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Abstract 

Improvements in optical technology will enable the con- 
struction of high bandwidth, low latency switching networks. 
These networks have many applications in massively par- 
allel processing. However current circuit switching and 
packet switching techniques are not quite suitable for con- 
trolling such networks. Time division multiplexing (TDM) 
schemes can improve the performance of circuit switched 
optical interconnection networks by taking advantage of the 
locality of references present in the communication patterns. 
In this papel; we construct a model for the cost of compiled 
communications in circuit switched networks. We show how 
the cost is affected by the characteristics of the network and 
by the application’s communication locality of references. 
We show how a compiler can use this information to choose 
the most appropriate multiplexing degree. 

1. Introduction 

Optical technologies can be used to build the high band- 
width, low latency interconnection networks required by 
high performance computing applications. Since it is im- 
practical to build large networks by directly connecting 
all the attached nodes to each other, suitable network ar- 
chitectures and control techniques must also be developed 
to realize the full optical potential. The following two 
approaches have been used for designing networks. 

Reducing direct connectiviQ. Packet switching tech- 
niques send messages through the network to their final 
destinations via intermediate nodes. Routing information 
added to each message is processed by electronic circuitry, 
requiring optical signals to be converted to electronic sig- 
nals (and possibly buffered) at each routing step. This 
leads to under-utilization of the full capability of an optical 
interconnection. 

*This work is supported in part by NSF award MIP-9633729 and by 
AFOSR award F49620-93-1-0023DEF to the University of Pittsburgh 

e Sharing network resources. Circuit switching tech- 
niques using time[5], space[ 131, or optical wavelengths[ 11 
can provide direct connections between devices. However 
only a subset of all possible connections can be provided 
at any given time. This reduces the cost and size of the 
network, but increases the complexity of managing the net- 
work. This alternative is attractive for optical networks 
since all-optical paths from sources to destinations can fully 
exploit the high bandwidth of optics [4]. 

While time division multiplexing (TDM) is a general 
technique that can be used in any network, it is especially 
attractive in optical networks because of the large bandwidth 
available. An interconnection network built from optical 
components can provide communication bandwidth of 250 
Gb/s or more[ 121, an amount that exceeds the requirements 
of any single processor. In TDM the optical bandwidth 
is shared via a sequence of sets of interconnections. The 
network automatically cycles through this sequence with- 
out intervention by the program, establishing each set of 
connections for a small time interval called a time slot. The 
length of a slot is chosen to be long enough to transmit a sin- 
gle message. For example, at 10 Gb/s a 30 ns time slot can 
be used to transmit four words of 64 bits. Each processor 
may communicate with another processor during the time 
slot when the network provides the connection it needs, The 
cycle can be short enough so that the path is again available 
when the processor has additional data to transmit. TDM 
requires the use of a global clock to synchronize the time 
slots for all the transmitters and receivers connected to the 
network. The actual data transmission, however, does not 
require a global clock as self-clocking can be used at the bit 
level[2]. 

The set of paths provided by a network is determined 
by the state of the various network components, such 
as switches, registers, frequency assignments, etc. The 
collective state of the components is referred to as the net- 
work state. The required network state can be determined 
as soon as the application’s communication requests are 
known. Depending on the network design and application 
requirements, this network state may need to change dur- 
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ing program execution. Both determining and changing 
the network state are potential sources of communication 
delay. Techniques that determine the application’s com- 
munication pattern and the required network states prior to 
program execution are called compiled communication, or 
static techniques [2, 101. Techniques that use information 
gathered at program execution time to determine which 
paths the program needs are called dynamic techniques. 

To develop a control strategy for a circuit switched op- 
tical network, we can apply the well known concepts of 
locality of reference and working set. Managing the set 
of paths in use is similar to managing pages of virtual 
memory[3]. Circuit switched interprocessor communica- 
tion networks will have different locality characteristics 
than LAN communications[8] or memories[7, 111. 

In section 2 of this paper we present a model-of the com- 
munication pattern of a parallel application. In section 3, 
we model the cost to communicate over a circuit switched 
network. The model is developed for compiled communi- 
cation where the application’s requirements are known prior 
to program execution. We show when TDM can reduce 
communication costs in terrps of network and application 
characteristics. To investigab the application factors that 
influence communication cost, in section 4 we quantify the 
concept of communication locality of reference and show 
how to identify the working set of communication paths 
used by an application. In section 5 ,  we give particular 
attention to applications that consist of parallel loops. We 
show that communication cost and locality of reference are 
related in section 6. 

