [9]. Due to the criti-
cal nature of tasks supported by many real-time systems, it is
essential that tasks complete before their deadlines even in
the presence of processor failures. This makes fault-tolerance
an inherent requirement of hard real-time systems.

In a multiprocessor system, fault-tolerance can be pro-

vided by scheduling multiple copies of tasks on different
processors [15], [20], [21]. The primary/backup (PB) approach
and the triple modular redundancy (TMR) approach are two
basic approaches that allow multiple copies of a task to be
scheduled on different processors [23]. One or more of
these copies can be run to ensure that the task completes
before its deadline. In TMR, multiple copies are usually run
to achieve error checking by comparing results after com-
pletion. In the PB approach, if incorrect results are gener-
ated from the primary task, the backup task is activated.
The PB methodology has the advantage of small hardware
resource requirements, but is not capable of masking faults.
It should be noted that for both approaches, all copies of a
task must be scheduled within its timing constraints so that
the correct results are generated before the task’s deadline
even in the presence of faults.

In this paper, we study techniques for providing fault-
tolerance for nonpreemptive, aperiodic, real-time tasks using
the PB approach. Aperiodic tasks are those which are acti-
vated only when certain events occur [29] and nonpreemptive
tasks are those that cannot be interrupted during execution
by other tasks. A good motivation for nonpreemptive sched-
uling can be found in [8]. Since the arrival times of aperiodic
tasks are not known a priori, they have to be scheduled dy-
namically as they arrive. This contrasts with static systems in
which the schedules of all tasks are predetermined and re-
main fixed while the system is in operation.

The thrust of this paper is to study ways of providing
fault-tolerance for dynamic real-time tasks, and not to de-
velop an advanced heuristic for the scheduling of the tasks
themselves. As proof of concept, we use a simple slack-
based dynamic scheduling algorithm to schedule the real-
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time tasks. This algorithm can be easily replaced by a more
complicated algorithm for dynamic scheduling [16], [25],
[35], [37]. The simplicity of our algorithm allows us to con-
centrate on studying and analyzing the incorporation of
fault-tolerance while scheduling real-time tasks.

1.1 Motivation
Although many control applications are strictly periodic, there
are several examples of systems in which aperiodic nonpre-
emptive hard real-time tasks need to be scheduled while pro-
viding fault-tolerance. Below we describe some of them.

Let us consider a multiprocessor system that monitors
the condition of several patients in the Intensive Care Unit
of a hospital. An action has to be taken as soon as the pa-
tient’s condition changes. For example, if patient’s heart-
beat rate decreases beyond a certain threshold, a corrective
action must be taken, such as injecting a drug in the pa-
tient’s IV. This action must be taken within a certain hard
deadline. Such a system should ensure that the task is exe-
cuted within its deadline even if a fault occurs in one of the
processors. As a second example, consider space applica-
tions, where transient faults may occur in the on-board
computers due to electromagnetic interference. As a third
example, in flight control systems, the controllers often ac-
tivate tasks depending on what appears on their monitor. If
a fault occurs, the system should be able to recover before
the deadline. More examples of such safety critical applica-
tions can be found in [14].

To summarize, whenever real-time tasks can be gener-
ated due to events external to the system, we need a sched-
uling algorithm that can dynamically schedule the tasks.
When the system is critical in nature, we also need fault-
tolerance in the schedule.

For dynamic systems, it is not possible to guarantee op-
timal performance if the arrival times are not known a pri-
ori [4]. Static approaches such as those presented in [15],
[13] may not be suitable for many real-time dynamic sys-
tems where predictability is also required [24]. So the ques-
tion we need to answer is, how can fault-tolerance be pro-
vided to hard real-time tasks when their arrival times are
not known?

One approach is to ensure that there are enough proces-
sors in the system to schedule multiple copies of each task
even at peak load. By scheduling multiple copies, fault-
tolerance can be provided. For this approach, the minimum
number of processors required to meet peak load needs to
be determined. Finding this number given the system load
and the characteristics of arriving tasks is one of the goals
of this paper.

A second approach is to reject tasks as soon as they ar-
rive if they cannot be guaranteed fault-tolerance and, at the
same time, inform the user that the tasks are being rejected.
The user can take an appropriate action following the rejec-
tion of the tasks. For instance, in the hospital example de-
scribed earlier, if the system cannot monitor one more pa-
tient in critical condition due to the additional tasks being
generated, a nurse may be required to monitor the patient
instead. Once the system accepts the monitoring tasks for a
patient, all tasks have to be executed within their timing con-
straints even in presence of faults. Similarly, if an airplane

running on autopilot is experiencing wind turbulence, and
the additional tasks generated due to the disturbance cannot
be executed while providing fault-tolerance, then the pilot
has the option of taking over manual control of some or all
functions of the airplane’s navigational system.

Another possible approach is to let the user specify
whether fault-tolerance is essential or not. If it is not essen-
tial, fault-tolerance will be provided to as many tasks ar-
riving into the system as possible. For example, in the PB
approach, even if the backup for a task cannot be sched-
uled, we may allow only the primary copy of the task to be
scheduled in the system. When the task is scheduled, we
inform the user whether both copies of the task or only the
primary has been scheduled. The user can take necessary
precaution if only one copy of the task has been scheduled.

The first approach is static in nature but can provide
fault-tolerance to dynamic real-time tasks provided that the
worst case combination of their arrivals is known. The two
other approaches are dynamic in nature and can adapt to a
change in the parameters of arriving tasks. This paper
studies these approaches and, to our knowledge, is the first
that guarantees the fault-tolerance of dynamic nonpreemp-
tive real-time tasks.

The remainder of the paper is organized as follows. In
Section 2, we describe representative previous work done in
the area of real-time fault-tolerant scheduling and existing
fault detection mechanisms. In Section 3, we state the prob-
lem. In Section 4, we discuss the general strategy that we use
to solve the problem. In Section 5, we present a model for
scheduling uniform tasks in the system with fault-tolerance.
In Section 6, we extend the model to nonuniform tasks and
present an algorithm for fault-tolerant scheduling of these
tasks on a multiprocessor system. Simulation results are pre-
sented in Section 7. Finally, in Section 8, we discuss future
work and provide some concluding remarks.

2 RELATED WORK

When a fault occurs, extra time is required during task execu-
tion to handle fault detection and recovery. For real-time sys-
tems in particular, it is essential that the extra time be consid-
ered and accounted for prior to execution. Methods explicitly
developed for fault-tolerance in real-time systems must take
into consideration the number and type of faults, and ensure
that the timing constraints are not violated. In this section, we
describe some representative efforts in this direction.

