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Loop Transfor ns for Fault Detection in 
Regular Loops ssively Parallel Systems 

Chun Gong, Rami , Member, IEEE Computer Society, 
ber, IEEE Computer Society 

Abstract-Distributed-memory systems can incorporate thousands of processors at a reasonable cost. However, with an increasing 
number of processors in a system, fault detection and fault tolerance become critical issues. By replicating the computation on more 
than one processor and comparing the results produced by these processors, errors can be detected. During the execution of a 
program, due to data dependencies, typica a multiprocessor system are busy at all times. Therefore 
processor schedules contain idle time slots and oal of this work to exploit these idle time slots to schedule duplicated 
computation for the purpose of fault detecti ssisted approach to fault detection in regular loops on 
distributed-memory systems. This approac duplicating the execution of statement instances. After 
carefully analyzing the data dependencies of a regular loop, selected instances of loop statements are duplicated in a way that 
ensures the desired fault coverage. We first presen n strategies for fault detection and show that these strategies use idle 
processor times for executing replicated statements er possible Next, we present loop transformations to implement these 
fault-detection strategies. Also, a general framewor ting appropriate loop transformations is developed. Experimental 
results performed on the CRAY-T3D show that the overhead of adding the fault detection capability is usually less than 25%, and is 
less than 10% when communication overhead is reduced by grouping messages 

Index Terms- Compiler-assisted approach, data dependence analysis, distributed-memory systems, duplicating execution, 
execution pattern, fault detection, loop transformation 

+ 
1 INTRODUCTION 

ASSIVELY parallel systems can incorporate thousands M of processors at a reasonable cost. In order to achieve 
scalability in such systems, the memory is 
tributed among the processors. Due to the 
processors, fault detection and fault toler 
issues for such systems. Thus, techniques fo 
and fault tolerance on distributed-memory 
important area of research. 

ing redundancy in a system at either the hardware level [6], 
[8], [27] or the software level [3,] [4], [14], [28]. Recently, it has 
been realized that the computmg power of a multiprocessor 
system is rarely completely utilized. This has resulted in the 
development of techniques that achieve fault detection by rep- 
licating computahons and comparvlg the results of these com- 
putations [16], [29]. Ideally by utihzing the spare capacity of 
the system to execute replicated computations, fault detection 
and tolerance can be acheved at a reduced cost. 

Techniques for compiler-assisted fault detection and re- 
covery have been developed in previous research. A com- 
piler-assisted scheme to enable a process to quickly recover 
from transient faults is developed in [l] and a method that 
utilizes the VLIW compiler to insert redundant operations 
into idle functional units for fault detection purposes is 

Fault detection and tolerance can be ache 
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presented in [7]. Compiler techniques are used in [241 to 
insert checkpoints into a program so that both the desired 
checkpoint intervals and reproducible locations are main- 
tained. A source-to-source restructuring compiler for the 
synthesis of low-cost checks for scientific programs using 
the notion of algorithm-based checking is described in [5]. 
The compiler-assisted approaches are appealing since the 
compilers can apply a variety of analysis techniques to effi- 
ciently allocate resources in multiprocessor systems. Fur- 
thermore, adding fault detection capabilities to massively 
parallel systems is usually tedious an 
systematic techniques that can be implem 
compilers are most appropriate. 

In this paper, we describe 
for achieving fault detection 1 

memory systems by duplica 
ment level. This approach a1 
resources for the purpose o 
the approach of [5] in that i 
to utilizing the spare processors’ capacity for introducing 
redundancy in distributed memory environments. It also 
provides a means for analyzing the resulting overhead. Fault 
detection is achieved by duplicating the execution of state- 
ment instances on two processors and comparing the results 
of these executions. A detailed comparison between these 
two approaches will be given in Section 8. In the approach 
proposed in this paper, compile-time transformations are 
applied to duplicate statement instances and introduce 
checks to compare the computed results. Thus, whenever a 
duplicated statement is executed in the program, the proces- 
sors executing that statement are tested. The degree of fault 
coverage is controlled by the degree of duplication. 
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The paper is organized as follows. Section2 provides 
some notation and the general execution model and Sec- 
tion 3 introduces the concept of execution patterns. In Sec- 
tion 4, we present the principles of duplicating execution 
and introduce several duplicating strategies for regular 
loops. Implementations of the duplicating strategies are 
given in Section5. In Section6, we describe a general 
framework which, given a regular loop, selects appropriate 
duplicating strategy for fault detection. In Section 7, ex- 
perimental results are given and in Section 8, some related 
work is discussed. Finally our concluding remarks are 
given in Section 9. 

2 THE PARALLEL EXECUTION MODEL 
We consider a system in which N processors are connected 
by an interconnection network. Each processorr which has a 
unique identifier from 0, 1, ..., N - 1, has its own local mem- 
ory. There is no global memory and information exchange 
between processors is achieved through message exchange. 

There are two basic paradigms for programming dis- 
tributed-memory machines: the explicit message passing 
model, and the shared-name-space model. Although the 
first model is more flexible, it is hard to program in that 
model. Therefore, many languages have been developed 
which provide the users with the conceptually easier pro- 
gramming model based upon a globally shared name 
space. The compiler is responsible for inserting necessary 
communication primitives in this model 191. Examples of 
such languages include CM Fortran 1131, C* [251, V' ienna 
Fortran [lo], and HPF [211. The compiler-assisted method- 
ology introduced in this paper achieves fault detection on 
distributed-memory systems when these systems are pro- 
grammed using the shared-name-space model. 

Under the shared-name-space model, a scheduling ftlnc- 
tion, @, is specified such that for each statement instance sI, 
~ s l )  identifies the processor that will execute sI. The fol- 
lowing methods are commonly used to specify @ : 

The user specifies @ : Languages such as Kali and the 
Cray T3D Fortran allow the specification of @ for 
scheduling of loop iterations on specific processors 
1231. 
The compiler chooses 4 according to the "owner computes 
rule": In compilers for languages such as Fortran D 
and HPF, the user specifies data distribution and 4 is 
chosen such that each statement i s  executed by the 
processor that owns the variable whose value is being 
computed. 
The compiler automatically selects I$ : Heuristics are em- 
ployed for the selection of @ in conjunction with data 
distribution. The goal of the heuristic is to balance par- 
allelism and communication in order to achieve good 
performance [Z]. 

this paper, we assume that @ is given by the user. 
Furthermore, the @ function specifies scheduling of loop 
iterations rather than individual statements. However, the 
techniques presented here can also be applied to the other 
methods described above [191. 

