
Modeling Compiled Communication Costs in Multiplexed Optical Networks *

C . Salisbury and R. Melhem
Department of Computer Science

University of Pittsburgh
{ salisbur,melhem} @cs.pitt.edu

Abstract

Improvements in optical technology will enable the con-
struction of high bandwidth, low latency switching networks.
These networks have many applications in massively par-
allel processing. However current circuit switching and
packet switching techniques are not quite suitable for con-
trolling such networks. Time division multiplexing (TDM)
schemes can improve the performance of circuit switched
optical interconnection networks by taking advantage of the
locality of references present in the communication patterns.
In this papel; we construct a model for the cost of compiled
communications in circuit switched networks. We show how
the cost is affected by the characteristics of the network and
by the application’s communication locality of references.
We show how a compiler can use this information to choose
the most appropriate multiplexing degree.

1. Introduction

Optical technologies can be used to build the high band-
width, low latency interconnection networks required by
high performance computing applications. Since it is im-
practical to build large networks by directly connecting
all the attached nodes to each other, suitable network ar-
chitectures and control techniques must also be developed
to realize the full optical potential. The following two
approaches have been used for designing networks.

Reducing direct connectiviQ. Packet switching tech-
niques send messages through the network to their final
destinations via intermediate nodes. Routing information
added to each message is processed by electronic circuitry,
requiring optical signals to be converted to electronic sig-
nals (and possibly buffered) at each routing step. This
leads to under-utilization of the full capability of an optical
interconnection.

*This work is supported in part by NSF award MIP-9633729 and by
AFOSR award F49620-93-1-0023DEF to the University of Pittsburgh

e Sharing network resources. Circuit switching tech-
niques using time[5], space[131, or optical wavelengths[11
can provide direct connections between devices. However
only a subset of all possible connections can be provided
at any given time. This reduces the cost and size of the
network, but increases the complexity of managing the net-
work. This alternative is attractive for optical networks
since all-optical paths from sources to destinations can fully
exploit the high bandwidth of optics [4].

While time division multiplexing (TDM) is a general
technique that can be used in any network, it is especially
attractive in optical networks because of the large bandwidth
available. An interconnection network built from optical
components can provide communication bandwidth of 250
Gb/s or more[121, an amount that exceeds the requirements
of any single processor. In TDM the optical bandwidth
is shared via a sequence of sets of interconnections. The
network automatically cycles through this sequence with-
out intervention by the program, establishing each set of
connections for a small time interval called a time slot. The
length of a slot is chosen to be long enough to transmit a sin-
gle message. For example, at 10 Gb/s a 30 ns time slot can
be used to transmit four words of 64 bits. Each processor
may communicate with another processor during the time
slot when the network provides the connection it needs, The
cycle can be short enough so that the path is again available
when the processor has additional data to transmit. TDM
requires the use of a global clock to synchronize the time
slots for all the transmitters and receivers connected to the
network. The actual data transmission, however, does not
require a global clock as self-clocking can be used at the bit
level[2].

The set of paths provided by a network is determined
by the state of the various network components, such
as switches, registers, frequency assignments, etc. The
collective state of the components is referred to as the net-
work state. The required network state can be determined
as soon as the application’s communication requests are
known. Depending on the network design and application
requirements, this network state may need to change dur-

71
1063-7133197 $10.00 0 1997 IEEE

mailto:cs.pitt.edu

ing program execution. Both determining and changing
the network state are potential sources of communication
delay. Techniques that determine the application’s com-
munication pattern and the required network states prior to
program execution are called compiled communication, or
static techniques [2, 101. Techniques that use information
gathered at program execution time to determine which
paths the program needs are called dynamic techniques.

To develop a control strategy for a circuit switched op-
tical network, we can apply the well known concepts of
locality of reference and working set. Managing the set
of paths in use is similar to managing pages of virtual
memory[3]. Circuit switched interprocessor communica-
tion networks will have different locality characteristics
than LAN communications[8] or memories[7, 111.

In section 2 of this paper we present a model-of the com-
munication pattern of a parallel application. In section 3,
we model the cost to communicate over a circuit switched
network. The model is developed for compiled communi-
cation where the application’s requirements are known prior
to program execution. We show when TDM can reduce
communication costs in terrps of network and application
characteristics. To investigab the application factors that
influence communication cost, in section 4 we quantify the
concept of communication locality of reference and show
how to identify the working set of communication paths
used by an application. In section 5 , we give particular
attention to applications that consist of parallel loops. We
show that communication cost and locality of reference are
related in section 6.