Fault-tolerance has typically been approached from a
hardware standpoint, with multiple replicas of essential
applications running on separate hardware components
[33]. More recently, a hybrid approach was proposed to
integrate software checks at the end of hardware computa-
tion cycles [11]. To achieve fault masking of permanent
hardware faults, redundant concurrent tasks may be used
to carry out the computations (synchronously or asynchro-
nously) [12], [33]. Some approaches use groups of processes
executing sequentially [15], [27], while others have the rep-
licas execute in parallel [3], [11], [12].

Another way of providing fault-tolerance is through
scheduling. Several scheduling algorithms have been devel-
oped for real-time tasks in preemptive and nonpreemptive
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systems. Since the general problem of optimal scheduling of
tasks on a uniprocessor or a multiprocessor system is NP-
complete [6], different heuristics have been used to schedule
real-time tasks with the aim of maximizing performance
measures such as acceptance ratio and processor utilization.
Among these heuristics, only a few have attempted to pro-
vide fault-tolerance while scheduling real-time tasks.

In [15], a fault-tolerant scheduling algorithm is proposed
to handle transient faults. The tasks are assumed to be peri-
odic, and the short (backup) copies of all tasks are sched-
uled on a uniprocessor system to guarantee minimum per-
formance for each task. Thereafter, the algorithm attempts
to maximize the number of primaries that can be executed
in the system. One of the restrictions of this approach is that
task periods are multiples of each other.

In [13], processor failures are handled by maintaining con-
tingency or backup schedules. These schedules are used in the
event of a processor failure. To generate the backup schedule,
it is assumed that an optimal schedule exists and the schedule
is enhanced with the addition of “ghost” tasks, which function
primarily as standby tasks. Since not all schedules will permit
such additions, the scheme is optimistic.

In [1], a best effort approach to provide fault-tolerance
has been discussed in hard real-time distributed computing
systems. A primary/backup scheme is used in which both
the primary and the backup start execution simultaneously
and if a fault affects the primary, the results of the backup
are used. The scheme also tries to balance the workload on
each processor.

In the area of multiprocessor systems, a fault-tolerant
scheduling strategy for periodic tasks is described in [20],
[21]. In this strategy, a backup schedule is created for each
task in the primary schedule. The tasks are then rotated
such that the primary and backup schedules are on differ-
ent processors and do not overlap. Thus, it is possible to
tolerate up to one processor failure in the worst case. In
[21], the number of processors required to provide a sched-
ule to tolerate a single failure is double the number of the
non-fault-tolerant schedule.

In the papers described above, the algorithms are static,
that is, information about all tasks are known before sched-
uling them. Also, these studies generally concentrate on the
analysis of algorithms and very little work has been done to
provide any experimental or simulation results.

A dynamic procedure for the rescheduling of failed tasks
has been described in [30]; such procedure is only invoked
after the detection of a processor failure. This reallocation
procedure involves local preemption, as well as bidding
and focused addressing as described in [36]. If, after the
processor crash is detected, no processor can be found to
accommodate the failed tasks, the task is said to be lost. This
work also presents simulation results.

In this paper, we concentrate only on the fault-tolerant
scheduling of nonpreemptive tasks in real-time systems. For
this reason, in the above short survey, we have not dis-
cussed systems that have been built with the aim of pro-
viding real-time fault-tolerance but do not study scheduling
specifically [10], [12], [34]}. For the same reason, we have
not discussed scheduling techniques that provide fault-
tolerance for preemptive real-time tasks [2], [22], [26].

3 THE FAULT-TOLERANT SCHEDULING PROBLEM

In this section, we describe the system, fault, and task mod-
els used in this paper. We also introduce the approach that
we have used to schedule dynamic real-time tasks with
fault-tolerance.

We consider a system which consists of n identical proc-
essors and we assume that there is a task scheduling proc-
essor (central controller1) which maintains a global sched-
ule, or that a global shared memory with test and set in-
structions is used. An example of such a system is a single
node of the Spring system [31].

Because faults need to be identified before being toler-
ated, error detection is essential. Therefore, our approach
will make use of the error detection mechanisms that have
been developed for various fault models [9], [19], [23]:

• Fail-signal processors, which immediately notify other
processors of a detected fault.

• Alarms or watchdogs for the detection of timing fail-
ures, assuming synchronized clocks.

• Signatures that can be used for detection of hardware
or software faults.

• Acceptance Tests (AT) or AT-like checks that test re-
sults for hardware or software faults.

A task is modeled by a tuple Ti = ·ai, ri, di, ciÒ, where ai is

the arrival time, ri is the ready time (earliest start time of the

task), di is the deadline, and ci is maximum computation
time (also called worst case execution time). We also as-
sume that the window of a task (wi = di - ri) is at least twice
as large as the computation time. Without this assumption,
it would be impossible to schedule both the primary and its
backup within the task’s time constraints. We define the
window ratio to be the ratio of the task’s window to its com-

putation time. That is, wri
d r

c
i i

i
= - .

We assume that tasks arrive dynamically in the system
and are scheduled nonpreemptively as they arrive. For ease
of presentation, we assume that tasks are independent, that
is, have no precedence constraints. However, tasks with
precedence constraints can also be scheduled by trans-
forming the precedence graph into independent nodes with
new ready times and deadlines [5]. For example, if a group
of tasks has precedence constraints, then the first among
them is scheduled first (using the group’s ready time and
deadline, and its own computation time as the timing con-
straints). Once the first task is scheduled, the ready time of
all the remaining tasks in the group is now equal to the end
time of the first task. Then the tasks which immediately
follow the first task are scheduled, and this process is con-
tinued until all tasks are scheduled, or one of them cannot
be scheduled. If any one task cannot be scheduled, the
whole group is rejected.

Tasks scheduled on this system are guaranteed to com-
plete if a processor fails at any instant of time and if a sec-
ond processor does not fail before the system recovers from
the first failure. If a completion guarantee cannot be assured

1. This assumption is made to simplify the presentation since the sched-
uling strategy can also be implemented with distributed schedulers.
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for a given task, the task is rejected (i.e., the system does not
try to schedule the task at a later time). Both permanent and
transient faults are handled by our approach. We do not
consider the problem of software faults or correlated com-
ponent failures.