We focus on loops since most of the idle time can be 
found in executing loops. We first define the notation used 

to describe data dependencies. There are three kinds of 
data dependencies. A statement instance s, is said to be flow 
dependent upon statement instance sIr denoted as sI&,, if s, 
reads from a memory location after sI writes to the same 
memory location. A statement instance s, is said to be out- 
put dependent upon statement instance s], if both s, and sI 
write into the same memory location. A statement instance 
s, is antidependent upon sI, ifs, writes into a memory location 
after sI reads from the same memory location. Since output 
and antidependencies can be eliminated through renaming 
[15], we assume that the loop contains only flow dependen- 
cies. If there are instances of statements sl, s2, ..., s, such that 
s,6s26 ... as,, then we say that there is a dependence path of 
length (n  - 1) from s1 to s,. There may be dependencies 
among different iterations of a loop. If a statement instance 
at the ith iteration of a loop is dependent upon a statement 
instance at the kth iteration, then this particular depend- 
ence is said to have a distance of (i - k )  [301. For multiply- 
nested loops, a vector of dependence distances is used to 
represent the dependencies. If all the dependencies of a 
loop can be described by a set of dependence distances that 
are independent of the loop variables, then the loop is said 
to be a regular loop. In this paper, we consider regular loops 
which are perfectly nested and contain no branches. In the 
next section, we will give concrete examples of regular 
loops and describe their characteristics. 

3 EXECUTION PATTERNS 
FOR PERFECTLY NESTED LOOPS 

Given a loop and the function @, by analyzing the data de- 
pendencies of the loop, a legal schedule that maximizes the 
parallelism of the loop can be determined. Here, the term 
"legal schedule" refers to a schedule that satisfies all the 
data dependencies of the loop. The execution pattern of a 
loop, under a legal schedule, specifies the time and the 
processor at which each loop instance is executed. This 
pattern can be identified by analyzing the data dependen- 
cies in the loop. We first consider the execution patterns of 
doubly-nested loops of the forms shown below and later 
generalize this concept for multiply-nested loops. In this 
loop, "On P y  indicates that jth iteration of the inner loop is 
executed on processor PI. 

Fori = 0 To M - 1 Do 
For j = 0 To N - 1 On PI Do 

A(i, j )  = F(A(i, j - 4, 

EndFor 

Depending on the value of A and S, there might be data de- 
pendencies in the above loop that can prevent all processors 
from executing their assigned statement instances in a fully 
parallel fashion. In this paper, we assume that the execution 
of each statement instance takes the same amount of time 
(say, unit time). Fig. l a  shows a legal execution schedule for 
the above loop with M = 4, N = 6, A = 1, and 8= 2. At time 1, 
processor Po starts the execution of instance with i = j = 0, 
then, at time 2, processor PI starts the execution of instance 
with i = 0 and j = 1, and so on, thus guaranteeing that data 
dependencies are satisfied. We refer to the above loop with 
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(a) 

Fig. 1. (a) The Execution Pattern of 
the numbering function Ph. 

s 

0 1 2 3 4 5  

(b) 

the loop: 8 = 2 and A =  1; (b) With 

A. 2 1 and B 2 2 as the general loop and the execution pattern it 
generates the general loop pattern. 

In Fig. la, each shaded square indicates a time slot 
during which a loop instance is being executed. In this 
example, a loop instance is a simple statement. In general, 
however, a loop instance can be composed of several 
statements or several loop iterations of a nested Ioop. The 
only requirement for a loop instance is that it must be 
executed in its entirety by one processor in a continuous 
time slot. 

In order to describe an execution pattern, we introduce 
the following notation. A number ing  of a loop is a one-to- 
one mapping from the set of loop instances to the set of 
natural numbers plus the symbol p which denotes an unde- 
fined value. In the following definition, we use di, j) to 
denote the instance with i and j as values of the outer and 
inner loop indices, respectively. 

This function maps a two-dimensional iteration space into 
a linear space. A numbering function facilitates the expres- 
sion of execution patterns which are used to develop repli- 
cation strategies. The execution pattern of Fig. l a  with the 
numbering function ph is shown in Fig. lb. 

Given a numbering function p, we use o" to refer to the 
instance whose number under p is U ,  and & U )  to denote 
the processor that will execute instance d. For any given 
regular loop with a function 4, the compiler can deter- 
mine a legal schedule which maximizes the parallelism of 
the execution of the loop. The timing function A describes 
the mapping between instances and time slots under the 
schedule. Thus, A(u) is the earliest time at which o" can be 
executed. Formally, the execution pattern of a loop is a 
pair of functions, <d ,  A>. The general loop pattern may be 
described by the following general forms of 4 and A. 

$(U) = U mod N; A(u) = A(u mod N) + 8 - 1:l 
where A is the execution skew among the processors and B 
is the idle time between the execution of successive in- 
stances on each processor. For example, the skewed loop pat- 
tern of Fig. 2a is a special case of (1) with A = 1 and B = 1 
and the filly parallel pattern of Fig. 2b is a special case with 
A = 0 and 8 = 1. The timing function A corresponding to a 
legal schedule satisfies the data depelzdenczes, that is, 

o"60" =+ A(u) > A(v). 

We obtained the execution pattern of Fig. 1 by assigning 
iterations of the inner loop to different processors. How- 

0 1 2 3 4 5  0 1 2 9 4 5  
PrOCeSsOrs Processors 

(a1 (bl 

Fig 2. Special cases of the general execution pattern, (a) skewed pat- 
tern with 8= 1, A= I ;  and (b) parallel pattern with 8 = 1, A= 0. 

ever, the general pattern given by (1) also represents the 
case where the processors are distributed along the outer 
loop, as shown in the following example. 

F o r i = O T o N - l O n P , D o  
For j = 0 TOM- 1 Do 

EndFor 
A(&]) = F ( A ( z  - 1,jN 

EndFor 
This is a special case of (1) with A = 1, 8= 1. The numbering 
function for this case is defined as follows. 

Fig. 2a shows a legal execution pattern under this numbering 
function. In the remamder of the paper, we consider the case m 
which the processors are assigned along the inner loop, since 
the other case can be handled through the appropriate num- 
bering function. 

Other types of loops we will consider in this paper are 
the triangular loop and the bisection loop. These two types of 
loops can be uniformly illustrated by the following loop 
form, where f(z) = z or f ( z )  = N - N. 