2. The application model 

To the interconnection network, an application appears 
as a sequence of requests for a network connection. These 
requests can originate on any node attached to the net- 
work. Each request can be characterized by its source, 
destination, message length, and arrival time. We model the 
requests using fixed length messages and represent arrival 
times by ordering messages in the sequence in which they 
are presented to the network. The network processes each 
request by providing a path connecting the message source 
and destination. We will represent the sequence of com- 
munication connection requests by 7 = P I ,  P2, . . ., where 
P; represent the source/destination pair ( s i ,  U!;) for the i th 
communication request. 

We refine the model to express the looping structure 
common to parallel applications by letting 7 be the con- 
catenation of the requests from a sequence of loops. Let P;, 
be the path required by the j t h  communication request in 
the ith loop. Let L; be the sequence of requests generated 
by one iteration of loop i, so that L; = Pi,, P;z, Pi3, . . .. Let 
the number of iterations of loop i be Ti. We can describe 

the sequence of requests generated by this loop as LF, 
indicating that the sequence L; is concatenated to itself T; 

times. The requests from an application with p loops can 
then be described by: 

7 = L;’, L?, . . e ,  LF 

We will often be interested in the number of different 
paths used in loop i ,  and define this number to be Zi. We 
will also find it useful to deal with looping structures that 
have disjoint loops or distinct paths, as defined below. 
Definition 1: We say that a looping structure has disjoint 
loops if each loop uses paths that are not used by any other 
loop. Specifically, if M; contains all the paths in L; and Mj 
contains all the paths in L j ,  then M; n Mj = 0 for all i # j .  

Definition 2: We say that a loop has distinct paths when 
each path in the loop is used exactly once in each iteration of 
the loop. Loops with distinct paths have Zi = IL; I = IM;l. 

3. Cost of TDM compiled communication 

When the communication requirements of an application 
are known at compile time, a compiler can determine the 
needs of different sections of the program and insert in- 
structions for the hardware to establish the required circuits 
[lo]. This is called compiled communication, and can be 
more efficient than having the hardware establish a circuit 
for each individual connection request while the program is 
running. The term communication cost refers to the delays 
a program will encounter when communicating in a circuit 
switched network. 

A network that uses time division multiplexing will 
automatically cycle through a sequence of network states. 
Each state provides a set of paths over which messages can 
be sent. The number of states in the cycle is referred to as 
the multiplexing degree which we will represent by K .  The 
set of K states that are contained in one cycle are referred to 
as the multiplexed state. We will assume that the network 
can provide any arbitrary set of m paths simultaneously. 
For example, networks such as the Benes, Clos, cross-bar, 
and WDM star can provide connections for any arbitrary 
permutation [6, 91. Thus, if the network can provide a 
maximum of m paths in one state, the multiplexed state can 
contain up to K m  paths. Note that K = 1 corresponds to a 
non-multiplexed network. 

The compiler can use a greedy algorithm to create the 
required sequence of network states. The communication 
requests are first placed in sequential order. A network 
state is created for the first group of m different paths. 
Additional states are then created for successive groups of 
m different paths. We will call this algorithm the “m-path” 
method. If the number of paths in the application’s working 
set is greater than m, this method will require frequent 
establishment of new network states. 
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Another method to satisfy the application's requirements 
is to use multiplexing to provide complete interconnection 
by dividing all possible paths into sets of size m, and then 
cycling through all these sets. This simulates a completely 
connected network, but may not perform well when the 
application requires only a small subset of these paths. 

A third alternative is to combine the m path method with 
multiplexing by having the compiler establish K network 
states at once, and letting the network cycle through these 
states without further direction from the program. Network 
performance will be affected by our choice of the value of K. 
If K is too small, communication requests will be delayed 
often while a network state with the required connection is 
being established. If K is too large, communication requests 
may be delayed while the network provides connections 
that are not needed during a particular phase of program 
execution. The optimal choice of K will reflect a balance 
between the network's performance characteristics and the 
application's path requirements. We will assume that the 
network can alter the value of K during program execution. 

We next develop a model of communication cost for an 
application with 1) an arbitrary sequence of requests, 2) a 
single loop, and finally 3) a sequence of loops. 

3.1. The communication cost model 

Establishing a network state during program execution 
requires only processor synchronization (to avoid inconsis- 
tent states) and loading the network state. We consider 
the time to load the state of the network components to 
be constant regardless of the multiplexing degree, and that, 
over time, all processors will encounter the same amount of 
delay at synchronization points. Thus the delay caused by 
the establishment of a new network state is modeled as a 
fixed value, Er. 