2. The application model

To the interconnection network, an application appears
as a sequence of requests for a network connection. These
requests can originate on any node attached to the net-
work. Each request can be characterized by its source,
destination, message length, and arrival time. We model the
requests using fixed length messages and represent arrival
times by ordering messages in the sequence in which they
are presented to the network. The network processes each
request by providing a path connecting the message source
and destination. We will represent the sequence of com-
munication connection requests by 7 = P I , P2, . . ., where
P; represent the source/destination pair (s i , U!;) for the i th
communication request.

We refine the model to express the looping structure
common to parallel applications by letting 7 be the con-
catenation of the requests from a sequence of loops. Let P;,
be the path required by the j t h communication request in
the ith loop. Let L; be the sequence of requests generated
by one iteration of loop i, so that L; = Pi,, P;z, Pi3, Let
the number of iterations of loop i be Ti. We can describe

the sequence of requests generated by this loop as LF,
indicating that the sequence L; is concatenated to itself T;

times. The requests from an application with p loops can
then be described by:

7 = L;’, L?, . . e , LF

We will often be interested in the number of different
paths used in loop i , and define this number to be Zi. We
will also find it useful to deal with looping structures that
have disjoint loops or distinct paths, as defined below.
Definition 1: We say that a looping structure has disjoint
loops if each loop uses paths that are not used by any other
loop. Specifically, if M; contains all the paths in L; and Mj
contains all the paths in L j , then M; n Mj = 0 for all i # j .

Definition 2: We say that a loop has distinct paths when
each path in the loop is used exactly once in each iteration of
the loop. Loops with distinct paths have Zi = IL; I = IM;l.

3. Cost of TDM compiled communication

When the communication requirements of an application
are known at compile time, a compiler can determine the
needs of different sections of the program and insert in-
structions for the hardware to establish the required circuits
[lo]. This is called compiled communication, and can be
more efficient than having the hardware establish a circuit
for each individual connection request while the program is
running. The term communication cost refers to the delays
a program will encounter when communicating in a circuit
switched network.

A network that uses time division multiplexing will
automatically cycle through a sequence of network states.
Each state provides a set of paths over which messages can
be sent. The number of states in the cycle is referred to as
the multiplexing degree which we will represent by K . The
set of K states that are contained in one cycle are referred to
as the multiplexed state. We will assume that the network
can provide any arbitrary set of m paths simultaneously.
For example, networks such as the Benes, Clos, cross-bar,
and WDM star can provide connections for any arbitrary
permutation [6, 91. Thus, if the network can provide a
maximum of m paths in one state, the multiplexed state can
contain up to K m paths. Note that K = 1 corresponds to a
non-multiplexed network.

The compiler can use a greedy algorithm to create the
required sequence of network states. The communication
requests are first placed in sequential order. A network
state is created for the first group of m different paths.
Additional states are then created for successive groups of
m different paths. We will call this algorithm the “m-path”
method. If the number of paths in the application’s working
set is greater than m, this method will require frequent
establishment of new network states.

72

Another method to satisfy the application's requirements
is to use multiplexing to provide complete interconnection
by dividing all possible paths into sets of size m, and then
cycling through all these sets. This simulates a completely
connected network, but may not perform well when the
application requires only a small subset of these paths.

A third alternative is to combine the m path method with
multiplexing by having the compiler establish K network
states at once, and letting the network cycle through these
states without further direction from the program. Network
performance will be affected by our choice of the value of K.
If K is too small, communication requests will be delayed
often while a network state with the required connection is
being established. If K is too large, communication requests
may be delayed while the network provides connections
that are not needed during a particular phase of program
execution. The optimal choice of K will reflect a balance
between the network's performance characteristics and the
application's path requirements. We will assume that the
network can alter the value of K during program execution.

We next develop a model of communication cost for an
application with 1) an arbitrary sequence of requests, 2) a
single loop, and finally 3) a sequence of loops.

3.1. The communication cost model

Establishing a network state during program execution
requires only processor synchronization (to avoid inconsis-
tent states) and loading the network state. We consider
the time to load the state of the network components to
be constant regardless of the multiplexing degree, and that,
over time, all processors will encounter the same amount of
delay at synchronization points. Thus the delay caused by
the establishment of a new network state is modeled as a
fixed value, Er.