Even though we do not deal with faults in the schedul-
ing processor in this paper, there are several ways in which
the failure of that processor can be handled. For example,
the scheduling processor itself can be duplicated if it is
prone to failures. Another solution is to schedule backups
for the scheduling process on some other processor in the
system.

We address the fault-tolerant scheduling problem by
using a primary/backup approach. When a task arrives
into the system, two copies,2 a primary and a backup, are
scheduled on two different processors within the task’s
window. The backup copy of a task executes only if a fault
is detected in the primary. Since we assume dynamic sys-
tems, it is possible to release resources reserved for backup
copies of tasks as soon as the primary copies finish execut-
ing. In this manner, we are able to better estimate the sys-
tem state (e.g., available free time) when new tasks are
scheduled.

To evaluate the performance of our scheme, we compare
our results with the results of the single spare method, in
which one processor is allocated to be used as a spare. If a
nonspare develops a fault, all tasks scheduled on the faulty
processor are executed on the spare. We also measure the
overhead of providing fault-tolerance, by comparing our
system to a system that has no provision for fault-tolerance,
which we call the no FT method. In the case of real-time
systems, not providing fault-tolerance is undesirable due to
the possibility of catastrophic consequences if a fault oc-
curs. Our comparison of these schemes is based on the per-
formance of each technique in terms of acceptance ratio and
resiliency. We define acceptance ratio as the percentage of
arriving tasks accepted by the system, that is, those sched-
uled with fault-tolerance. Rejection ratio is defined as (1 -
acceptance ratio) and is the percentage of arriving tasks re-
jected by the system. Note that each accepted task has re-
sources reserved for itself once it is accepted by the system
and hence is guaranteed to execute. Finally, resiliency is de-
fined as the ability of the system to recover from a fault and
resume normal operation before the next fault occurs.

4 THE SCHEDULING STRATEGY

Our scheduling scheme is based on the following obser-
vations:

1) In real-time systems, tasks must be memory resident at
the time of execution since the time taken to fetch the
tasks from secondary storage is usually not predictable.

2) A processor functioning as a spare will be idle
throughout the life-time of the system if no faults occur.

3) For hard real-time systems, reservation of resources for
backup copies must be ensured, but backup copies can
have a different scheduling strategy than primaries.

2. For simplicity, our description assumes that a backup is a copy of a
primary.

The first and second observations steered us away from
the single spare processor approach. To comply with real-
time constraints, the spare processor would have to main-
tain in main memory all tasks in the system. This is a neces-
sary condition for tasks to be able to execute in a timely
fashion in case a processor fails. This implies that either the
scheduling algorithm must take into consideration the total
memory requirements of all tasks, or it must consider the
time to load tasks that are to be executed in case of failures.
Therefore, it would be a strain on a particular processor if
all tasks must be loaded on that processor’s memory.

We also notice that in the dedicated spare processor ap-
proach, the spare processor is not used by any executing
tasks during intervals of fault-free operation. This wasted
processor time could be used by some other task that could
be executed concurrently, if we can guarantee that the
backup tasks will be executed when needed.

The third observation, namely that resources reserved for
backup copies could be reutilized, motivated us to apply the
following two techniques to achieve high acceptance ratio
while providing fault-tolerance with low overhead:

• backup overloading, which is the scheduling of more
than one backup in the same time slot on the same
processor (overlapping of multiple backups).

• backup deallocation, which is the reclamation of re-
sources reserved for backup tasks when the corre-
sponding primaries complete successfully.

The primary and backup copies of a task Ti will be re-
ferred to as simply the primary (PRi), and the backup (BKi).
The time intervals on which the primary and the backup
copies are scheduled are called the primary and backup
time slots, respectively. If backup copies of more than one
task are scheduled to run in the same time slot on the same
processor, that backup slot is said to be overloaded. The
backups of up to n - 1 tasks running on different processors
can be overloaded on the same slot if at most one processor
can fail at a time. The concept of overloading will be ex-
plained and studied further in the following sections.

The advantages of our scheme over the single spare
scheme are as follows:

• As we will show later (see Section 7), the performance
of our scheme is better than that of the single spare
scheme in terms of acceptance ratio.

• If no faults occur, the time interval used by the back-
ups can be reutilized (backup deallocation). For ex-
ample, if it is known that a backup will not be used,
then the task scheduled after the backup can be exe-
cuted instead. Meanwhile, if new tasks arrive, they
can be scheduled after the currently running task.

• As mentioned earlier, with our scheme, all processors
have uniform memory requirements. Therefore, our
scheme provides symmetry with respect to memory
requirements which may aid if reconfigurations are
needed or desired.

Although there are advantages over the spare scheme,
the overhead must also be evaluated. Note that scheduling
primary as well as backup tasks does not significantly in-
crease the running time of the scheduling algorithm. This
time is proportional to the task window and the average
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execution time of tasks. According to [17], [28], for many
applications the window ratio of tasks is around 11, which
leads us to believe that a good implementation of our
scheme will not be costly.

The nomenclature we use in this paper is as follows:
p(PRi) is the processor on which PRi is scheduled to execute,
beg(PRi) is the scheduled begin time of PRi, end(PRi) is the
scheduled end time of PRi, and S(PRi) is the slot in which
PRi is scheduled, that is, S(PRi) = [beg(PRi), end(PRi)]. The
same notation is used for a backup BKi.

Using this notation, the necessary conditions for tolerating
a single fault in real-time systems are described as follows:

[C1] Both PRi and BKi must be scheduled within the task’s
window wi and the slot for BKi should be later than the slot
for PRi:

ri £ beg(PRi) < end(PRi) £ beg(BKi) < end(BKi) £ di

[C2] PRi and BKi must be scheduled on different processors
(to tolerate permanent faults):

p(PRi) π p(BKi)

[C3] If PRi and PRj are scheduled on the same processor pi,
BKi and BKj cannot overlap on the same processor pj (to
tolerate permanent faults):

p(BKi) = p(BKj) Ÿ S(BKi) > S(BKj) π ∆  fi p(PRi) π p(PRj)

C1 is required because both primary and backup copies
must satisfy the task’s timing constraints and because it is
assumed that the backup is executed only after a failure in
the primary is detected (the failure is detected when the
primary finishes executing). The second part of this condi-
tion can be relaxed if backups are executed in parallel with
the primary, as in [32]. However, in a dynamic system, it is
preferable to conserve as much of the processor time as
possible for tasks which might arrive in the future, and thus
we prefer not to execute backups until a primary fails. C2
ensures that both primary and backup copies are not
scheduled on the same processor. Without C2, both copies
might miss their deadlines if the processor on which they
are scheduled fails. Finally, without C3, it would not be
possible to execute backups of both tasks if a failure occurs
in the processor on which the primaries are scheduled.
Clearly, for transient faults, C2-C3 are overly conservative,
since both primary and backup copies can be scheduled on
the same processor.