When time division multiplexing is used, a program 
will be delayed when it attempts to use a path that is in 
the multiplexed state but is not established at the time of 
the request. On average, the length of the delay will be 
proportional to the degree of multiplexing. In the worst 
case, we could apply this delay to every communication 
request. Each request would have to wait for the network 
to move through the cycle before the required path became 
available. However, in a parallel system it is reasonable 
to assume that m requests will be generated and processed 
together, and thus the average total access cost required to 
handle q requests with multiplexing degree K is A, f 9 
where A, is the length of a time slot. 

To compute the cost of a sequence of communication 
requests, 7, we first apply the m-path method to create a 
sequence of network states. Let s be the number of states 
created. In a non-multiplexed network, the total cost of 
communications is simply sEf . We would like to compare 

this to the cost in a multiplexed network. 
To compute the cost in a multiplexed network, we will 

combine a group of u consecutive network states into a single 
multiplexed state. The sub-sequence of 7 representing 
the consecutive requests satisfied by this multiplexed state 
is called a partition of 7. There are n = s / u  such 
partitions. The ith partition is referred to as Z and we 
have 7 = TI, T2, . . . , T,. When the U states of partition 
Ti are multiplexed together with degree K, the cost for the 
partition is 

Note that the degree of multiplexing(K) may be different 
from the number of states that are multiplexed together (U). 
This may occur when the multiplexed states share common 
paths, since a given path has to appear in a multiplexed state 
only once. 

In general, if N I  , . . . , Nu are network states that are 
to be combined into one multiplexed state, N', then the 
required multiplexing degree K is ' 2 j' . We can find 
the total cost of providing 'T in a multiplexed network by 
determining the value of X for each partition and summing 
the costs from expression (1) for all s/u partitions. The 
total cost of 7 in the multiplexed network is 

r 1 

We can compare this expression to the cost in the non- 
multiplexed network to determine when multiplexing re- 
duces the total cost of communication. We rearrange the 
inequality to place all the network parameters on one side, 
and call the resulting term CY. We find that multiplexing all 
of 7 in groups of U states reduces cost when: 

The right side of inequality (3) is determined by the way 
the sequence of communication requests can be grouped 
into network states of size m. Since the left hand side 
is constant for a given network, CY provides a threshold 
by which we can judge the application to determine when 
multiplexing 7 by combining groups of U states reduces 
cost. 

In the special case where the degree of multiplexing is 
large enough to multiplex together all the states required 
by 7, there will be just one partition. If t is the number 
of different paths used in 7, this occurs when K = [Al. 
We will refer to this as one-partition multiplexing, and to 
this value of K as the one-partition multiplexing degree. 
We know that in this case the establishment costs will be 
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minimized and inequality (3) can be reduced to: 

171 121 a > -  s- 1 (4) 
3 .- 

To make further statements about the benefit of multi- 
plexing we must know more about the structure of T. We 
begin the analysis in the following section by considering 
the communication pattern that arises from a single loop. 

3.2. Communication cost in a single loop 

Assume a single loop, L', with 1 5 ILI different paths 
and a network where m < 1. Because the communication 
pattern repeats itself, we can restate inequality (4) in terms 
of the characteristics of a single loop iteration. We find 
that for one-partition multiplexing to reduce costs below the 
non-multiplexed case, it is sufficient that: 

(5) 

Since T >_ 2 and 1 > m, one-partition multiplexing will 
reduce costs whenever a > 4(LI. 

We can determine the optimal degree of multiplexing for 
a loop that has distinct paths. In this case, the multiplexing 
degree is equal to the number of network states, U, that are 
combined. We can substitute values for a,  s, and K into 
expression (2) to find the total cost: 

( 6 )  
When K = we require only one network state. As- 
suming that 1 is a multiple of m and letting U = s, 171 = ~ l ,  
and K = A, we find: 

Most of the reduction in establishment costs occurs 
with the first few degrees of multiplexing. Thus, the 
optimal degree of multiplexing may be less than the one- 
partition multiplexing degree. We can see how network 
characteristics and multiplexing degree affect cost with the 
example in Figure 1. We consider the cost of a single 
loop with a fixed number of distinct paths, I ,  running on 
a network with fixed values of a and m. In the figure, 
we assume T is very large, = 8, and consider three 
networks with values of a / m  equal to 8,20, and 32. When 
a / m  = 8, the minimum cost occurs at K = 3 independent 
of the value of T .  When a / m  = 20, the optimal choice 
depends on the number of iterations as we have just seen. 
When a/m = 32, one-partition multiplexing reduces cost 
even when T = 2. 

I 

alphalmk32 12 - 
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1 2 3 4 5 6 I 8 
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Figure 1. Cost of a multiplexed loop. 

Thus, to determine the optimal multiplexing degree we 
must consider the relationship between network and appli- 
cation characteristics. The following Theorem whose proof 
is provided in [ 141 formalizes the conclusions. 