When time division multiplexing is used, a program
will be delayed when it attempts to use a path that is in
the multiplexed state but is not established at the time of
the request. On average, the length of the delay will be
proportional to the degree of multiplexing. In the worst
case, we could apply this delay to every communication
request. Each request would have to wait for the network
to move through the cycle before the required path became
available. However, in a parallel system it is reasonable
to assume that m requests will be generated and processed
together, and thus the average total access cost required to
handle q requests with multiplexing degree K is A, f 9
where A, is the length of a time slot.

To compute the cost of a sequence of communication
requests, 7, we first apply the m-path method to create a
sequence of network states. Let s be the number of states
created. In a non-multiplexed network, the total cost of
communications is simply sEf . We would like to compare

this to the cost in a multiplexed network.
To compute the cost in a multiplexed network, we will

combine a group of u consecutive network states into a single
multiplexed state. The sub-sequence of 7 representing
the consecutive requests satisfied by this multiplexed state
is called a partition of 7. There are n = s / u such
partitions. The ith partition is referred to as Z and we
have 7 = TI, T2, . . . , T,. When the U states of partition
Ti are multiplexed together with degree K, the cost for the
partition is

Note that the degree of multiplexing(K) may be different
from the number of states that are multiplexed together (U).
This may occur when the multiplexed states share common
paths, since a given path has to appear in a multiplexed state
only once.

In general, if N I , . . . , Nu are network states that are
to be combined into one multiplexed state, N', then the
required multiplexing degree K is ' 2 j' . We can find
the total cost of providing 'T in a multiplexed network by
determining the value of X for each partition and summing
the costs from expression (1) for all s/u partitions. The
total cost of 7 in the multiplexed network is

r 1

We can compare this expression to the cost in the non-
multiplexed network to determine when multiplexing re-
duces the total cost of communication. We rearrange the
inequality to place all the network parameters on one side,
and call the resulting term CY. We find that multiplexing all
of 7 in groups of U states reduces cost when:

The right side of inequality (3) is determined by the way
the sequence of communication requests can be grouped
into network states of size m. Since the left hand side
is constant for a given network, CY provides a threshold
by which we can judge the application to determine when
multiplexing 7 by combining groups of U states reduces
cost.

In the special case where the degree of multiplexing is
large enough to multiplex together all the states required
by 7, there will be just one partition. If t is the number
of different paths used in 7, this occurs when K = [Al.
We will refer to this as one-partition multiplexing, and to
this value of K as the one-partition multiplexing degree.
We know that in this case the establishment costs will be

73

minimized and inequality (3) can be reduced to:

171 121 a > - s- 1 (4)
3 .-

To make further statements about the benefit of multi-
plexing we must know more about the structure of T. We
begin the analysis in the following section by considering
the communication pattern that arises from a single loop.

3.2. Communication cost in a single loop

Assume a single loop, L', with 1 5 ILI different paths
and a network where m < 1. Because the communication
pattern repeats itself, we can restate inequality (4) in terms
of the characteristics of a single loop iteration. We find
that for one-partition multiplexing to reduce costs below the
non-multiplexed case, it is sufficient that:

(5)

Since T >_ 2 and 1 > m, one-partition multiplexing will
reduce costs whenever a > 4(LI.

We can determine the optimal degree of multiplexing for
a loop that has distinct paths. In this case, the multiplexing
degree is equal to the number of network states, U, that are
combined. We can substitute values for a, s, and K into
expression (2) to find the total cost:

(6)
When K = we require only one network state. As-
suming that 1 is a multiple of m and letting U = s, 171 = ~ l ,
and K = A, we find:

Most of the reduction in establishment costs occurs
with the first few degrees of multiplexing. Thus, the
optimal degree of multiplexing may be less than the one-
partition multiplexing degree. We can see how network
characteristics and multiplexing degree affect cost with the
example in Figure 1. We consider the cost of a single
loop with a fixed number of distinct paths, I , running on
a network with fixed values of a and m. In the figure,
we assume T is very large, = 8, and consider three
networks with values of a / m equal to 8,20, and 32. When
a / m = 8, the minimum cost occurs at K = 3 independent
of the value of T . When a / m = 20, the optimal choice
depends on the number of iterations as we have just seen.
When a/m = 32, one-partition multiplexing reduces cost
even when T = 2.

I

alphalmk32 12 -
Q Q

10 -
x-- -__ alphalm = 20-----------

.+-- +.-- --._

8 ,

6 - 6

U I I

1 2 3 4 5 6 I 8
Multiplexing Degree

Figure 1. Cost of a multiplexed loop.