2l 

Fori = 0 To M -  1 Do 
For j =f(i) To N -  1 On PI Do 

EndFor 
A(z, 1) = F(A(1 - I,] - 1)) 

EndFor 
A legal execution pattern for the case wheref(i) = i is shown 
in Fig. 3a and a legal execution pattern for the case where 

f ( i )  = N -& is shown in Fig. 3b. For these types of loops, 

we can use the following numbering function to convert 
instances from the two-dime n space into a one- 
dimension space 

2 

In the discussion so far, the number of processors is as- 

0 1 2 3 Pro~ersor. 0 1 2 3 4 5 6 7 Proccrrors 

(SI B.) 

Fig. 3. (a) The triangular loop execution pattern; and (b) the bisection 
execution pattern. 
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Symbols 

647 Mu) 
s 

sumed to be the same as the number of iterations of the 
loop. However, in practice the number of iterations is usu- 
ally much larger than the number of processors. In order to 
generalize the concept of execution pattern, we assume 
that, in the following loop, the number of loop iterations 
(U> is greater than the number of processors (N). In this 
loop, di, j )  is either a sequence of assignment statements or 
a nested loop. 

F o r i  = 0 To M - 1 Do 
For j = 0 To U - 1 On 

EndFor 

Do 
d(i, j )  

EndFor 

We use the following processor assignment functions for 
the above loop. 

(2) 

Meaning 
scheduling functions 
data dependence relation 

where a: = [El. Processor assignment function db( j )  as- 

signs iterations 0, N, 2N, ..., on processor Po; iterations 1, 

N + 1, 2N t 1, ..., on P,, and so on. Assignment function 
d,(j) divides the iterations into contiguous blocks with 
identical sizes, except maybe the last one, and assigns 
each block to one processor. Here the assignment func- 
tions of (2) are equivalent to Cyclic and Block distribution 
of loop iterations among the processors. For the case of 
function d&), iterations 0 S i < M ,  0 5 j < N can be repre- 
sented as one execution pattern; iterations 0 5 i < M ,  N 5 j 
< 2N as another identical execution pattern, and so on. 
For the case of function d,(j), for any two integer constants 
k and 1, we can take iterations i = k,  IN < j < ( I  + 1 )N as one 
instance. Then the whole loop can be represented as an 
execution pattern of a doubly nested loop. 

Singly nested loops and multiply nested loops with 
nesting level greater than two can also be easily handled by 
our approach. As singly nested loop is just a special case of 
double loop with M = 0. For the general cases of multiply 
nested loop of the form, 

For il = 0 TOM1 - 1 Do 
... 

For il-l = 0 To MI-1 - 1 Do 
For il = 0 To MI, On Pd(il) Do 

For in = 0 To Mn-l Do 
... 

Statements 
... 

EndFor 

we can take the inside loop body after index i, as one 
statement. Then the loop body starting from index il-, can 
be represented as an execution pattern as above. Here, the 
function d(iJ specifies the distribution of loop iterations 
among the available processors, that is, the 4 function. 

For the convenience of the readers, we end this section 
by summarizing, in Table 1, the important symbols used in 
this paper. Some of the symbols in Table 1 have not been 
discussed yet and will be introduced in the next section. 

II di. 11. nu I statement instances II 
I I I, 1) phy pvp pf 1 numbering functions 

A(uL ALu) I timina functions 
I , I  I " 

db(l)* dc(J) I processor assignment functions 

4 DUPLICATION STRATEGIES FOR REGULAR LOOPS 

Duplicating and comparing the results of executing state- 
ment instances is the basis for the proposed approach to 
fault detection. In order to implement this statement dupli- 
cation approach, two issues need to be addressed. Namely, 
the selection of the statement instances to be duplicated and 
the scheme for scheduling duplicated executions and compar- 
ing results. Our goal is to reduce, as much as possible, the 
overhead incurred by the fault-detection mechanism. Before 
we discuss duplication strategies we discuss the fault model 
used in this paper. We consider only single transient faults. 
The case of permanent faults is simpler to handle and is 
discussed in 1191. We assume that a processor is faulty if 
and only if it produces wrong results for all input data. We 
also assume that interprocessor communication is fault free. 
If errors resulting from transient faults are to be detected, 
then every statement instance should be duplicated. 

We concentrate on duplicating instances within loop 
executions. The duplication of the execution of d' is speci- 
fied by a function 4,. such that &,(U) is the set of processors 
on which d is to execute. In general, if I Qr(u) I = 2, then an 
error in the execution of 0" resulting from a fault in any of 
the two processors in 4,.,(u) can be detected. The replica of 
an instance 0" is called a seconda y instance and is denoted 
byo: . To avoid confusion, we will refer to the original in- 

stance of / as the primary instance 0; .  In order to exploit 
idle slots, the compiler appropriately selects the instances 
to be duplicated as well as the processors where secondary 
instances are to execute. Let qDS(u) be the processor on which 
0: is to execute. Thus, if c" is duplicated, its mapping 

function can be expressed by a multivalued function @,.,(U) = 

{$p(u), @s(u)], where $ ( U )  = $(U). For a non-duplicated 
statement, only primary instances exist and thus, @,.(U) = 

As is the case in the absence of duplication, the copies 
created by duplication must also satisfy data dependencies. 
For an instance, o", the value of the timing function A is 
now a set Ar(u) = {A@), A&)}, where A@) is the time at 
which 0" executes and $ ( U )  is the time at which 0; exe- 

cutes. Note that A@) may or may not be equal to A,(u). 
Moreover, if 0" is not duplicated, then A&) = {Ap(u)]. 

Unlike the situation of nonduplicated execution, for the 
duplicated timing function Ar, the data dependence condi- 

{4p(ll)l. 
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tion is determined by the semantics of the duplication. Two 
different semantics are possible, the wait-for-both and the 
wait-fur-one semantics. Specifically, if before duplication, an 
instance, U depends on data calculated by another instance V ,  
then after duplication, the wait-for-both semantics requires that 
copies of 0" do not execute before all copies of 0" execute. This 
condition can be expressed as follows: 

(3) 

where we abused the notation by assuming that max{A&v), 
A,(v)) = A (v) if ov is not duplicated and min{Ap(u), A&)} = 
dp (U) if 3 is not duplicated. The wait-for-both semantics 
allows the data computed by duplicated instances to be 
compared before it is used, thus preventing error propaga- 
tion, at the cost of possible execution delay. 