Theorem 1: For a loop with 1 distinct paths and a 
network with 2 > 4, one-partition multiplexing is always 
optimal (has the lowest communication cost) when 5 
E( 1 + &) and is never optimal when 2 2 E .  If 
multiplexing the entire loop isn't optimal, then the optimal 
multiplexing degree is &&. 0 

3.3. Combining loops with multiplexing 

When an application has several loops, we can continue 
to increase the degree of multiplexing beyond that required 
by a single loop. When a single network state provides the 
total number of paths required by two adjacent loops, we 
can again reduce state establishment costs. The increased 
multiplexing degree will increase path access costs for both 
loops, however. When all the loops have the same number 
of paths and the loops are disjoint, we can show [14] that 
multiplexing will reduce cost when a > 171 rA1. Unlike 
inequality (5 ) ,  this threshold for combining loops is affected 
by the number of iterations of each loop. Hence it can be 
much larger than the threshold developed for a single loop. 

3.4. Application characteristics and cost 

In the same sense that a provides a characterization 
of the network independent of the application, we would 
like to characterize the application independently from the 
network. To understand how applications might be charac- 
terized, consider the cost of the following two loops with 
distinct paths. Loop 1 has m + 1 paths and T iterations. Let 
q be any integer and let loop 2 have q(m + 1) paths and ~ / q  
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iterations. Both loops require s = r(m+l) network states 
and, without multiplexing, have the same cost. However, 
the one-partition multiplexing degree and cost of loop 1 are 
less than the one-partition multiplexing degree and cost of 
loop 2. We would like to define a metric that encapsulates 
this characteristic of an application. 

When the application consists of a single loop, the num- 
ber of different paths used may be a reasonable measure 
of communication locality. However, this may not be an 
appropriate measure for applications that consist of a series 
of loops, or for a non-repeating sequence of communi- 
cation requests. In the next section we develop a more 
general metric that incorporates the notions of temporal and 
spatial locality of reference and show how it is related to 
communication cost. 

4. Modeling application locality 

A communication pattern that is highly local is desirable 
for two reasons. First, high locality suggests that only a 
“small” number of different paths are required so that the 
application doesn’t use many network resources at any one 
time. This loosely corresponds to the notion of high spatial 
locality. Thus, the basis of our locality metric is a logical 
grouping of communication requests into partitions that can 
be created in any arbitrary manner. Second, good locality 
also suggests that path utilization should be high, which 
means the paths provided should be reused often. This 
loosely corresponds to the notion of temporal locality. We 
combine these concepts of spatial and temporal locality in 
our locality metric. Small partition sizes coupled with high 
reuse of the paths in a partition means high locality. The 
choice of metric will necessarily reflect a balance between 
these two. That is, a reduction of spatial locality due to an 
increase in partition size can be offset by a gain in temporal 
locality due to an increase in the amount of reuse. 

Recall that the sequence 7 can be broken into n 
sub-sequences such that 7 = TI, T2, . . . Tn. Each sub- 
sequence Ti is a partition of 7. The set of these partitions 
forms a partitioning of 7, denoted P ( 7 ) .  Let M; be the 
set of all the different paths used in the partition Zl. Since 
a path may be used more than once in Ti, then IT;J 2 IM; I, 
where IZI and [Mil are the number of paths in Ti and Mi, 
respectively. We define spatial locality of a partitioning to 
be inversely proportional to the average number of different 
paths used in its partitions. Fewer paths per partition means 
greater spatial locality. That is, 

Temporal locality is expressed in terms of the reuse of paths 
withinapartition. For partitionTi, the path reuse is EL ,M’i,. To 

encourage the formation of partitions with high path reuse, 
we use the root-sum-of-squares of this reuse to weight the 
temporal locality measure strongly toward such partitions. 
Thus, the temporal locality of a partitioning is defined as: 

Temporal Locality ( P ( 7 ) )  = - 
n 

The communication locality of reference is defined as the 
product of these two measures. 

There are many ways of forming partitions. For example, 
all communications can be placed in a single partition, the 
m-path algorithm can be used, or the partitions can be 
completely arbitrary. In our notation we will represent 
a sequence of communications requests as a sequence of 
numbers where each number represents a single use of a 
particular path. For clarity, the examples given in this paper 
will use small sequences and small values of m. It should 
be clear, however, that the concepts presented apply as well 
to arbitrarily large sequences and values of m. 