The resiliency of the system (as defined in Section 3) can
be measured in terms of the time it takes for the system to
be able to tolerate a second fault after the first fault occurs
in a processor pi. We will call this latency time the time to
second fault (TTSF). This time is the maximum between the
end time of backups for primaries scheduled on pi (the
backups could be on any processor), and the end time of
the primary tasks on other processors with backups on pi.
For example, in Fig. 1, primary PR1 is scheduled on p1 and
its backup BK1 on p2. If a fault occurs on p1 before PR1 exe-
cutes, then we can tolerate a fault on p2 only after BK1 com-
pletes. If a second fault occurs on p(BK1) before end(BK1),
both copies of T1 would be lost. Using a similar logic, we
can tolerate a second fault on p3 only after PR2 completes.
The maximum of all such combinations gives us the time at

which we can guarantee that a second fault will be toler-
ated in the system. This argument is formalized in the fol-
lowing theorem:

Fig. 1. Tolerating a second fault.

THEOREM 1. If a permanent fault occurs at time t in processor pi,
the PB system will be able to tolerate another fault that oc-
curs at a time t¢, where

t¢ > max {maxj {end(BKj) :  p(PRj) = pi},

maxj {end(PRj): p(BKj) = pi}}

PROOF. If a permanent fault occurs at time t in pi, any task
arriving later than t will be scheduled (primary and
backup) on the n - 1 nonfaulty processors. Thus, such
tasks are guaranteed to complete even if a second
fault occurs. If a task, Tj, is already scheduled when
the first fault occurs then consider the following two
cases:

1) Either p(PRj) = pi or p(BKj) = pi: In this case, the re-
striction on t¢ guarantees that BKj or PRj, respec-
tively, will successfully execute before a second
fault occurs. The first part of the restriction on t¢
guarantees that the second fault can occur only af-
ter all backups with their primary on the faulty
processor have executed. The second part ensures
that the second fault occurs only after all primaries
with their backups on the faulty processor have
executed.

2) p(PRj) π pi and p(BKj) π pi: In this case, Tj is guar-
anteed to complete even if a second fault occurs
unless BKj overlaps a backup BKk whose primary
PRk is scheduled on pi (for example, in Fig. 1, if i = 1,
j = 3, and k = 1). Due to the first fault, BKk is acti-
vated and hence BKj cannot be used (since it over-
laps BKk). Therefore, a second fault cannot be toler-
ated on p(PRj) (p4 in Fig. 1) until PRj has executed.
However, this case is covered by the second part of
the restriction on t¢, according to which a second
fault cannot be tolerated before BKk has executed.
Since BKj and BKk overlap, PRj is scheduled earlier
than end(BKk) in the system. This means that the
second fault can be tolerated only after PRj, which
completes the proof for that case. �

In the next section, we present a uniform task model in
which time is discretized and all tasks are of unit length.
This model, which is amenable to a Markov analysis, is
only an approximation of practical systems in which tasks
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are nonuniform. In Section 6, we present a nonuniform task
model in which time is continuous and all tasks have vari-
able lengths. This model is not amenable to Markov analy-
sis and thus we use simulations to evaluate it.

5 SCHEDULING UNIFORM TASKS

In this section, we assume that tasks have a uniform worst
case execution time, "i, ci = 1, and that all tasks that arrive
within one unit of time are scheduled at the end of that
time unit. With unit length tasks, backup slots may be eas-
ily overloaded since all backup tasks are of the same length.
In fact, a simple backup preallocation policy is to reserve a
slot for backup every n time slots on each processor, stag-
gering backup slots on the n processors (Fig. 2). That is, if a
backup slot is preallocated at time t on processor pi, then a

backup slot is preallocated at time t + 1 on processor p(i+1) mod n.
This preallocation allows for a simple assignment of back-
ups to tasks in a way that satisfies Conditions C1-C3. Spe-
cifically, if a backup slot is preallocated at time t on pi, then

any task scheduled to run at time t - 1 on pj, j π i, can use
this slot as a backup. Because the task scheduled to run on
pi at time t - 1 cannot have its backup slot on the same
processor (Condition C3), then this task can use the backup
slot at time t + 1, which is on p(t+1) mod n. In other words, for a

task Ti, BKi is scheduled in the time slot immediately after

PRi with probability n
n

-
-

2
1  and is scheduled two slots later

than PRi with probability 1
1n- . Note that, in this scheme, n-1

backup tasks can potentially be overloaded on the same
backup slot. Also, the n - 1 primary tasks that may be
scheduled between two backup slots on a processor have
their backups on different processors.

Fig. 2. Staggered backup slots in a multiprocessor system.

By staggering the backups, the equivalent of a spare
processor is created using all n processors in the system. As
mentioned in Section 4, the advantages of our scheme are:
Memory requirements for processors are uniform, all proc-
essors are used leading to a higher acceptance ratio, and the
task to be executed in lieu of a deallocated backup is known
at scheduling time.

As an example of memory requirements in the uniform
task case, let us consider a system which has four proces-
sors. Consider four consecutive unit time slots in the sys-
tem. If one processor is used as a spare, that processor will
have to maintain 12 tasks in its memory (for those four time
units), while the other three processors will need four each.

On the other hand, if backups are staggered, each processor
will have to maintain six tasks in memory; three primary
tasks, and three backup tasks.

The preallocation of backups described above may de-
crease the acceptance ratio of tasks since primary tasks may
not be scheduled on slots reserved for backups. In order to
estimate the loss of acceptance ratio caused by the addition
of the fault-tolerance capability (the backup slots), we con-
sider the simple first come first served scheduling of the
primary tasks. Such a scheduling policy is equivalent to
maintaining a task queue, Q, to which arriving tasks are
appended. Given that n - 1 tasks can be scheduled on each
time slot,3 then the position of a task in Q indicates its
scheduled execution time. If at the beginning of time slot t,
a task Ti is the kth task in Q, then Ti is scheduled to execute

at time slot t k
n+ -1 .