Under the wait-for-one semantics, data comparison does 
not delay execution at the cost of possible delaying in error 
detection and possible error propagation. In this case, cop- 
ies of o" can execute as soon as IT; finishes execution. The 

results of CT; and C T ~  are compared whenever G: finishes 
execution. The data dependence condition under wait-for- 
one semantics can be expressed as min{Ap(u), A&)) > Ap(v). 
Moreover, if the duplication does not change the time at 
which the primary instances execute, that is if Ap = A, and 
assuming that A satisfies the data dependence condition, 
then for A, to satisfy the data dependence condition it is 
sufficient to ensure that 

min{Ap(u), $ ( U ) )  > max{Ap(v), A,(v)l 

Vu, A,(u) 2 Ap(u). (4) 

The data dependence condition under the wait-for-both 
semantics is stronger than that under the wait-for-one se- 
mantics. If a duplication scheme satisfies the former condi- 
tion, it also satisfies the latter one. But the reverse is not true. 
Some of the duplication schemes discussed in this section can 
only satisfy the weaker data dependence condition. 

After analyzing the execution pattern of a regular loop, by 
carefully choosing the function, &, it is possible to control the 
timing function A, and thus control the overhead in the du- 
plicated execution pattern. In the remainder of this section, 
we give some examples of adding duplicated instances to the 
loops considered in the preceding section. We only present 
the duplication strategies. The loop transformations that use 
these strategies to generate the corresponding execution 
patterns will be presented in the next section. 

Different strategies may be used to duplicate the execu- 
tion of the instances in the loop. For instance, if N is even, 
then it is possible to duplicate the instances executing on a 
processor, P, on either processor P - 1 or P + 1. Specifically, 
the duplication strategy may be defined as follows: 

For patterns with B > 1, no duplication overhead is asso- 
ciated with the duplication strategy if the duplicated com- 
putations are interleaved with the original computations as 
shown in Fig. 4a. If 0 = 1, however, the duplication penalty 
is 100% (see Fig. 4b). The 100% overhead in the case I9 = 1 

and A = 0 cannot be avoided since the loop is fully parallel 
and no processor is idle during the execution of the non- 
duplicated loop. A similar argument applies if I9 = 1, /z > 0, 
and the idle time resulting from the skewed execution is 
much smaller than the total execution time of the loop. This 
is the case when A(N - 1) is much smaller than M. How- 
ever, if A(N - l) is large compared to M ,  then an attempt 
should be made to use the idle time for duplicate computa- 
tions. One technique that may be used if A(N - 1) 2 2 M is to 
duplicate the instances executing on a processor, P, on ei- 
ther processor P - or P + $ depending on whether P is 
larger or smaller than F, respectively. A duplication pat- 
tern corresponding to this strategy is shown in Fig. 5. In 
this case, the addition of the fault detection capability does 
not cause any duplication overhead. Formally, if a = [?I, 
then the duplication scheme is specified as follows. 

(6) 
{$(U), $(U) + a}  if $(U) mod a is even 

' r ( u ) =  {{$(U), $ ( U )  - a} if $(U) muda is odd 

> 
0 1 2 3 4 5  0 1  2 3 4 5  

Processors PrOCeGlorE 

Fig. 4 Duplication for transient fault detection. 

I I  I I I I I I I 5. 

0 1  2 3 4 5 6 7  
Processors 

Fig. 5. Efficient duplication for Transient fault detection with /z = B = 1, 
/z(N - I )  2 2M. 

Finally, a duplication strategy for the triangular loop and 
the bisection loop is given by the following formula (assuming 
N is even). 

(7) qqu) = {$tu), N - 1 - $tu)} 
No duplication overhead is associated with this strategy if 
the duplicated computation follows the execution pattern 
shown in Fig. 6. 
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I 

p 6 

I ~ ~ - . . -  , ? 1 I I " lhC,,>,.n , , .n..~,m 

Fig. 6. (a) Duplication for triangular loop pattern; and (b) Duplication for 
bisection loop. 

The execution patterns in Figs. 4 and 5 satisfy the 
stronger condition (3).  This is because in all those patterns 
(except the one for the fully parallel loop pattern), A&) = 
$(U) ,  for any instance U. Therefore condition (3) becomes 
v& j A@) > Ap(v). In other words, if the execution pat- 
terns without duplication satisfy the data dependence con- 
dition, then the execution patterns with duplication satisfy 
the data dependence condition (3).  In the case of the fully 
parallel loop pattern, since there is no data dependencies, 
condition (3) is automatically satisfied. It is easy to check 
that the execution patterns of Fig. 6 satisfy only the weaker 
condition (4). 

5 DUPLICATION THROUGH LOOP 
TRANSFORMATIONS 

In order to automatically implement duplication strategies 
through the compiler we must devise loop transformations 
that achieve duplicated computations and comparisons. 
Corresponding to the situations discussed in the preceding 
section, we will develop several duplication transformations. 

Fori = 0 TOM- 1 Do 
Forj = 0 To N- 1 On P, Do 

If j mod 2 = 0 Then 
A(i, j )  = dA( i ,  j - A), A(i - 8+ A, j + A)) 
Temp(j) = F ( A ( ~ ,  j -  h + l ) , A ( i -  8+ A, j + A +  1)); 
Check(Temp(j)=A(i, j + 1)) 

Temp(j) = HAG, j - I - l), A(i -8+ A, j + h - 1)); 
Check(Temp(j) = A(i, j - 1)) 
A(i, j )  = F(A(i, j - I ) ,  A(i - I9 + h, j + 4) 

Else 

EndIf 
EndFor 

EndFor 
Fig. 7. Loop transformations ZTFD: for transient fault detection. 

The first task of the transformations is to duplicate ap- 
propriate statement instances and schedule their execution 
on appropriate processors. We present duplication trans- 
formation for the general loop where execution pattern was 
expressed in terms of parameters A and 8. Some examples 
of the execution patterns after transformation were illus- 
trated in Fig. 4 of the preceding section. To detect transient 
faults, each instance executed by a processor is duplicated 
on a neighboring processor. The execution of duplicated 
instances is scheduled to exploit idle slots that may be pre- 
sent in the original loop's schedule, as shown in Fig. 7. 