Example 1: The sequence 7 = 1,2,2,1 represents the 
use of path 1, followed by path 2, followed by the reuse 
of paths 2 and 1. A partitioning of this sequence could be 
TI = 1,2,2 and T2 = 1. In this case, M I  = {1,2) and 
M2 = { 1). Using m-path partitioning with m = 1, we 
would have TI = 1, T2 = 2,2, T3 = 1, and MI = {l}, 
M2 = {2}, M3 = (1). 0 

We define the locality of a sequence to be the greatest 
locality attainable from any partitioning of the sequence. 
Each of the partitions from the optimal partitioning contains 
a working set of communication paths. In the following 
lemma, we show that we can always increase the locality 
of a partitioning if we can divide one of the partitions into 
two pieces which have no paths in common. Lemma 2 then 
describes when locality is increased by joining adjacent 
partitions. The proofs of these lemmas are straightforward 
from the definition of locality. 

Let P ( 7 )  be a partitioning of 7 with 
partitions T I ,  . . . , Z, . . . , Tn and let P ’ ( 7 )  be a partitioning 
formed from T by splitting partition Ti into Till T i 2  so that 
P ‘ ( 7 )  = Tl, . . . , T i l ,  2’2,. , . , T,. Let Mil and Mi2 be the 
set of paths corresponding to T;1 and Ti2, respectively. If 
Mil n Mi2 = 0 then Locality(P‘(T)) > Locality(P(I)). 

Let P ( 7 )  be a partitioning which has 
adjacent partitions Ti and Ti+l. Let Mi and Mi+l be the 
corresponding sets of paths. Let P ’ ( 7 )  be a partitioning 
identical to P ( 7 )  except that Ti and Ti+] are joined into a 
single partition. If Mi M,+l, then Locality(P’(7)) > 
Locality(P(7)) whenever 

Lemma 1: 

Lemma 2: 
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2lTi+ll > ( l M i + l 1 ) 2  - 1 0 
[Til - lMil 

When Mi = the condition of Lemma 2 is always 
met and we will always increase locality by combining 
adjacent partitions that use the same paths. When adjacent 
partitions use almost the same set of paths (Mi c Mi+1 
and IMi/ w JM;+ll), we should consider merging the 
partitions even when the sequence lengths are very different 
(Iz+l I << Iz I). When the numbers of paths used by these 
partitions are very different (IM;+lI > !Mil) we should 
consider merging the partitions only when the partition with 
more paths has many more requests (IZ+l I >> ITil). 

In the next section we again focus on looping appli- 
cations, beginning with loops that are disjoint. We will 
determine when the greatest locality is obtained by placing 
all requests from each loop into a single partition. This 
partitioning corresponds to our intuitive notion that each 
loop forms a working set of paths. We will then consider 
loops that are not disjoint, first looking at two loops and 
then extending the discussion to any number of loops. 

Sequence 
(1 , 2,3,3)" 
(4,5,6, 6)20 

5. Locality of looping sequences 

Method Sets of Paths Locality 
natural { 1 , 2,3}, {4,5,6} 6.28 
one path 0.13 { l}, { 2 } ,  {3}, . . . , 

We define the partitioning that places all requests from 
each loop into a separate partition to be the natural parti- 
tioning of the application and refer to it as PJJ. Intuitively, 
we expect this to be the partitioning with the greatest lo- 
cality as long as the number of iterations of each loop is 
sufficiently large and the loops are sufficiently disjoint. To 
quantify these two conditions for general loop structures 
is rather complicated, if at all possible. Thus, in the next 
sections we will consider only special loop structures. 

5.1. Sequences from disjoint loops 

We can place an upper bound on the number of loop 
iterations needed to ensure that the natural partitioning of a 
sequence of disjoint loops has the maximum locality. The 
bound is presented in the following theorem whose proof is 
provided in [ 141. 

Theorem 2: Let 7 be a sequence of communication 
requests from an application 7 = LI ' ,  . . . , L? with p 
disjoint loops, and let Hi be the maximum number of times 
any path is used in a single iteration of loop i .  Then the 
natural partitioning of the sequence has locality greater than 
any other partitioning when: 

For loops with distinct paths, k; = 1. This requires ri 2 Z; 
f o r i =  I , . . . , p .  0 

Table 1. Partitioning disjoint loops. 

Table 1 shows several looping sequences, the sets of 
paths required by the natural and one-path partitionings, 
and the resulting locality. For these sequences, the number 
of iterations is large enough to ensure that the natural 
partitioning has the greatest locality. The locality of the one 
path partitioningis very low because there is littleor no path 
reuse, so that temporal locality is low. The large number of 
partitions means that the sum of the partition sizes will be 
large, making spatial locality low as well. 