Thus, to determine the optimal multiplexing degree we
must consider the relationship between network and appli-
cation characteristics. The following Theorem whose proof
is provided in [141 formalizes the conclusions.

Theorem 1: For a loop with 1 distinct paths and a
network with 2 > 4, one-partition multiplexing is always
optimal (has the lowest communication cost) when 5
E(1 + &) and is never optimal when 2 2 E . If
multiplexing the entire loop isn't optimal, then the optimal
multiplexing degree is &&. 0

3.3. Combining loops with multiplexing

When an application has several loops, we can continue
to increase the degree of multiplexing beyond that required
by a single loop. When a single network state provides the
total number of paths required by two adjacent loops, we
can again reduce state establishment costs. The increased
multiplexing degree will increase path access costs for both
loops, however. When all the loops have the same number
of paths and the loops are disjoint, we can show [14] that
multiplexing will reduce cost when a > 171 rA1. Unlike
inequality (5) , this threshold for combining loops is affected
by the number of iterations of each loop. Hence it can be
much larger than the threshold developed for a single loop.

3.4. Application characteristics and cost

In the same sense that a provides a characterization
of the network independent of the application, we would
like to characterize the application independently from the
network. To understand how applications might be charac-
terized, consider the cost of the following two loops with
distinct paths. Loop 1 has m + 1 paths and T iterations. Let
q be any integer and let loop 2 have q(m + 1) paths and ~ / q

74

iterations. Both loops require s = r(m+l) network states
and, without multiplexing, have the same cost. However,
the one-partition multiplexing degree and cost of loop 1 are
less than the one-partition multiplexing degree and cost of
loop 2. We would like to define a metric that encapsulates
this characteristic of an application.

When the application consists of a single loop, the num-
ber of different paths used may be a reasonable measure
of communication locality. However, this may not be an
appropriate measure for applications that consist of a series
of loops, or for a non-repeating sequence of communi-
cation requests. In the next section we develop a more
general metric that incorporates the notions of temporal and
spatial locality of reference and show how it is related to
communication cost.

4. Modeling application locality

A communication pattern that is highly local is desirable
for two reasons. First, high locality suggests that only a
“small” number of different paths are required so that the
application doesn’t use many network resources at any one
time. This loosely corresponds to the notion of high spatial
locality. Thus, the basis of our locality metric is a logical
grouping of communication requests into partitions that can
be created in any arbitrary manner. Second, good locality
also suggests that path utilization should be high, which
means the paths provided should be reused often. This
loosely corresponds to the notion of temporal locality. We
combine these concepts of spatial and temporal locality in
our locality metric. Small partition sizes coupled with high
reuse of the paths in a partition means high locality. The
choice of metric will necessarily reflect a balance between
these two. That is, a reduction of spatial locality due to an
increase in partition size can be offset by a gain in temporal
locality due to an increase in the amount of reuse.

Recall that the sequence 7 can be broken into n
sub-sequences such that 7 = TI, T2, . . . Tn. Each sub-
sequence Ti is a partition of 7. The set of these partitions
forms a partitioning of 7, denoted P (7) . Let M; be the
set of all the different paths used in the partition Zl. Since
a path may be used more than once in Ti, then IT;J 2 IM; I,
where IZI and [Mil are the number of paths in Ti and Mi,
respectively. We define spatial locality of a partitioning to
be inversely proportional to the average number of different
paths used in its partitions. Fewer paths per partition means
greater spatial locality. That is,

Temporal locality is expressed in terms of the reuse of paths
withinapartition. For partitionTi, the path reuse is EL ,M’i,. To

encourage the formation of partitions with high path reuse,
we use the root-sum-of-squares of this reuse to weight the
temporal locality measure strongly toward such partitions.
Thus, the temporal locality of a partitioning is defined as:

Temporal Locality (P (7)) = -
n

The communication locality of reference is defined as the
product of these two measures.

There are many ways of forming partitions. For example,
all communications can be placed in a single partition, the
m-path algorithm can be used, or the partitions can be
completely arbitrary. In our notation we will represent
a sequence of communications requests as a sequence of
numbers where each number represents a single use of a
particular path. For clarity, the examples given in this paper
will use small sequences and small values of m. It should
be clear, however, that the concepts presented apply as well
to arbitrarily large sequences and values of m.