The second task of the transformation is to introduce 
code for performing the checks. Specifically, if a statement 
A = f (d l ,  ..., d,) is selected for duplication, then the compiler 

inserts a secondary statement, Temp = f ( d l ,  ..., d,), where 
Temp is an auxiliary variable not used elsewhere in the pro- 
gram. The variable Temp should reside in the memory of 
the processor that executes the duplicated statement. In 
addition, we introduce the execution of statement Check(A 
= Temp) in the two processors that execute the same state- 
ment. Thus, the two processors that execute statement A = 
f ( d l ,  ..., d,) and Temp = f (d l ,  ..., d,) are able to check each 
other. 

To show that the transformation zTFD of Fig. 7 produces 
the execution pattern of Fig. 4, we observed that: 

1) According to the numbering function A, the instance 
which computes A(i, j )  is o : ~ + ~  ; the secondary in- 

stance is the one that computes Temp(j + 1 )  
when j is even, and the one that computes Temp(j - 1) 
when j is odd; 

2) When j is even, processor PI will execute the instances 
in the following order: 

3) When j is odd, processor PI will execute the instances 
in the following order: 

o;-l,o;, O,N+~-l o N + ~  2*N+j11 0 2 * N + ~  ' p ' 0 s  , p  ,... 

So this transformed loop provides exactly the execution 
pattern shown in Fig. 4 that satisfies the data dependence 
condition (3).  

For transformation z ~ D ,  the checking could be done in 
several different ways with different efficiency and over- 
head. The straightforward way of checking is to perform 
the checking immediately after the execution of each in- 
stance, as is shown in Fig. 7. This approach results in mini- 
mal delay between the occurrence of a fault and its detec- 
tion. However, in order to perform the comparison checks, 
the processors that have independently executed a state- 
ment must exchange the results, which generates commu- 
nication traffic. The communication overhead generated 
due to the exchange of results could be reduced at the cost 
of delaying fault detection. These overhead-reducing trans- 
formations are shown in Fig. 8. The delay allows all the 
checks to be grouped into a single computation of larger 
granularity (the last loop in Fig. 8a). This, in turn, allows 
the messages to be combined. Even though the detection of 
a transient fault is delayed, we are able to identify the pre- 
cise loop iteration during which an error occurred. This 
reduced communication-overhead is at the expense of 
memory overhead since it uses a two dimensional array 
Temp(i, j ) .  Finally we can borrow the idea from 151 to delay 
the checking to the end of the loop and instead of ex- 
changing all the results, the processors exchange a single 
value which is the sum of all the results that are to be com- 
pared, see Fig. 8b. Thus, the overhead of communication is 
further reduced. However, the precise iteration in which an 
error occurred cannot be detected using this technique. 

Fori = 0 TOM- 1 Do 
For j = 0 To N -  1 OnP, Do 

If j mod 2 = 0 Then 
A(i, j )  = F(A(i, j - A), A(i - 8+ A, j + A)) 
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EndFor 
EndFor 
- The following code performs checking: 
Fori = 0 To M - 1 Do 

I f ]  mod 2 = 0 
Then Check(Temp(2, j )  = A(z, j + 1)) 
Else Check(Temp(z, j) = A(i, j - 1)) 
EndIf 

Forj = 0 To N - 1 On Pj Do 

EndFor 
EndFor 

Initialize Sum and Temp arrays to 0 
Forz=OToM-l Do 

For]=OToN-l OnP]Do 

(a) zGc: Delayed Checking with Grouped Communication. 

If1 mod 2 = 0 
Then A(i, 1) = F(A(z, 1 - a), A(i - B+ A, j + 1)); 

Sum(]) = Sum(j) + Ab, j )  
~ ~ ~ 0 )  = ~ewrp ( j i +  ~(A(i,j- a+ ~ ) , A o  - B+ A,] +a+ 1)) 

~ ~ ~ ( ~ i  = ~ ~ p ( i i +  F(A(z,~ - a- i ) , ~ ( i -  B+ a,] +A- 1)) 
Else 

A(z, J )  = F ( A ~ ,  1 - 0, A(z - B + l, I + I)); 
Sumo) = Sumo) + Ahj) 

Endlf 
EndFor 

EndlFor 
- The following code performs checking 
Forj = 0 To N -  1 On PI Do 

If J mod 2 = 0 
Then Ckeck(Temp(1) = Sum(j + 1)) 
Else Check(Temp(1) = Sum(] - 1)) 

(b) zRc: Delayed Checking with Reduced Communication. 
Fig 8 Transformations for efficient checking 

To show how to achieve the efficient duplication shown in 
Fig. 5, we present the following transformation for the case 
where /z = B = 1 and (N - 1) 2 2M. In this transformed loop, 
we do not show the checking statementb). The checking ap- 
proaches shown in Fig. 8 can also be applied here. 

For the triangular loop and the bisection loop the trans- 
formation shown in Fig. 10 achieves the capability of detect- 
ing transient faults. In this loop, mirror(j) = N - 1 - j. With an 
argument similar to the one used for the transformations of 
Fig. 7, it is easy to show that transformations zip and zTL re- 
sult in the execution patterns of Figs. 5 and 6, respectively. 

Fori = 0 TOM - 1 Do 

A(i,j) = ~(A(i , j ) ,A(i , j  - 1)) 

Temp(2, 1 - N / 2 )  = 
F(A(~, j - N/2),A(z, 1 - N / 2  - 1)) 

Else 

EndIf 
EndFor 

For j = 0 TON- 1 On Pj Do 
If j < N / 2  Then 

Else 

EndIf 

Temp(z,i + N/2) = ~ ( A ( i , l  + N/2),A(1,1+ 

A(i, j) = ~(A(i , j ) ,A(i , j  - 1)) 

EndFor 
EndFor 

Fig. 9. qP' Transformation for efficient usage of idle processors. 

Fori = 0 To M -  1 Do 
For j =f(i) To N -  1 On PI Do 

EndFor 
A(i,j) = F ( A ( ~  - 1,j - I ) )  

EndFor 
Fori=OToM-l Do 

For j = i To N - 1 On Pmzyyoy( ) Do 

EndFor 
Temp(z,i) = F(A(z - 1,~  - l){ 

EndFor 
Fig. 10. CTL: Transformation of triangle and bisection loops. 

In all the loop transformations shown in t 
computing the secondary copy Temp, we always use the 
data computed in a primary copy, that is, operands are ac- 
cessed from array A. Actually, in all the transformations, 
except the one for the triangular and bisection loops, it is 
also possible to use the values computed by a secondary 
copy, that is, operands can be accessed from array Temp, as 
long as the transformation generates a legal execution pat- 
tern that satisfies the wait-for-all condition. The choice of 
whether the value computed by the primary or the secon- 
dary copy is used may be driven by other consideration, 
such as communication efficiency. For the transformation 
of the triangular and bisection loops, since it satisfies only 
the wait-for-one condition, it must use the values computed 
by the primary copies to compute all secondary copies. 