When a task Ti arrives at time t, its acceptance probabil-
ity depends on the length of Q and on the window of the
task, wi. If Ti is appended at position u of Q and wi

u
n≥ -1  ,

then the primary task, PRi, is guaranteed to execute before

time t + wi. Otherwise, the task is not schedulable since it

will miss its deadline. Moreover, if wi
u

n≥ +-1 2, BKi is

guaranteed to execute before t + wi.
The dynamics of the above system may be modeled by a

Markov process. For simplicity of presentation, we start by
modeling a system without deadlines, that is, a system in
which no tasks are rejected. Such a system may be modeled
by a linear Markov chain in which each state represents the
number of tasks in Q and each transition represents the
change in the length of Q in one time unit.

We assume that a maximum of Amax tasks can arrive into
the system every unit of time and that Par(k) is the probabil-
ity that k tasks arrive within a given unit of time. The prob-
abilities of the different transitions may be calculated from
the rate of task arrival. Specifically, if Su represents the state
in which Q contains u tasks and u ≥ n - 1, then the prob-
ability of a transition from Su to Su-(n-1)+k is Par(k) for k =
0, º, Amax . This is because during a time unit, n - 1 tasks
are consumed from the queue and k new tasks arrive with
probability Par(k). If u < n - 1, then only u tasks can be con-
sumed and Par(k) becomes the probability of a transition
from Su to Sk. For example, Fig. 3 shows the transitions in
the Markov chain assuming that n = 4, Amax = 6, and the
arrivals are uniformly distributed.

Fig. 3. Transitions out of state Su for a linear chain.

Now we consider the case of tasks with deadlines. When
the k arriving tasks have finite window sizes, some of these
tasks may be rejected. Let pu,k be the probability that one of

3. One slot is reserved for backups.
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the k tasks is rejected when the queue size is u. The value of
pu,k is the probability that the window of the task is smaller

than u k
n
+
- +2

1 d , where d is the extra time needed to sched-

ule the backup and is equal to 1 or 2 with probability n
n

-
-

2
1

and 1
1n- , respectively. Hence, when the queue size is u, the

probability, Prej(r, k, u), that r out the k arriving tasks are

rejected is P r k u C p prej r
k

u k
r

u k
k r( , , ) ( ) ( ), ,= - -1 , where Cr

k  is the

number of possible ways to select r out of k objects.
Transitions out of state Su (current queue length is u) are

to states S S S Su n u u u A n- ¢ - + - ¢, , , , ,K K1 max
, where n¢ is the

number of tasks consumed: n¢ = n - 1 if u ≥ n - 1 and n¢ = u

otherwise. The probability of transition from Su to Su-n¢ is
the probability that no task arrives or all incoming tasks are

rejected. This probability is equal to P i i ureji

A
( , , )

=Â 0

max . In

general, the transition from state Su to state Su+i occurs if j

tasks arrive, i + n¢ £ j £ Amax and r = j - n¢ - i of these tasks

are rejected thus adding n¢ + i newly accepted tasks to the
system. This increases the queue length by i since n¢ tasks
are consumed from the queue. Hence the probability of
transition from Su to Su+i is:

P u u i P j P j n i j uar rej
j i n

A

Æ + = ¥ - ¢ -
= + ¢
Â b g b g, ,

max

for i n A n= - ¢ - ¢, ,K max               (1)

Once the transition probabilities are known, we can cal-
culate the steady state probabilities P[u] of being in state u,
0 £ u £ M, where M = (n – 1)wmax is the largest possible
value of the queue. When the steady state probabilities of
being in each state are known, we can calculate the rate of
rejection of tasks using the following equation:

Number of rejected tasks =

i P i u P u n P uar
i

A

u

n

u n

M

¥ - ¥ + - ¥
F
HG

I
KJ= =

-

=
Â Â Âa f a f

0 0

1

1
max

         (2)

where the first part of the equation’s right side is the aver-
age number of tasks arriving into the system per unit time,
and the second part is the average number of tasks con-
sumed (executed) by the system per unit time.

Up to now, we have not considered backup deallocation
in the model. Backup deallocation means that if at time t no
fault has occurred, then the backup preallocated at time slot
t + 1 may be used to schedule a new task. In other words, if
k tasks arrive during slot t, and k > 0, then one of these tasks
can be scheduled in the deallocated backup slot, and the
remaining k - 1 tasks can be treated as above. If we define
an effective arrival rate ¢Par  as ¢ =P Par ar( ) ( )0 0  and

¢ = +P k P kar ar( ) ( )1  for k π 0, then we can compute the transi-

tion probabilities from (1) with Par replaced by ¢Par  and

compute the number of rejected tasks from (2) with Par re-
placed by ¢Par .

In Fig. 4, we consider Par and Pwin (probability that an ar-

riving task has a window w) to be uniformly distributed,
and we plot the rate of task rejection for window ratios of 5
and 7 as a function of the number of processors, n, for the
case Amax = 2n (uniformly distributed) with and without
backup deallocation. The decrease in rejection ratio due to
backup deallocation is clear. Note that, from a schedulabil-
ity point of view, dedicating one of the n processors as a
spare is equivalent to staggering the backup slots among
the n processors when these slots are not deallocated.
Hence, Fig. 4 can be also looked at as a comparison between
our strategy and the spare method.

Fig. 4. Rejection ratio as a function of the number of processors.

6 SCHEDULING NONUNIFORM TASKS

6.1 Task Model and Scheduling
In this section, we enhance the model of the previous section
with respect to the execution times of the tasks. We consider
the case where execution times of tasks are variable and each
task is scheduled as soon as it arrives. Since the execution
times of tasks are not fixed, it is not possible to preallocate the
backup tasks as in Section 5. Also, the analysis of such sys-
tems becomes more complex. Therefore, we will present a
heuristic for the scheduling of tasks arriving dynamically,
and evaluate this heuristic using simulations.

When a new task arrives, the primary is scheduled as
early as possible within the task’s window and the backup
is scheduled after the primary but before the task’s dead-
line. When a primary task completes successfully, its corre-
sponding backup is deallocated. When the primary and
backup are scheduled, or the primary finishes and the
backup is deallocated, the list of existing slots is updated.

For example, consider the simple schedule for four tasks
shown in Fig. 5. For these tasks it is assumed that ai = ri.
Note that BK1 and BK3 partially overlap and BK4 is not
overloaded with BK2 because d4 is earlier than the begin
time of BK2, which was scheduled earlier when task 2 ar-
rived. Moreover, the two backups should not overlap since
their primary copies are scheduled on the same processor.
PR4 is scheduled on processor 2 because that is its earliest
possible schedule.