5.2. Locality of two non-disjoint loops 

Lemma 2 can be applied when the paths used by one 
loop are a subset of paths used by an adjacent loop. In this 
section we show how overlap between adjacent loops can 
be handled. 

The locality when the paths from two adjacent loops 
are combined into a single partition is determined by the 
sequence length 171, the number of distinct paths in each 
loop (11 and l z ) ,  and the amount of overlap between these 
sets of paths. We define the overlap v to be the number 
of times paths reappear in different partitions. The overlap 
between L1 and LZ is thus 3 = I I  + 12 - IM1 U M 4 .  Note 
that when the total number of requests is fixed the locality 
of the natural partitioning still depends on T~ and r2, while 
the locality of the combined partitioning depends only on 
the total sequence length. We define ~ 1 , ~ ; ~  to be the value 
of T I  which gives the minimum locality value possible for 
the natural partitioning. 

We can most easily investigate the relationship between 
the locality of a combined partitioning and the natural 
partitioning by considering two loops with the same number 
of distinct paths, so that I = 11 = 12 = ILI I = IL21. We 
assume the loops have I' paths in common, so v = 1'. Since 
lLll = IL21, the length of the sequence is constant when 
the total number of iterations is constant. We can compute 
the ratio of the locality of a combined partitioning to the 
locality of the natural partitioning to be: 

(12) 
2 

Locality Ratio = 
( 2 - 3 2  l + A ( " L - l  J n+r2 + l + n  
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Figure 2. Combining two partitions. 

This ratio is plotted in Figure 2. The graph is sym- 
metric because of the assumption that IL1J = 1,521. When 
lLll # IL21 the graph becomes skewed, with the peak 
moving toward the left when JL11 < IL2). The amount of 
overlap required for the combined partitioning to have the 
greatest locality is stated in the following Lemma. The 
proof is given in [ 141. 

Lemma 3: Consider an application consisting of two 
loops which use an equal number of different paths, so 
that 11 = 12. Assume the loops have I' paths in common. 
The natural partitioning of this application will always 
have locality greater than the combined partitioning when 
( l ' /Z)  5 0.318. The combined partitioning of this appli- 
cation will always have locality greater than the natural 
partitioning when (Z'/Z) 2 0.586. 

5.3. Locality of multiple non-disjoint loops 

We can investigate the effect of combining more than 
two non-disjoint loops if we assume that all loops have 
the same number of distinct paths and the same number of 
iterations. Consider an application with p such loops with 
r iterations and I paths. Let Mi be the set of paths used by 
loop i .  The locality of the natural partitioning of thep loops 
is 6. Create a new partitioning by combining U adjacent 
loops together into a single partition. We can generalize the 
definition of overlap v used in the last section and note that 
the number of times paths are reused among the U loops is 
U = Z; - 1 U;==, Mil. If we further assume that the 
overlap is the same for each group of U loops, we find the 
locality of the new partitioning to be: 

(13) 
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Figure 3. Combining many partitions 

3.27 

Table 2. Partitioning overlapping loops. 

One application with the same overlap in each group 
of U loops has 1' paths common to all loops, and 1 - I' 
paths in each loop which are disjoint. In this case, we 
find U = (U - 1)Z'. For this application, the locality of 
the combined partitioning relative to the natural partitioning 
is shown in Figure 3. When there is little or no overlap, 
the natural partitioning always has the greatest locality. 
As the amount of overlap increases, locality is increased 
by combining loops into a single partition. For a given 
amount of overlap, we can determine the number of loops 
to be combined to attain the optimal locality. For example, 
if the application is (1,2,3,4)r( 1,2,5,6)'( 1,2,7,8)' then 
1 ' / 1 =  .5. From Figure 3 we can see that we get the greatest 
locality when all three loops are combined into a single 
partition. Table 2 shows examples of partitionings for loops 
that overlap. 

In this section we have argued that for sufficiently disjoint 
loops and a sufficiently large number of repetitions, the 
natural partitioning of an application provides the greatest 
locality of any partitioning, so that the communication 
working set is defined by loop boundaries. From the cost 
model, we found that communication costs can often be 
minimized by multiplexing to the degree that provides all 
the paths required by a loop. This similarity suggests that 
locality is an application characteristic that can be useful in 
determining the working set of paths that a network must 
provide in order to minimize communication costs. In the 
next section, we develop similar properties that partially 
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order applications by cost and by locality, and look at some 
example sequences. 

6. Locality and the cost of communication 

From the definitions of cost and locality we can develop 
properties for partially ordering applications, assuming the 
natural partitioning and one-partition multiplexing is used 
in each loop. The properties show that similar sequences 
of equal length will often be ordered in a corresponding 
way by cost and locality. Equality or inequality in the cost 
properties is determined by the network's value of m. 