Example 1: The sequence 7 = 1,2,2,1 represents the
use of path 1, followed by path 2, followed by the reuse
of paths 2 and 1. A partitioning of this sequence could be
TI = 1,2,2 and T2 = 1. In this case, M I = {1,2) and
M2 = { 1). Using m-path partitioning with m = 1, we
would have TI = 1, T2 = 2,2, T3 = 1, and MI = {l},
M2 = {2}, M3 = (1). 0

We define the locality of a sequence to be the greatest
locality attainable from any partitioning of the sequence.
Each of the partitions from the optimal partitioning contains
a working set of communication paths. In the following
lemma, we show that we can always increase the locality
of a partitioning if we can divide one of the partitions into
two pieces which have no paths in common. Lemma 2 then
describes when locality is increased by joining adjacent
partitions. The proofs of these lemmas are straightforward
from the definition of locality.

Let P (7) be a partitioning of 7 with
partitions T I , . . . , Z, . . . , Tn and let P ’ (7) be a partitioning
formed from T by splitting partition Ti into Till T i 2 so that
P ‘ (7) = Tl, . . . , T i l , 2’2,. , . , T,. Let Mil and Mi2 be the
set of paths corresponding to T;1 and Ti2, respectively. If
Mil n Mi2 = 0 then Locality(P‘(T)) > Locality(P(I)).

Let P (7) be a partitioning which has
adjacent partitions Ti and Ti+l. Let Mi and Mi+l be the
corresponding sets of paths. Let P ’ (7) be a partitioning
identical to P (7) except that Ti and Ti+] are joined into a
single partition. If Mi M,+l, then Locality(P’(7)) >
Locality(P(7)) whenever

Lemma 1:

Lemma 2:

75

2lTi+ll > (l M i + l 1) 2 - 1 0
[Til - lMil

When Mi = the condition of Lemma 2 is always
met and we will always increase locality by combining
adjacent partitions that use the same paths. When adjacent
partitions use almost the same set of paths (Mi c Mi+1
and IMi/ w JM;+ll), we should consider merging the
partitions even when the sequence lengths are very different
(Iz+l I << Iz I). When the numbers of paths used by these
partitions are very different (IM;+lI > !Mil) we should
consider merging the partitions only when the partition with
more paths has many more requests (IZ+l I >> ITil).

In the next section we again focus on looping appli-
cations, beginning with loops that are disjoint. We will
determine when the greatest locality is obtained by placing
all requests from each loop into a single partition. This
partitioning corresponds to our intuitive notion that each
loop forms a working set of paths. We will then consider
loops that are not disjoint, first looking at two loops and
then extending the discussion to any number of loops.

Sequence
(1 , 2,3,3)"
(4,5,6, 6)20

5. Locality of looping sequences

Method Sets of Paths Locality
natural { 1 , 2,3}, {4,5,6} 6.28
one path 0.13 { l}, { 2 } , {3}, . . . ,

We define the partitioning that places all requests from
each loop into a separate partition to be the natural parti-
tioning of the application and refer to it as PJJ. Intuitively,
we expect this to be the partitioning with the greatest lo-
cality as long as the number of iterations of each loop is
sufficiently large and the loops are sufficiently disjoint. To
quantify these two conditions for general loop structures
is rather complicated, if at all possible. Thus, in the next
sections we will consider only special loop structures.

5.1. Sequences from disjoint loops

We can place an upper bound on the number of loop
iterations needed to ensure that the natural partitioning of a
sequence of disjoint loops has the maximum locality. The
bound is presented in the following theorem whose proof is
provided in [141.

Theorem 2: Let 7 be a sequence of communication
requests from an application 7 = LI ' , . . . , L? with p
disjoint loops, and let Hi be the maximum number of times
any path is used in a single iteration of loop i . Then the
natural partitioning of the sequence has locality greater than
any other partitioning when:

For loops with distinct paths, k; = 1. This requires ri 2 Z;
f o r i = I , . . . , p . 0

Table 1. Partitioning disjoint loops.

Table 1 shows several looping sequences, the sets of
paths required by the natural and one-path partitionings,
and the resulting locality. For these sequences, the number
of iterations is large enough to ensure that the natural
partitioning has the greatest locality. The locality of the one
path partitioningis very low because there is littleor no path
reuse, so that temporal locality is low. The large number of
partitions means that the sum of the partition sizes will be
large, making spatial locality low as well.

5.2. Locality of two non-disjoint loops

Lemma 2 can be applied when the paths used by one
loop are a subset of paths used by an adjacent loop. In this
section we show how overlap between adjacent loops can
be handled.