A modification of the initial schedule is shown in Fig. 6,
where the completion of tasks 2 and 1 (in that order) causes
the deallocation of their respective backups. The arrival of
tasks 5 and 6 (Fig. 7) causes further modifications in the
schedule. BK3 is overloaded with BK5, and due to the deal-
location of the BK1, PR6 can be scheduled on processor 2.

Our algorithm schedules a primary before scheduling its
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corresponding backup because it is more difficult to sched-
ule the primary than its backup and we want to minimize
the number of constraints while scheduling the primary.
Scheduling the backup is easier because we can overload it
on any of the existing backups or simply schedule it on any
available free slot. If the backup is scheduled first, we have
two added constraints on the schedule for the primary: The
end time of the primary has to be earlier than the begin
time of the backup (as mentioned earlier) and there is one
less processor for scheduling the primary (Condition C2).

The schedule that we choose for a primary may affect

the acceptance probability of the backup for that task. For
instance, let’s assume that we find the earliest possible
schedule of a primary on processor pi and call this schedule
s1. It may not be possible to schedule a backup for the task
using s1 because there is space for the backup only on pi. In
order to solve this problem, we find the second earliest
schedule for the same primary on another processor pj and
call this schedule s2. If we cannot schedule the backup using
s1, we look at s2. In s2, we can schedule the backup on pi
(since the primary is now on pj).

This solution, however, is not complete. Specifically, there
are cases in which both s1 and s2 cannot be used to schedule
the backup while the backup can be scheduled if the primary
is scheduled on some processor other than pi and pj. To show
that this solution is not complete, let us assume that s1 and s2
for PRi have been found on processors p1 and p2, and the in-
terval within which BKi can be scheduled on all processors
contains backups for primaries scheduled on p1 and p2. In this
case, if we use s1 or s2 to schedule PRi on p1 or p2, we will
have to overload BKi on one of the existing backups and vio-
late Condition C3 to overload BKi on any of the processors.
However, we can schedule PRi on p3 and overload BKi on
either p1 or p2 without violating Condition C3.

The solution is complete only if we find a schedule for
the primary on every processor and then try to schedule the
backup for each primary schedule. Since keeping track of
all possible schedules for the primary would increase the
scheduling costs, we have considered in our simulation
only the earliest and the second earliest schedules of the
primary when trying to schedule the backup.

6.2 Steps to Schedule the Task
In this section, we present the scheduling algorithm in
macrosteps.

The primary for task i is scheduled as follows: We look
at each processor to find if PRi can be scheduled between ri
and di. If PRi cannot be scheduled without overlapping an-
other time slot, slotj, then we have to check if we can re-
schedule slotj. This can be done by checking the slack of slotj.
The slack is defined as the maximum time by which the
start of a task can be delayed so that it completes executing
before its deadline. The function used for slack is:

Slack(PRi) = min (Beg(Si+1) + Slack(Si+1), Beg(BKi)) - End(PRi)

Slack(BKi) = 0

where Si+1 is the primary or backup slot following PRi in p. If
the slack of slotj added to the preceding free slot is greater
than ci, then PRi can be scheduled after shifting slotj forward.

To schedule the backup, we may have two choices:
Schedule it as late as possible or overload it as much as pos-
sible within the task’s deadline. If we schedule the backup
as late as possible, then we maximize the chances that the
slot occupied by the backup in the schedule is reutilized.
This is because the backup is deallocated as soon as the
primary completes and since the backup is scheduled as far
away from the primary as possible, there is more time
available after it is deallocated, and new tasks arriving may
be able to reutilize that space. In this situation, acceptance
ratio increases. If the option of overloading is not available

Fig. 5. Scheduling four tasks on three processors.

Fig. 6. After the completion of tasks and deallocation of respective
backups.

Fig. 7 The new schedule after the arrival of two more tasks.
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(no previous backups have been already scheduled), then
we always prefer to schedule as late as possible.

The other option is to overload the backup as much as pos-
sible. This also increases acceptance ratio since the processor
time being reserved for backups is minimized and more
time is available to schedule new tasks. However, if both
options are available to us, we may not be able to do both at
the same time. If we try to maximize overloading, then the
backups may not be scheduled as late as possible and vice
versa. To find out which factor (overloading or dealloca-
tion) is more effective in increasing acceptance ratio, we
schedule each backup such that the following function is
maximized:

F = backup_end + w ¥ overlap_length    (3)

where overlap_length is the length of the intersection be-
tween the new backup and the backup(s) that are already
scheduled. If there is no overloading, overlap_length is zero.

The user can choose the value of w from 0 to infinity, which
would yield scheduling disciplines ranging from scheduling
the backups as late as possible to overloading as much as pos-
sible. At task scheduling time, the value of w is fixed.

The backup for task i is scheduled as follows: Let the
earliest schedule of primary i be on processor pj. We exam-
ine the possible schedules for the backup on processors
other than pj (for permanent faults). Depending on the
value of w, we either overload the backup as much as pos-
sible, schedule it as late as possible, or follow a policy
somewhere in the middle of these two extremes.

Although we maintain forward slacks of primary slots
and we allow them to be moved forward if necessary,
backup slots are not moved. That is because the backup slot
may be supporting more than one primary and if the backup
slot is moved, the slacks of all those primaries will change.
This may have a cascading effect and each movement of a
backup slot will be very costly in terms of time spent to recal-
culate slacks. If it is not possible to schedule the backup for
task i’s earliest schedule, we look at task i’s second earliest
schedule and again try to schedule the backup.

Finally, the task is committed as follows: Once the
schedules for both the primary and the backup have been
found, we commit the task. That is, we guarantee that the
task will be completed before its deadline even in the pres-
ence of a single fault. To do this, we have to insert the pri-
mary and the backup in a global schedule being maintained
by the central controller. Note that the slacks need to be
recalculated only on the two processors on which the new
slots were scheduled.

To summarize, the following steps are used to schedule
the task:

1) Find a schedule for the primary as early as possible in
the task’s window.

2) Find a schedule for the backup corresponding to the
primary schedule found in step 1 using the chosen heu-
ristic (e.g., as late as possible or maximize overloading).

3) Commit the task (guarantee it will meet its deadline
in the presence of a single fault).