A GENERAL LOOP 
~ R A ~ ~ ~ O R M A T ~ ~ N  FRAMEWORK 

The loop transformation techniques described in the last 
section rely on data dependence analysis. Accurate data 
dependence information enables efficient loop transforma- 
tion which can reduce the overhead caused by the added 
fault-detection capability. In this section, we present a gen- 
eral framework which, for a given regular loop, selects the 
appropriate transformation for fault detection. 
more, the framework can estimate the overhead 
by the transformed loop. 

Given a multiply-nested regular loop, each data depend- 
ence can be represented by a dependence distance vector 6= 
(dl, ..., dm), where d ,  is the dependence distance along the ith 
dimension. Thus for any regular loop L, all the dependencies 
can be represented by a set of dependence vectors, D(L) = {&  
..., S;}. For example, for the following loop, the dependence 
distance vector set is D(L) = {(0, 1), (1, -l)}. 

Fori = 0 TOM- 1 Do 
Fori = 0 TO N -  1 Do 

I ,  j) = A(i, j - 1) + A(z - 1, j + 1) 
O(i' '1 ("" B(i, j) = A(i, j) * C 
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EndFor 
EndFor 
A loop is called a fully parallel loop if all the proces- 

sors allocated to this loop can execute their assigned in- 
stances in a fully parallel fashion. The following theorem 
captures the property of a fully parallel loop in terms of 
its dependence vectors. 
THEOREM 1. Let L be a doubly-nested regular loop, with a sched- 

uling function, &di, j ) )  = j * c for some integer constant 
c. A11 processors can execute their assigned instances in a 
fully parallel fashion, if the following condition holds. 

(D(L) 0) v (V6= (di, d2) E D(L), d l  > 0) (8) 
The above condition implies that L is the general execution 
pattern with A = 0 and 0 = 1. This theorem is also true for 
the case in which qXdi, j ) )  = i k c and d2 > 0. 

PROOF. Let instance di, j )  corresponds to loop iteration (i, j). 
Processor PI executes instances d i ,  j )  where 0 < i < M .  If 
D(L) = 0, namely there is no dependence at all, then it 
is obvious that the loop is a fully parallel loop. Suppose 
D(L) # 0, we can prove the theorem by induction on 
the time t. For t = 1, processor PI has to execute instance 
40,  j ) .  Since dl > 0 for any dependency S= (al, d2), 4 0 ,  
j )  doesn’t depend on any other instance of the loop. So 
for the first time unit, all processors PI, where 0 2 j < N, 
can execute their first instance in parallel. Suppose that 
for t < n, all processors execute their instances in paral- 
lel. Then at time unit t = n, instances d i ,  j ) ,  i < n are al- 
ready finished. Again, since dl > 0 for any dependency, 
instance d n ,  j )  can only depend on some instance di, j )  
with i < n which has already been executed. So proces- 

0 
From the data dependence condition, we know that for 

any two instances CT and 0’ , if there is a dependence path 
form oto 0’ of length p ,  then the earliest time slot in which 
o’ can be executed is at least p time slots later than the 
time slot in which cr is executed. The following theorem 
specifies the condition under which there will be a depend- 
ence path of length p from one instance to another instance. 
THEOREM 2. For any doubly-nested regular loop L, if there is a 

sor PJ can execute d n ,  j) at time n. 

set {4, ..., Sp} such that 

( k = l  J 
then there is a dependence path of length p from di, j )  to 
di + dl, j + d2). 

PROOF. We prove this theorem by using induction on p.  For 
the case p = 1, since there is a dependence vector 
6, = (al, d2), by definition of dependence distance, it is 
true that di, j ) M i  + d,, j + d2). Assume the result is 
true for p = n - 1. For p = n, let the sum of the first n - 1 
dependence distance vectors be (all, d12), the last one 
be 6, = (d21, dZ2), and dll + dZ1 = d,, d12 + d22 = d2. Since 

the result holds for p = n - 1, there is a dependence 
path of length n - 1 from di, j )  to di + d,l, j + d1J; 
and due to S,, di + d,,, j + d12)S4i  + d,, 4 d2*, j + d,, + 

dZ) = di + d l ,  j + d2). So there is a dependence path of 

0 
COROLLARY. For any double-nested regular loop L, if there is a 

length n from d i ,  j )  to d i  + dl, j + 4). 

set {6,, ..., $1 such that 

(10) 

then there is a dependence path of length p from di, j )  to 
di + 1, j ) .  

Suppose d i ,  j )  and di + 1, j )  are two consecutive in- 
stances assigned to the same processor, then the longest 
dependence path from di, j )  to di + 1, j )  will determine the 
idle slots for the processor. 
THEOREM 3. Let L be a double-nested regular loop, with a sched- 

uling function qKdi, j ) )  = j .  If the longest dependence path 
from di, j )  to 4i + 1, j )  is of length k,  for some k > 1, then 
L is a general rectangular loop with A > 0 and 8 = k. This 
is also true for the case that qKdi, j ) )  = i and the longest 
dependence path from di, j )  to d i ,  j + 1) is of length k,  for 
some k > 1. 

PROOF. Since there is a dependence path of length greater 
than 1 from di, j )  to di + 1, j ) /  there must exist at least 
one dependence from instance di, j )  to di, j + c) for 
some c > 0 and there is a dependence path from 
di, j + c) to o(i + 1, j ) .  This is also true for i = 0. There- 
fore not all instances 4 0 ,  j )  can be executed at time 
t = 0 due to the dependence, that is, A > 0. Further- 
more, the value of A is the minimal c such that d i ,  j M  
di, j + c). Suppose instance d i ,  j )  is executed at time t, 
and o(i + 1, j )  at time t, by the same processorr due to 
the dependence path from di, j )  to d i  + 1, j ) ,  it must 

0 

The next theorem characterizes a skewed loop in terms 
of its dependence vectors. 
THEOREM 4. Given a doubly-nested regular loop L with a sched- 

uling function qKdi, j ) )  = j such that the processors cannot 
execute their assigned instances in parallel. The loop L is a 
general rectangular loop with A > 0 if 

(11) 

PROOF. Since the processors cannot execute their instances 
in parallel the conditions in theorem 1 are not true. 
Thus, there must be at least one dependence 
6= (d l ,  d2) with dl = 0 which inhibits parallel execu- 
tion of all instances do, j ) .  Consequently, A > 0. 0 

The above theorems provide the foundation for the fol- 
lowing general loop transformation framework. This 
framework examines the following regular loop L, where 
f ( i )  is either i or 0, and determines the transformation that 
should be applied to the loop for fault detection. 

be the case that tl - t, > 1, that is, 0> 1. 