The locality when the paths from two adjacent loops
are combined into a single partition is determined by the
sequence length 171, the number of distinct paths in each
loop (11 and l z) , and the amount of overlap between these
sets of paths. We define the overlap v to be the number
of times paths reappear in different partitions. The overlap
between L1 and LZ is thus 3 = I I + 12 - IM1 U M 4 . Note
that when the total number of requests is fixed the locality
of the natural partitioning still depends on T~ and r2, while
the locality of the combined partitioning depends only on
the total sequence length. We define ~ 1 , ~ ; ~ to be the value
of T I which gives the minimum locality value possible for
the natural partitioning.

We can most easily investigate the relationship between
the locality of a combined partitioning and the natural
partitioning by considering two loops with the same number
of distinct paths, so that I = 11 = 12 = ILI I = IL21. We
assume the loops have I' paths in common, so v = 1'. Since
lLll = IL21, the length of the sequence is constant when
the total number of iterations is constant. We can compute
the ratio of the locality of a combined partitioning to the
locality of the natural partitioning to be:

(12)
2

Locality Ratio =
(2 - 3 2 l + A (" L - l J n+r2 + l + n

76

a

9 I

2.5

2

1.5

I

0.5

I Combined Partition has more localitv I

n l I
0 0.2 0.4 0.6 0.8 1

Fraction of Total Iterations in the First Loop, rl/(rl+rZ)

Figure 2. Combining two partitions.

This ratio is plotted in Figure 2. The graph is sym-
metric because of the assumption that IL1J = 1,521. When
lLll # IL21 the graph becomes skewed, with the peak
moving toward the left when JL11 < IL2). The amount of
overlap required for the combined partitioning to have the
greatest locality is stated in the following Lemma. The
proof is given in [141.

Lemma 3: Consider an application consisting of two
loops which use an equal number of different paths, so
that 11 = 12. Assume the loops have I' paths in common.
The natural partitioning of this application will always
have locality greater than the combined partitioning when
(l ' /Z) 5 0.318. The combined partitioning of this appli-
cation will always have locality greater than the natural
partitioning when (Z'/Z) 2 0.586.

5.3. Locality of multiple non-disjoint loops

We can investigate the effect of combining more than
two non-disjoint loops if we assume that all loops have
the same number of distinct paths and the same number of
iterations. Consider an application with p such loops with
r iterations and I paths. Let Mi be the set of paths used by
loop i . The locality of the natural partitioning of thep loops
is 6. Create a new partitioning by combining U adjacent
loops together into a single partition. We can generalize the
definition of overlap v used in the last section and note that
the number of times paths are reused among the U loops is
U = Z; - 1 U;==, Mil. If we further assume that the
overlap is the same for each group of U loops, we find the
locality of the new partitioning to be:

(13)

Combined PamUoning has mpre locality 1
1.4

1.2

1

0.8

0.6

0.4

, Natural Pamuoning has more locality 0 2

0
1 2 3 4 5 6 I

Number of Loops Combined in a Partiuon

Figure 3. Combining many partitions

3.27

Table 2. Partitioning overlapping loops.

One application with the same overlap in each group
of U loops has 1' paths common to all loops, and 1 - I'
paths in each loop which are disjoint. In this case, we
find U = (U - 1)Z'. For this application, the locality of
the combined partitioning relative to the natural partitioning
is shown in Figure 3. When there is little or no overlap,
the natural partitioning always has the greatest locality.
As the amount of overlap increases, locality is increased
by combining loops into a single partition. For a given
amount of overlap, we can determine the number of loops
to be combined to attain the optimal locality. For example,
if the application is (1,2,3,4)r(1,2,5,6)'(1,2,7,8)' then
1 ' / 1 = .5. From Figure 3 we can see that we get the greatest
locality when all three loops are combined into a single
partition. Table 2 shows examples of partitionings for loops
that overlap.

In this section we have argued that for sufficiently disjoint
loops and a sufficiently large number of repetitions, the
natural partitioning of an application provides the greatest
locality of any partitioning, so that the communication
working set is defined by loop boundaries. From the cost
model, we found that communication costs can often be
minimized by multiplexing to the degree that provides all
the paths required by a loop. This similarity suggests that
locality is an application characteristic that can be useful in
determining the working set of paths that a network must
provide in order to minimize communication costs. In the
next section, we develop similar properties that partially

77

order applications by cost and by locality, and look at some
example sequences.