6.3 An Example
A simple schedule for four tasks is shown in Fig. 8. The first
three tasks4 (T1 = ·0, 0, 6, 15Ò, T2 = ·1, 1, 4, 17Ò, T3 = ·1, 1, 3, 9Ò)
are scheduled on p1, p2, and p3, while their backups are
scheduled in p2, p3, and p1, respectively. Note that we chose
to schedule these tasks according to their latest completion
time, that is, their deadlines. Now consider a fourth task,
T4 = ·2, 2, 6, 20Ò: BK4 is scheduled in processor p4, since it is
the earliest possible schedule for that task. Thereafter, we
attempt to schedule its backup, BK4.

Fig. 8. Scheduling four tasks on four processors. The black boxes
depict possible schedules of BK4.

Note that the backup can be scheduled on processors p1,
p2, and p3. The question now is at what time, and in which
processor to schedule the backup? We show that it depends
on the parameter w of the algorithm. We base our example
on (3). The results of the tasks and their corresponding Fs
are shown in Table 1. We select specific positions for BK4
(complete, partial, and no overload) to illustrate the possi-
bilities and how the heuristic works. In the table, the value
of F in bold face is chosen.

TABLE 1
VALUE OF F WHEN SCHEDULING IN DIFFERENT POSITIONS OF

DIFFERENT PROCESSORS, WITH DIFFERENT VALUES OF w

proc F (from (3)) w = 0 w = 0.5 w = 10

p1
14 + w ¥ 0 14 14 14

p2
 9 + w ¥ 6 9 12 69

p3
13 + w ¥ 4 13 15 53

Notice that for each value of w, the location of the
backup is different. There are ranges of values of weight
that would not influence the scheduling of the backups.
However, these situations depend on the task set and the
current schedule. For example, when w = 1, scheduling BK4
either at times 13 or 14 on processor p3 would yield the
same value of F.

In this algorithm, the maximum number of comparisons
that have to be done for any new task depends on the num-
ber of tasks already scheduled in the system. In the average
case, this depends on the average window ratio of the tasks
in the system. The larger the window ratio, the more the
number of tasks scheduled in the system, and hence the
larger the number of potential comparisons. The average
number of comparisons for each task is

4. Remember that a task is represented by the arrival time, ready time,
computation time, and deadline.
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average window ratio of tasks ¥ number of processors

In the worst case, we may have to try to fit the incoming
task between each pair of existing slots already scheduled
in the system. In this case, the total number of comparisons
is equal to the number of tasks present in the system. This
number is bounded if we assume that the rate of incoming
and outgoing tasks (tasks that have completed execution) is
the same on an average. The interval within which we need
to compare the incoming task with scheduled tasks will
shift forward with time, but the average average number of
tasks in that interval will remain constant.

7 THE SIMULATION

To study the scheduling algorithm presented above, we
have performed a number of simulations. The goals of our
simulations are as follows:

• To compare the acceptance ratio of our fault-tolerant al-
gorithm (described in Section 6.2) with that of the no FT
method. The fault-tolerance capability in the schedule
generated by our algorithm comes at the cost of in-
creasing the number of rejected tasks. This comparison is
used to measure the cost of increased rejection.

• To compare the acceptance ratio of our scheme with
that of the single spare method. Note that the spare
method is equivalent to having backup copies of all the
primaries implicitly scheduled on the spare processor.

• To find the number of processors needed to schedule
two copies of each task on the system, given the sys-
tem load and task characteristics. This result is useful
for statically determining the number of processors
required for a given set of tasks in a real-time system.

• To measure the effect of weight w on acceptance ratio.
This tells us whether it is preferable to overload a
backup more, or to schedule it as late as possible to
increase the benefits of deallocation.

• To measure the time at which the system can tolerate
a second fault. This tells us how quickly the system
can completely recover from a fault, which is a meas-
ure of the resiliency of the system.

7.1 Simulator and Simulation Parameters
Our evaluation was done by implementing a discrete-event
simulator where the events driving the simulation are the arri-
val, start, and completion of a task as well as occurrence of
faults. We generated task sets for the computation of the
schedules and ran the different policies on the same task sets.
Note that, in the spare and the no FT methods, the tasks are
scheduled using the same algorithm as the one used for pri-
mary copies in our method. Besides the number of processors

n and the weight w, the simulation parameters that can be
controlled are:

• the average computation time, c: The computation
time of the arriving tasks is assumed to be uniformly
distributed with mean c.

• the processor load, g : This parameter represents the
average percentage of processor time that would be
utilized if the tasks had no real-time constraints and
no fault-tolerance requirements. Larger g values lead
to smaller task interarrival time. Specifically, the in-
terarrival time of tasks is assumed to be uniformly
distributed with mean a = c/(g  * n).

• the average window ratio, wr: This parameter
(defined in Section 3) is uniformly distributed with a
mean of wr and its minimum value is 2.

We ran simulations for task sets of 1,000 tasks. For each
set of parameters we generated 100 task sets and calculated
the average of the results generated. To be consistent with
the model, we assumed "i, ri = ai, yielding a dynamic sys-
tem. Formally, a1 = r1 = 0 and ri = ri-1 + ai, where ai is the
interval between two successive arrivals. The processor
load ranges from zero to one (i.e., 0 < g  £ 1). For example, if
g  = 1, n = 4, and c = 4, then the task interarrival rate is 1.
This means that, on an average, one task arrives in the sys-
tem every unit of time and thus the processor load on each
of the four processors is 1. These parameters are summa-
rized in Table 2.

To compute the TTSF, a fault is injected at an arbitrarily
chosen time instant, t. Theorem 1 is then applied to com-
pute t¢. We repeat this experiment 1,000 times and average
the results to obtain the mean TTSF.

7.2 Results and Analysis
In Fig. 9, we plot the rejection ratio of tasks for our method
as a function of processor load while keeping the number of
processors in the system constant. As expected, the rejec-
tion ratio increases with the increase in processor load. We
can also see that, due to the PB approach used and our de-
allocation technique, the rejection ratio decreases as the
window ratio increases.