Property 1: Given two disjoint sequences L1 and L2 and a 
fixed number of iterations T :  

0 CO@;, L;) 5 Cost((L1, L2)') 

0 LocaIity(L7, L;) > Locality((L1 , L2)') 

Locality always increases, and cost may decrease, with 
disjoint sets of paths in separate partitions. Cost may 
decrease even when there is some overlap between the 
sets of paths. For example, the natural partitioning of 
(1,2,3,  4)20(5, 6,7, 8)20 has more locality than the natural 
partitioning of (1,2,3,4,5,6,7,  8)20, and may cost less. 

Property 2: Given two loops, L;' and L y  where T I  IL1 I = 
r21L21 and 11 < 12:  

0 Cost(L;') 5 Cost(L;2) 

0 LocaIity(LI;') > Locality(L;2) 

For an equal number of requests, a loop with fewer paths 
will have greater locality and may cost less than a loop with 
more paths. 

Property 3: Given two sequences, L1 and L2, and 
iteration values r l 1  ~2~ T ; ,  and T;  where T I  < T ; ,  11 < 12, 

andr1IL1I +T21L21 = T{IL11 +T;IL2I: 

Cost( L;' , L;2) 5 Cost( L;; , L$) 

When loops have a different number of paths, the dis- 
tribution of requests between two loops affects cost and 
locality. As the proportion of requests in the loop with 
fewer paths increases, cost may decrease. Above a thresh- 
old value, locality increases. The need for the threshold is 
shown by an example. Note that (1, 2)14(3, 4,5, 6)28 has 
less locality than (1,2)'0(3,4, 5,6)", and it also costs less. 

In general, looping sequences with disjoint sets of paths 
and a sufficient number of iterations will be placed in the 
same partial order by both locality and cost. 

Request 
Sequence 

(1,2,3,4,. . . , 9)'" 
(1,2,3,4,. . . , 

Locality 

40.0 
40.0 
17.8 
14.1 
10.0 
7.07 
6.40 
6.37 
6.28 
4.44 
3.54 
2.50 
1.96 
1.60 

cos 
Non-mpx 

1600 
800 
1200 
1600 
1600 
910 
1600 
1600 
1600 
1600 
1600 
1600 
1600 
1600 

- 
Mpx 
330 
330 
500 
340 
650 
840 
830 
580 
500 
1290 
660 
1290 
1450 
1610 

Table 3. Locality and cost of several request 
sequences. 

When network states are of fixed size, we can broaden 
the interpretation of the path notation used in the previous 
examples. Rather than representing a single path, an integer 
can represent an entire network state of m paths. All such 
states must be disjoint. A loop requiring m paths in each of 
two network states can therefore be represented as (1 , 2)'. 
This loop can be contained in a single multiplexed network 
state with a multiplexing degree of two. For example, 
consider m processors arranged as a log m-dimensional 
binary hypercube. The integer i can represent the set of m 
paths used for communication over dimension i. These sets 
of paths are disjoint. The notation (1,2, .  . . , logm)' then 
represents the pattern of m processors communicating over 
each dimension in succession in a loop executed r times. 
Similarly, (1,2,3,4)' can represent a pattern where each 
of m processors in a two dimensional torus communicates 
once to its nearest neighbors in each dimension. 

Table 3 shows the locality, non-multiplexed cost, and 
multiplexed cost for several example communication pat- 
terns. The ordering obtained from the locality measure in 
expression (10) follows the intuitive notion of locality. For 
computing costs, a was set at 10. Since very little of the 
multiplexing cost is state establishment cost, changing the 
value of a has very little effect on the total multiplexed 
costs. Decreasing LY reduces the non-multiplexed costs, so 
that multiplexing reduces cost only for the most local se- 
quences. Increasing a increases the non-multiplexed costs 
and the advantage of multiplexing. 

Although the non-multiplexed cost can be low for some 
sequences with good locality, other sequences with good 
locality incur a large non-multiplexed cost. Additionally, 
sequences with equivalent non-multiplexed costs can have 
very different locality characteristics. There is a much 
stronger relationship between locality and cost when mul- 
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tiplexing is used. Multiplexing provides lower cost for 
sequences with greater locality. This ability to exploit lo- 
cality is true for any value of a. This means that high 
locality is associated with low multiplexed cost regardless 
of the network characteristics. 

