
1238 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 12, DECEMBER 1996

Loop Transfor ns for Fault Detection in
Regular Loops ssively Parallel Systems

Chun Gong, Rami , Member, IEEE Computer Society,
ber, IEEE Computer Society

Abstract-Distributed-memory systems can incorporate thousands of processors at a reasonable cost. However, with an increasing
number of processors in a system, fault detection and fault tolerance become critical issues. By replicating the computation on more
than one processor and comparing the results produced by these processors, errors can be detected. During the execution of a
program, due to data dependencies, typica a multiprocessor system are busy at all times. Therefore
processor schedules contain idle time slots and oal of this work to exploit these idle time slots to schedule duplicated
computation for the purpose of fault detecti ssisted approach to fault detection in regular loops on
distributed-memory systems. This approac duplicating the execution of statement instances. After
carefully analyzing the data dependencies of a regular loop, selected instances of loop statements are duplicated in a way that
ensures the desired fault coverage. We first presen n strategies for fault detection and show that these strategies use idle
processor times for executing replicated statements er possible Next, we present loop transformations to implement these
fault-detection strategies. Also, a general framewor ting appropriate loop transformations is developed. Experimental
results performed on the CRAY-T3D show that the overhead of adding the fault detection capability is usually less than 25%, and is
less than 10% when communication overhead is reduced by grouping messages

Index Terms- Compiler-assisted approach, data dependence analysis, distributed-memory systems, duplicating execution,
execution pattern, fault detection, loop transformation

+
1 INTRODUCTION

ASSIVELY parallel systems can incorporate thousands M of processors at a reasonable cost. In order to achieve
scalability in such systems, the memory is
tributed among the processors. Due to the
processors, fault detection and fault toler
issues for such systems. Thus, techniques fo
and fault tolerance on distributed-memory
important area of research.

ing redundancy in a system at either the hardware level [6],
[8], [27] or the software level [3,] [4], [14], [28]. Recently, it has
been realized that the computmg power of a multiprocessor
system is rarely completely utilized. This has resulted in the
development of techniques that achieve fault detection by rep-
licating computahons and comparvlg the results of these com-
putations [16], [29]. Ideally by utihzing the spare capacity of
the system to execute replicated computations, fault detection
and tolerance can be acheved at a reduced cost.

Techniques for compiler-assisted fault detection and re-
covery have been developed in previous research. A com-
piler-assisted scheme to enable a process to quickly recover
from transient faults is developed in [l] and a method that
utilizes the VLIW compiler to insert redundant operations
into idle functional units for fault detection purposes is

Fault detection and tolerance can be ache

0 C Gong zs wzth the Massachusetts Language Lab, Hewlett-Packard, 300
Apollo Dnve, Chelmsford, M A 02824 Emazl gong@apollo hp com
R Melhem and R Gupta are wzth the Unzverszty of Pzttsburgh, Pittsburgh,
PA 15260 E-mazl.{melhem, gupta}@cs pztt edu.

Manuscript received May 24,1994, revised Apr 4,1996
For information on obtaining reprints of this article, please send e mail to
transpds@computev org, and reference IEEECS Log Number D95226

presented in [7]. Compiler techniques are used in [241 to
insert checkpoints into a program so that both the desired
checkpoint intervals and reproducible locations are main-
tained. A source-to-source restructuring compiler for the
synthesis of low-cost checks for scientific programs using
the notion of algorithm-based checking is described in [5].
The compiler-assisted approaches are appealing since the
compilers can apply a variety of analysis techniques to effi-
ciently allocate resources in multiprocessor systems. Fur-
thermore, adding fault detection capabilities to massively
parallel systems is usually tedious an
systematic techniques that can be implem
compilers are most appropriate.

In this paper, we describe
for achieving fault detection 1

memory systems by duplica
ment level. This approach a1
resources for the purpose o
the approach of [5] in that i
to utilizing the spare processors’ capacity for introducing
redundancy in distributed memory environments. It also
provides a means for analyzing the resulting overhead. Fault
detection is achieved by duplicating the execution of state-
ment instances on two processors and comparing the results
of these executions. A detailed comparison between these
two approaches will be given in Section 8. In the approach
proposed in this paper, compile-time transformations are
applied to duplicate statement instances and introduce
checks to compare the computed results. Thus, whenever a
duplicated statement is executed in the program, the proces-
sors executing that statement are tested. The degree of fault
coverage is controlled by the degree of duplication.

1045-921 9/96$05 00 01 996 IEEE

GONG ET AL: LOOP TRANSFORMATIONS FOR FAULT DETECTION IN REGULAR LOOPS ON MASSIVELY PARALLEL SYSTEMS 1239

The paper is organized as follows. Section2 provides
some notation and the general execution model and Sec-
tion 3 introduces the concept of execution patterns. In Sec-
tion 4, we present the principles of duplicating execution
and introduce several duplicating strategies for regular
loops. Implementations of the duplicating strategies are
given in Section5. In Section6, we describe a general
framework which, given a regular loop, selects appropriate
duplicating strategy for fault detection. In Section 7, ex-
perimental results are given and in Section 8, some related
work is discussed. Finally our concluding remarks are
given in Section 9.