In Fig. 10, we compare the rejection ratio of three schemes,
namely the spare scheme, our scheme, and the no-fault-
tolerance (no FT) scheme for different number of processors. In
the no FT scheme, no backups or spares are used; in the spare
scheme, the primaries are scheduled by the same algorithm
used in our scheme and backups are implicitly scheduled on
the spare processor. Note that our scheme consistently per-
forms better than the single spare scheme, for all values of win-
dow ratios. This is mainly because our algorithm uses deallo-
cation. This tells us that for dynamic systems, it is less costly,

TABLE 2
PARAMETERS FOR SIMULATIONS

parameter name distribution values assumed
number of tasks T fixed 1,000
number of processors n fixed 3, 4, º, 20
computation time c uniform mean = 5
processor load g uniform mean = 0.5, 0.6, º, 1.0
interarrival time a uniform mean = c/(g  * n)
window ratio wr uniform mean = 3, 5, 7, 9, 11
weight w fixed 0, 0.1, 0.5, 1, 2, 5, 10, 20, 30
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in terms of acceptance ratio, to provide fault-tolerance using
the PB approach than to use the single spare approach.

Fig. 9. Rejection ratio as a function of processor load, for different win-
dows ratios.

Fig. 10. Rejection ratio as a function of processor load, for spare, our,
and no FT schemes.

The rejection ratio of our algorithm is very close to the
rejection ratio of the no FT method. This means that the
price paid to provide fault-tolerance is quite low. This low
cost is due to the use of deallocation as explained in the
previous paragraph, and overloading, which minimizes the
amount of resources reserved for the backups.

We have also studied the effect of different values of w
(weight) on the acceptance ratio. For small window ratios,
the optimal weight is between 0 and 1, while for larger win-
dow ratios, the maximum acceptance ratio is obtained when
w = 0. However, the variation for different weights is rela-
tively small. For instance, for window ratio equal to 3 and
processor load equal to 1.0, the rejection ratio for four proces-
sors, varies from 0.2461 (at w = 0) to 0.2814 (at w = 20). For
higher values of window ratio, the difference is even smaller.

When we consider the weight in conjunction with the
Time To Second Fault (TTSF in Fig. 11), we can see that,
although the weight has little influence on TTSF, the larger
the window ratio, the larger the TTSF is. This is expected,
since the larger window ratio increases the length of the
schedule and therefore the recovery interval.

The small sensitivity of the rejection ratio and the TTSF
to the weight indicates that the position of the backup task
has little influence on the acceptance ratio of tasks. This
means that a simple strategy for scheduling backups should
be used rather than a complex policy that increases the run
time of the scheduling algorithm. In fact, noting that the
best results are obtained when w = 0, the simple policy of
scheduling backups as late as possible is recommended.

In the worst case, the TTSF will be equal to the maxi-
mum possible window of all tasks arriving into the system.
If the TTSF is much smaller than the Mean Time To Failure
(MTTF) of the processors, then we can safely say that we
can handle multiple faults in the system.

Next we plot the rejection ratio for different values of
system load (Fig. 12). The system load is a fixed parameter
that is inversely proportional to the interarrival rate
(sysload c= a ). It can be computed as a product of the proces-

sor load and the number of processors (sysload = g  ¥ n). For
example, if system load is 2, then the processor load is 1 on
two processors, 0.67 on three processors, or 0.5 on four proc-
essors. This system load can be used to statically determine
the number of processors needed to support dynamic real-
time tasks while providing fault-tolerance. For example, in
Fig. 12, we see that for a constant system load, the rejection
ratio decreases as the number of processors increases. If the
user requires a rejection ratio below 5% and the system load
is 4, it can be seen from the graph that five processors are
needed when the average window ratio is greater than 5, and
six processors are needed when the average window ratio is
3. Similarly, the number of processors needed can be deter-
mined for any given rejection ratio and task characteristics.

Fig. 12. Rejection ratio for different number of processors with varying
system loads.

In Fig. 13, we show the effect of using overloading and
deallocation in the acceptance ratio of task sets plotted

Fig. 11. TTSF versus weight for different window ratios and number of
processors.
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against the number of processors. The figure shows the
varying rejection ratios when we use overloading, deallo-
cation, both, and neither techniques. Note that whenever
overloading is present (“both” and “overloading only”), we
additionally compare the results for w = 0 and w = 100.

Fig. 13. Rejection ratio as a function of number of processors, using
different techniques.

It is clear that the use of either method significantly im-
proves the acceptance ratio of task sets, but the difference
from using deallocation to using both techniques shows a
less drastic improvement. This is because deallocation, in
conjunction with scheduling the backups as late as possible,
causes almost all the time reserved for backups to be re-
used. Thus, all processors are being utilized to their fullest
extent possible while scheduling backups for each primary.
Overloading cannot help much more in this case. This leads
us to believe that using deallocation in the scheduling of
real-time fault-tolerant tasks will enhance the acceptance
ratio, but not much is gained from using overloading along
with deallocation. Although we do not show the results
here, similar behavior is exhibited when the processor load
is smaller or larger than 1.0.

8 CONCLUDING REMARKS

In this paper, we have developed and analyzed a fault-
tolerant scheduling method for real-time systems that toler-
ates processor faults. We show that the overloading and
deallocation of backup slots provide efficient utilization of
the resources. Our results show positive correlation be-
tween the acceptance ratio of task sets and the load on the
system, as well as between the acceptance ratio and the av-
erage task window ratio. Both theoretical and simulation
results indicate that the reclaiming of resources reserved for
backup tasks (deallocation) is the most important factor
when scheduling tasks in a primary/backup fashion. With
backup deallocation, elaborate methods for increasing the
overloading of backups seem to have only a small effect on
acceptance ratio and resiliency. Thus, fast and simple
scheduling algorithms should be used for backups.

Our method can tolerate more than one processor fail-
ure. As it stands, the scheme can tolerate successive perma-
nent faults that are separated by a sufficiently large time
interval. Once the time to second failure (TTSF) of the sys-
tem is established, it is easy to relate the TTSF to the mean-
time-to-failure (MTTF) and the reliability of the processors.

The goal is to guarantee that within some fraction of MTTF,
all tasks existing at the time of the failure complete. The
new tasks arriving after the first failure will have their pri-
mary and backup copies scheduled on the nonfaulty proc-
essors and thus a second fault can be handled.

To handle multiple simultaneous faults, we can schedule
more than one backup copy for each task. In this case, re-
siliency and overhead of the system will increase. Note that,
although the scheduling policy for this case will be different
from the one presented in this paper, the mechanisms we
have developed remain the same.

We are currently extending this scheduling algorithm to
distributed systems in which communication costs are
taken into account. We plan to study a hybrid technique
combining the PB approach and triple modular redundancy
on multiprocessor systems. That is, scheduling more than
two copies of each task in the system. We also plan to study
the fault-tolerance scheduling of tasks that have precedence
and resource constraints.
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