6. Locality and the cost of communication

From the definitions of cost and locality we can develop
properties for partially ordering applications, assuming the
natural partitioning and one-partition multiplexing is used
in each loop. The properties show that similar sequences
of equal length will often be ordered in a corresponding
way by cost and locality. Equality or inequality in the cost
properties is determined by the network's value of m.

Property 1: Given two disjoint sequences L1 and L2 and a
fixed number of iterations T :

0 CO@;, L;) 5 Cost((L1, L2)')

0 LocaIity(L7, L;) > Locality((L1 , L2)')

Locality always increases, and cost may decrease, with
disjoint sets of paths in separate partitions. Cost may
decrease even when there is some overlap between the
sets of paths. For example, the natural partitioning of
(1,2,3, 4)20(5, 6,7, 8)20 has more locality than the natural
partitioning of (1,2,3,4,5,6,7, 8)20, and may cost less.

Property 2: Given two loops, L;' and L y where T I IL1 I =
r21L21 and 11 < 12:

0 Cost(L;') 5 Cost(L;2)

0 LocaIity(LI;') > Locality(L;2)

For an equal number of requests, a loop with fewer paths
will have greater locality and may cost less than a loop with
more paths.

Property 3: Given two sequences, L1 and L2, and
iteration values r l 1 ~2~ T ; , and T; where T I < T ; , 11 < 12,

andr1IL1I +T21L21 = T{IL11 +T;IL2I:

Cost(L;' , L;2) 5 Cost(L;; , L$)

When loops have a different number of paths, the dis-
tribution of requests between two loops affects cost and
locality. As the proportion of requests in the loop with
fewer paths increases, cost may decrease. Above a thresh-
old value, locality increases. The need for the threshold is
shown by an example. Note that (1, 2)14(3, 4,5, 6)28 has
less locality than (1,2)'0(3,4, 5,6)", and it also costs less.

In general, looping sequences with disjoint sets of paths
and a sufficient number of iterations will be placed in the
same partial order by both locality and cost.

Request
Sequence

(1,2,3,4,. . . , 9)'"
(1,2,3,4,. . . ,

Locality

40.0
40.0
17.8
14.1
10.0
7.07
6.40
6.37
6.28
4.44
3.54
2.50
1.96
1.60

cos
Non-mpx

1600
800
1200
1600
1600
910
1600
1600
1600
1600
1600
1600
1600
1600

-
Mpx
330
330
500
340
650
840
830
580
500
1290
660
1290
1450
1610

Table 3. Locality and cost of several request
sequences.

When network states are of fixed size, we can broaden
the interpretation of the path notation used in the previous
examples. Rather than representing a single path, an integer
can represent an entire network state of m paths. All such
states must be disjoint. A loop requiring m paths in each of
two network states can therefore be represented as (1 , 2)'.
This loop can be contained in a single multiplexed network
state with a multiplexing degree of two. For example,
consider m processors arranged as a log m-dimensional
binary hypercube. The integer i can represent the set of m
paths used for communication over dimension i. These sets
of paths are disjoint. The notation (1,2, . . . , logm)' then
represents the pattern of m processors communicating over
each dimension in succession in a loop executed r times.
Similarly, (1,2,3,4)' can represent a pattern where each
of m processors in a two dimensional torus communicates
once to its nearest neighbors in each dimension.

Table 3 shows the locality, non-multiplexed cost, and
multiplexed cost for several example communication pat-
terns. The ordering obtained from the locality measure in
expression (10) follows the intuitive notion of locality. For
computing costs, a was set at 10. Since very little of the
multiplexing cost is state establishment cost, changing the
value of a has very little effect on the total multiplexed
costs. Decreasing LY reduces the non-multiplexed costs, so
that multiplexing reduces cost only for the most local se-
quences. Increasing a increases the non-multiplexed costs
and the advantage of multiplexing.

Although the non-multiplexed cost can be low for some
sequences with good locality, other sequences with good
locality incur a large non-multiplexed cost. Additionally,
sequences with equivalent non-multiplexed costs can have
very different locality characteristics. There is a much
stronger relationship between locality and cost when mul-

78

tiplexing is used. Multiplexing provides lower cost for
sequences with greater locality. This ability to exploit lo-
cality is true for any value of a. This means that high
locality is associated with low multiplexed cost regardless
of the network characteristics.