7. Conclusions 

The cost of controlling a interconnection network is a 
major concern in circuit switched optical networks since this 
cost can be very high relative to the cost of data transmis- 
sion. Time division multiplexing is a technique that can be 
used to reduce the cost of establishing the required circuits. 
We analyzed the cost of circuit switched communications 
when the communication pattern can be determined by the 
compiler. A similar technique can be applied to dynami- 
cally controlled networks. We considered applications that 
contain parallel loops and quantified the cost reduction pos- 
sible with multiplexing in terms of network and application 
characteristics. This information can be used by a compiler 
to determine the optimal degree of multiplexing. Costs can 
often be reduced by multiplexing together all the network 
states that provide the paths used in a loop. 

Locality is a characteristic of the application that, in 
some cases, can be understood before the application is 
executed. While the locality measure provides an objective 
basis for determining the working set of communication 
paths, the real significance is the correspondence between 
locality and cost. Locality can be used as a tool to pre- 
dict communication performance of an application without 
regard to the network on which the application will be 
implemented. The programmer can take expected commu- 
nication performance into consideration when choosing the 
most appropriate algorithm to solve a specific problem. 

The exact relationship between locality and communi- 
cation cost depends on many factors such as the network 
parameters, the order of the communication requests and the 
number of paths used. The communication cost in a multi- 
plexed network generally corresponds better to the locality 
of the application than does the cost in a non-multiplexed 
network. Thus multiplexing can be a valuable tool to exploit 
the locality of references and reduce communication costs 
in optical networks. 

References 

the First IEEE Symposium on High-Performance Computer 
Architecture, pages 44-53, January 1995. 

[3] D. M. Chiarulli, S .  P. Levitan, R. G. Melhem, and C. Qiao. 
Locality based control algorithms for reconfigurable optical 
interconnection networks. Applied Optics, 33: 1528-1 537, 
March 1994. 

[4] D. M. Chiarulli, S. P. Levitan, R. G. Melhem, J.  P. Teza, and 
G. Gravenstreter. Multiprocessor interconnection networks 
using partitioned optical passive star (POPS) topologies and 
distributed control. In Proceedingsof the First International 
Workshop on Massively Parallel Processing Using Optical 
Interconnections, pages 70-80. IEEE, April 1994. 

[5] I. Chlamtac and A. Ganz. Channel allocation protocols in 
frequency-time controlled high speed networks. IEEE Trans. 
on Communications, 36(4):430-440, April 1988. 

[6] P. Dowd. Random access protocols for high-speed inter- 
processor communications based on an optical passive star 
topology. IEEE Journal of Lightwave Technology, 9(6):799- 
808,1991. 

171 K. Grimsrud, J.  Archibald, R. Frost, and B. Nelson. On 
the accuracy of memory reference models. In Computer 
Performance Evaluation, Modeling Techniques and Tools. 
7th International Conference Proceedings, pages 369-388. 
Springer-Verlag, May 1994. 

[8] N. Gulati, C. Williamson, and R. Bunt. LAN traffic locality: 
Characterization and application. In Local Area Network 
Interconnection. Proceedings of the First International Con- 
ference, pages 233-250. Plenum, October 1993. 

[9] K. Hwang. Advanced ComputerArchitecture. McGraw-Hill, 
New York, NY, 1993. 

[IO] J. Li and M. Chen. Compiling communication-efficient pro- 
grams for massively parallel machines. IEEE Transactions 
on Parallel and Distributed Systems, 2(3):361-375, 1991. 

[l 13 D. T. Michel and W. C. Hobart, Jr. Toward a unified model of 
program behavior. Performance Evaluation, 20(20):27-44, 
May 1994. 

[12] P. Prucnal, I. Glesk, and J. Sokoloff. Demonstration of all- 
optical self-clocked demultiplexing of tdm data at 250gbk 
In Proceedings of the First International Workshop on Mas- 
sively Parallel Processing Using Optical Interconnections, 
pages 106-1 17. IEEE, April 1994. 

[I31 C. Qiao and R. Melhem. Reconfiguration with time divi- 
sion multiplexing MINs for multiprocessor communications. 
IEEE Transactions on Parallel and Distributed Systems, 

[I41 C. Salisbury and R. Melhem. Modeling communication 
costs in multiplexed optical switching networks. Technical 
Report 96-22, Department of Computer Science, University 
of Pittsburgh, 1996. 

[ 151 X. Yuan, R. Melhem, and R. Gupta. Compiled communica- 
tion for all-optical TDM networks. In Supercomputing '96. 
IEEE, November 1996. 

5(4):337-352,1994. 

[ 11 C. A. Brackett. Dense wavelength division multiplexing 
networks: Principles and applications. IEEE Journal on 
Selected Areas of Communications, 8(6):948-964, August 
1990. 

[2] E Cappello and C. Germain. Toward high communica- 
tion performance through compiled communications on a 
circuit switched interconnection network. Proceedings of 

79 