VS= (dl ,  d2)  E D(L),  d2 > 0 
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Fori = 0 TOM-1 Do 
Fori =f(i) To N -  1 Do 

di, j) 
EndFor 

EndFor 

STEP 1. Determine the scheduling function ~ i ,  j) for state- 

STEP 2. Apply data dependence analysis to find all data de- 

ment instance (i, j). 

pendencies, D(L) = {&, ..., &. 

its execution pattern as follows. 
STEP 3. Select a transformation for the loop L according to 

(a) If f(z) > z Then apply the transformation tTL.  

(b) Else If (D(L)  = a) v (V 6= (dl ,  d,) E (L), d ,  > 0) Then 
/* a fully parallel loop by theorem l.*/ 

apply transformation rTFD to detect faults; 
(c) Else If 3 D'(L) L: D(L), I D'(L) I > 1 A C D'(L) = (1,O) 
Then 

/* a general loop by theorem 3 */ 
apply transformation rTFD to detect faults; 

(d) Else If 'd 6= (al, d,) E D(L),  dl 8 0 Then 
/" a skewed loop by Theorem 4. */ 
If /Z(N - 1) 2 2mThen apply transformation q p ;  
Else apply transformation zTFD to detect faults; 

In the above framework, in the place of transformation 
z ~ ~ ~ / z ~ ~ ~ ,  we may use the transformation zGC or zRC to 
reduce the overhead if we do not care when or where the 
fault occurs. In this framework, we first obtain the 4 func- 
tion and apply data dependence analysis to get the set of 
dependence distance vectors D(L).  Then based on the 4 
function and D(L), the execution pattern of the loop L can 
be determined. 

For Case 3b, by Theorem 1, L is a fully parallel loop. The 
overhead of detecting transient fault is the sum of the 

time, comparison time, and communica- 
erhead would be much more than 100%. 

By applying the grouping communication technique and 
delayed comparison shown in Fig. 8, the overhead can be 
reduced to almost loo%, which is the best one can expect 
for a fully parallel loop. To detect permanent fault, only the 
last statement instance of each processor needs to be dupli- 
cated. Generally, the overhead would be just a small per- 
centage of the original execution time. For Case 3c, by 
Theorem 2, L is the general rectangular loop with B > 1 and 
A >  0. Each processor will be idle for (8- 1) time slots after 
it executes one instance. So we can exploit the spare capac- 
ity for the purposes of fault detection. 

7 PERFORMANCE MEASUREMENTS 
In order to empirically estimate the overhead of the com- 

fault-detection approach, we have developed 
ironment (TE) on the multiprocessor computer 

CRAY-T3D using PVM [18]. At this time, the TE does not 
have a full-fledged compiler for the parallel programming 
model. Instead, programs are translated into parallel in- 
termediate code which is executed by interpreters running 
on each processors of the CRAY-TSD. Interprocessor com- 
munication is carried out by the PVM primitives. We first 

request a subsystem of the CRAY-T3D computer (up to 128 
processing elements) and then load the interpreter to each 
of those PES. The intermediate CO provided to the inter- 
preter includes the necessary communication instructions. 
The interpreter(s) read in the program from a file and exe- 
cute it through interpretatlon. We carried out experiments 
using benchmark programs belonging to various catego- 
ries. First we explain results for eneral loop with A = 1, 
B= 2, and then skewed loop, and fi we summarize the re- 
sults for all of the benchmark loops considered. 

We applied transformations zPFD, zTFD, zGC and Z ~ C  to the 
following doubly-nested loop and executed it under differ- 
ent granularity and on different number of processors. 

Fori = 0 To 511 Do 
For j = 0 To K On Pab(j. Do 

A(i, j )  = (A(i,I - 1) + A(z - 1,j + 1) + 
A(i - 1,j) + A(i + l,j))/ 

EndFor 
EndFor 
The above loop can be found in applications such as im- 

age processing and the numeric solution of two- 
dimensional partial differential equations. It produces the 
general execution pattern with A = 1 and B = 2.  We first 
fixed the processor number N to 16 and varied the iteration 
number K .  Then we fixed K = 65,536 and used different 
number of processors. The results are shown in Fig. 11. The 
overhead is given by 

T,-T  0, =- x 100% 
T 

where T, and T are the execution time (in CPU clock cycle) 
of the loop after and before the transformation, respec- 
tively. Since the function d&j) distributes a block to each 
processor, when K becomes larger each processor gets a 
larger block. From Fig. l la,  we can see that for large com- 
putation instances (large K )  the overhead ratio increases 
slightly. From Fig. l l a  and l lb,  it is clear that the overhead 
is relatively low for wide ranges of K and N (between 7% 
and 24%). Intuitively, the overhead of duplicating execu- 
tion should be more than 100% without exploiting any idle 
slots. By exploiting the idle slots, the overhead is reduced 
to less than 25%. Furthermore, the delayed checking tech- 
nique is quite effective. 

overhead 18, 

Wlrh delcyea EheckrnD 

WILh samnisl.il*n With reduced C D m n l F l t i e n  

NlZh deleyed chcrkrng 

512 1024 zolla 4096 81% 16388 31168 65536 K '1 8 16 32 61 1 m  N 

la1 lbl 

Fig. 11. Overhead for general loop (A = 1, 0 = 2) with respect to (a) 
(b) varying number of processors N. 

erhead of different transformations on 
a skewed loop (execution pattern with /I = B = I), we consid- 
ered Livermore Loop 5 and rewrote it into the form given 
below: 
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Forj=OToKOn P b  ~ Do 

EndFor 

d ( 3 
XCj) = ZCj)YYCj) - XCj - 1)) 

Since M = 1 for this > 2h4 is true for N > 3. 
sformation z, of Fig. 9. The 

en in Fig. 12, are consis- 

mvernesa ,a ,  - DeLectlnB Lrenslenr faults overhead l e i  __ Derecrl”g LTdn61enr iau,~s 

Wlih delayed checlvng 

Wlrh reduced C O - n l C e i l D ”  

... Wlth delayed checkm9 

WLth reduced c o m 1 c a t l o n  

... 