7. Conclusions

The cost of controlling a interconnection network is a
major concern in circuit switched optical networks since this
cost can be very high relative to the cost of data transmis-
sion. Time division multiplexing is a technique that can be
used to reduce the cost of establishing the required circuits.
We analyzed the cost of circuit switched communications
when the communication pattern can be determined by the
compiler. A similar technique can be applied to dynami-
cally controlled networks. We considered applications that
contain parallel loops and quantified the cost reduction pos-
sible with multiplexing in terms of network and application
characteristics. This information can be used by a compiler
to determine the optimal degree of multiplexing. Costs can
often be reduced by multiplexing together all the network
states that provide the paths used in a loop.

Locality is a characteristic of the application that, in
some cases, can be understood before the application is
executed. While the locality measure provides an objective
basis for determining the working set of communication
paths, the real significance is the correspondence between
locality and cost. Locality can be used as a tool to pre-
dict communication performance of an application without
regard to the network on which the application will be
implemented. The programmer can take expected commu-
nication performance into consideration when choosing the
most appropriate algorithm to solve a specific problem.

The exact relationship between locality and communi-
cation cost depends on many factors such as the network
parameters, the order of the communication requests and the
number of paths used. The communication cost in a multi-
plexed network generally corresponds better to the locality
of the application than does the cost in a non-multiplexed
network. Thus multiplexing can be a valuable tool to exploit
the locality of references and reduce communication costs
in optical networks.

References

the First IEEE Symposium on High-Performance Computer
Architecture, pages 44-53, January 1995.

[3] D. M. Chiarulli, S . P. Levitan, R. G. Melhem, and C. Qiao.
Locality based control algorithms for reconfigurable optical
interconnection networks. Applied Optics, 33: 1528-1 537,
March 1994.

[4] D. M. Chiarulli, S. P. Levitan, R. G. Melhem, J. P. Teza, and
G. Gravenstreter. Multiprocessor interconnection networks
using partitioned optical passive star (POPS) topologies and
distributed control. In Proceedingsof the First International
Workshop on Massively Parallel Processing Using Optical
Interconnections, pages 70-80. IEEE, April 1994.

[5] I. Chlamtac and A. Ganz. Channel allocation protocols in
frequency-time controlled high speed networks. IEEE Trans.
on Communications, 36(4):430-440, April 1988.

[6] P. Dowd. Random access protocols for high-speed inter-
processor communications based on an optical passive star
topology. IEEE Journal of Lightwave Technology, 9(6):799-
808,1991.

171 K. Grimsrud, J. Archibald, R. Frost, and B. Nelson. On
the accuracy of memory reference models. In Computer
Performance Evaluation, Modeling Techniques and Tools.
7th International Conference Proceedings, pages 369-388.
Springer-Verlag, May 1994.

[8] N. Gulati, C. Williamson, and R. Bunt. LAN traffic locality:
Characterization and application. In Local Area Network
Interconnection. Proceedings of the First International Con-
ference, pages 233-250. Plenum, October 1993.

[9] K. Hwang. Advanced ComputerArchitecture. McGraw-Hill,
New York, NY, 1993.

[IO] J. Li and M. Chen. Compiling communication-efficient pro-
grams for massively parallel machines. IEEE Transactions
on Parallel and Distributed Systems, 2(3):361-375, 1991.

[l 13 D. T. Michel and W. C. Hobart, Jr. Toward a unified model of
program behavior. Performance Evaluation, 20(20):27-44,
May 1994.

[12] P. Prucnal, I. Glesk, and J. Sokoloff. Demonstration of all-
optical self-clocked demultiplexing of tdm data at 250gbk
In Proceedings of the First International Workshop on Mas-
sively Parallel Processing Using Optical Interconnections,
pages 106-1 17. IEEE, April 1994.

[I31 C. Qiao and R. Melhem. Reconfiguration with time divi-
sion multiplexing MINs for multiprocessor communications.
IEEE Transactions on Parallel and Distributed Systems,

[I41 C. Salisbury and R. Melhem. Modeling communication
costs in multiplexed optical switching networks. Technical
Report 96-22, Department of Computer Science, University
of Pittsburgh, 1996.

[151 X. Yuan, R. Melhem, and R. Gupta. Compiled communica-
tion for all-optical TDM networks. In Supercomputing '96.
IEEE, November 1996.

5(4):337-352,1994.

[11 C. A. Brackett. Dense wavelength division multiplexing
networks: Principles and applications. IEEE Journal on
Selected Areas of Communications, 8(6):948-964, August
1990.

[2] E Cappello and C. Germain. Toward high communica-
tion performance through compiled communications on a
circuit switched interconnection network. Proceedings of

79