I , ,  , , , , 1 I ,  1 ,  I , ,  , I ,  

512 1024 2048 41016 *19* 16284 12768 65516 x 4 8 16 12 54 128 N 

1-1 lhl 

2. Overhead for skewedloop (2 = 1, 0 = 2) with respect to (a) 
varying granularity K; and (b) varying number of processors N. 

We applied loop transformations for fault detection to 
all the regular loops from the Livermore Loop benchmark 

processor number is fixed as N = 64, and inner 
loop iteration is fixed as K = 65,536. The results are summa- 

8 RELATED WORK 
Replication of computations for fault det 
tolerance can be carried out at various levels of granularity. 
For example, it could be done at process le 
action level 1281, at procedure level 1141, 
level as we proposed in this paper. While replication of 
computation at a coarse-grained level incurs smaller over- 
head, it has a serious drawback. A fault is detected only at 
the end of the whole computation irrespective of the time at 
which the fault occurs. For computation that ne 
time to complete, this is undesirable. 

The approach of 151 is also a statement level duplicatio 
approach. The authors extend the algorithm-based check- 
ing techniques to deal with more general applications by 
exploiting linearity property of Fortran Do loops. For a loop 
with loop variables 1 I i < m and j ,  suppose A(i) is 
array variables with index i, B(j)  the set of array 
with index j ,  and CCi, j )  the set of array va 
ces (i, j ) .  Then, a statement D(i, j )  = f(A(i), 
to be i-linear if for some wk, 1 I k I m, 

rized in the Table 2. 

f (c k=l 
5 k=l w k C ( k ,  j ) )  TABLE 2 

FOR LIVERMORE LOOPS 
AVERAGE OVERHEAD OF FAULT DETECTION 

The variable i is said to be the checking variable. For loops 
that satisfy the linearity property, the two sid 
computed on two different processors a 
detect a fault. We compare the approach 
proach of this paper as follows. 

1) Class of Loops: While the approach proposed in this 
paper deals with the class of regular loops, the ap- 
proach of [5] deals with the class of loops with linear- 
ity property. These two classes are not the same and 
neither of these two classes is a superset of the other. 

2)  Overhead: For loops that are regular and satisfy the 
linearity property, we can compare the two ap- 
proaches as follows. The approach propos 
paper achieves low cost by exploiting th 
slots during the execution of a regular loo 
proach of [5] does not explicitly exploit idle proces- 
sors that might exist during the execution of a pro- 
gram. Instead, it tries to reduce the overhead through 
carefully choosing the checking variable to reduce the 
duplicated computations and data exchanges. This 
technique achieves low cost fault-detection only for 
special applications such as matrix multiplication. For 
example, the image processing loop given in the last 
section satisfies the linearity property. Even though 
there are many idle time slots during the execution 
of the loop, the approach of [51 will not be able to 
exploit them since it has to compute the two sides of 
(12) at the end of the loop. Therefore, for these kind 
of loops, the approach of this paper will achieve 
lower overhead than the approach of [5]. The ad- 
vantage of the approach of 151 is in dealing with 
fully parallel loops, since it can detect transient 
faults with less than 100% overhead. It also pio- 
neered the using of delayed checking technique. 

As can be seen, the overhead of detecting either transient 
or permanent faults is relatively low for skewed and trian- 
gular loops. For the eight fully parallel loops, more than 
100% average overhead for detecting transient faults is no 

there is no idle time slots to exploit. How- 
ed loops and triangular loops the overhead is 

small because the idle slots were effectively exploited by 
the transformations. 

The impact of the extra communications introduced by 
the checking on the total execution time is relatively small 
because 

1) the results sent for checking can usually be sent in 
messages carrying the data needed for computation; 

2) the communication delay is usually overlapped with 
computations; and 

Its for one duplicated instance are grouped in 
sage and usually the granularity of a dupli- 

cated instance is much larger than one statement in- 
stance. 

Hence, the actual number of communications required by 
the checking operations is much smaller than the number 
of duplicated results. 
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3) Round Off Error: Another problem of the approach M 
[5] is that the round off errors accumulate in different 
ways for the two sides of (12), thus making it highly 
unlikely that the equality is preserved exactly [12]. 
This problem does not exist in the approach proposed 
in this paper since exactly the same computations are 
duplicated. 

From the above discussion, we can see that the two ap- 
proaches are complementary to each other. It would be a 
good idea to combine the approach of this paper and the 
approach of 151 to develop a more powerful system that can 

1) deal with both regular loops and loops with Zinearity 
property; 

2) deal with both loops that produce many idle time 
slots at execution time and loops that produce few or 
no idle time slots. 

9 CONCLUDING REMARKS 
We proposed a compiler-assisted approach to fault detec- 
tion on distributed-memory systems and developed a loop 
transformation framework through which a regular loop is 
transformed to duplicate computations and introduce 
checks to detect faults. This approach achieves the follow- 
ing goals: 

1) Applicability: No specialized hardware is required and 
the techniques used are applicable to existing sys- 
tems. The fault detection approaches are imple- 
mented entirely in software through a compiler. 

2) On-line Checking: The checking is performed concur- 
rently with the execution of application programs. 
This is essential for detecting transient faults which 
occurs more often than permanent faults. 

3) Efficiency: Analysis techniques are developed to en- 
able the merging of duplicated computation with the 
original computation in a manner that reduces the in- 
crease in overall execution time. The results of ex- 
periments show that full coverage can be obtained 
with small overhead for non-fully-parallel regular 

4) Automatic Implementation: The implementation of the 
analysis techniques and fault detection algorithms are 
carried out through the compiler. Thus, the augmen- 
tation of a program for fault tolerance can be 
achieved without any assistance from the user. 

In this paper, we concentrated on scheduling duplicated 
computations on idle slots that result from data dependen- 
cies. Communication delay may also create idle slots dur- 
ing execution. The efficient utilization of those slots for 
scheduling duplicated computations is studied in detail in 
1201. Furthermore, the work of this paper can be expanded 
as follows. First, the extension of the proposed approach to 
fault location and error masking, specifically, by triplicat- 
ing computation instances on three processors. Second, the 
study of efficient replication strategies for program con- 
structs that are more general than the loop construct dis- 
cussed in this paper. Third, the design of a user interface 
that provides necessary information to the user and allows 
the user to select the duplication strategy. 

loops. 
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