2 THE PARALLEL EXECUTION MODEL
We consider a system in which N processors are connected
by an interconnection network. Each processorr which has a
unique identifier from 0, 1, ..., N - 1, has its own local mem-
ory. There is no global memory and information exchange
between processors is achieved through message exchange.

There are two basic paradigms for programming dis-
tributed-memory machines: the explicit message passing
model, and the shared-name-space model. Although the
first model is more flexible, it is hard to program in that
model. Therefore, many languages have been developed
which provide the users with the conceptually easier pro-
gramming model based upon a globally shared name
space. The compiler is responsible for inserting necessary
communication primitives in this model 191. Examples of
such languages include CM Fortran 1131, C* [251, V' ienna
Fortran [lo], and HPF [211. The compiler-assisted method-
ology introduced in this paper achieves fault detection on
distributed-memory systems when these systems are pro-
grammed using the shared-name-space model.

Under the shared-name-space model, a scheduling ftlnc-
tion, @, is specified such that for each statement instance sI,
~ s l) identifies the processor that will execute sI. The fol-
lowing methods are commonly used to specify @ :

The user specifies @ : Languages such as Kali and the
Cray T3D Fortran allow the specification of @ for
scheduling of loop iterations on specific processors
1231.
The compiler chooses 4 according to the "owner computes
rule": In compilers for languages such as Fortran D
and HPF, the user specifies data distribution and 4 is
chosen such that each statement i s executed by the
processor that owns the variable whose value is being
computed.
The compiler automatically selects I$: Heuristics are em-
ployed for the selection of @ in conjunction with data
distribution. The goal of the heuristic is to balance par-
allelism and communication in order to achieve good
performance [Z].

this paper, we assume that @ is given by the user.
Furthermore, the @ function specifies scheduling of loop
iterations rather than individual statements. However, the
techniques presented here can also be applied to the other
methods described above [191.

We focus on loops since most of the idle time can be
found in executing loops. We first define the notation used

to describe data dependencies. There are three kinds of
data dependencies. A statement instance s, is said to be flow
dependent upon statement instance sIr denoted as sI&,, if s,
reads from a memory location after sI writes to the same
memory location. A statement instance s, is said to be out-
put dependent upon statement instance s], if both s, and sI
write into the same memory location. A statement instance
s, is antidependent upon sI, ifs, writes into a memory location
after sI reads from the same memory location. Since output
and antidependencies can be eliminated through renaming
[15], we assume that the loop contains only flow dependen-
cies. If there are instances of statements sl, s2, ..., s, such that
s,6s26 ... as,, then we say that there is a dependence path of
length (n - 1) from s1 to s,. There may be dependencies
among different iterations of a loop. If a statement instance
at the ith iteration of a loop is dependent upon a statement
instance at the kth iteration, then this particular depend-
ence is said to have a distance of (i - k) [301. For multiply-
nested loops, a vector of dependence distances is used to
represent the dependencies. If all the dependencies of a
loop can be described by a set of dependence distances that
are independent of the loop variables, then the loop is said
to be a regular loop. In this paper, we consider regular loops
which are perfectly nested and contain no branches. In the
next section, we will give concrete examples of regular
loops and describe their characteristics.

3 EXECUTION PATTERNS
FOR PERFECTLY NESTED LOOPS

Given a loop and the function @, by analyzing the data de-
pendencies of the loop, a legal schedule that maximizes the
parallelism of the loop can be determined. Here, the term
"legal schedule" refers to a schedule that satisfies all the
data dependencies of the loop. The execution pattern of a
loop, under a legal schedule, specifies the time and the
processor at which each loop instance is executed. This
pattern can be identified by analyzing the data dependen-
cies in the loop. We first consider the execution patterns of
doubly-nested loops of the forms shown below and later
generalize this concept for multiply-nested loops. In this
loop, "On P y indicates that jth iteration of the inner loop is
executed on processor PI.

Fori = 0 To M - 1 Do
For j = 0 To N - 1 On PI Do

A(i, j) = F(A(i, j - 4,

EndFor

Depending on the value of A and S, there might be data de-
pendencies in the above loop that can prevent all processors
from executing their assigned statement instances in a fully
parallel fashion. In this paper, we assume that the execution
of each statement instance takes the same amount of time
(say, unit time). Fig. l a shows a legal execution schedule for
the above loop with M = 4, N = 6, A = 1, and 8= 2. At time 1,
processor Po starts the execution of instance with i = j = 0,
then, at time 2, processor PI starts the execution of instance
with i = 0 and j = 1, and so on, thus guaranteeing that data
dependencies are satisfied. We refer to the above loop with

1240 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 7, NO 12, DECEMBER 1996

(a)

Fig. 1. (a) The Execution Pattern of
the numbering function Ph.

s

0 1 2 3 4 5

(b)

the loop: 8 = 2 and A = 1; (b) With

A. 2 1 and B 2 2 as the general loop and the execution pattern it
generates the general loop pattern.

In Fig. la, each shaded square indicates a time slot
during which a loop instance is being executed. In this
example, a loop instance is a simple statement. In general,
however, a loop instance can be composed of several
statements or several loop iterations of a nested Ioop. The
only requirement for a loop instance is that it must be
executed in its entirety by one processor in a continuous
time slot.

In order to describe an execution pattern, we introduce
the following notation. A number ing of a loop is a one-to-
one mapping from the set of loop instances to the set of
natural numbers plus the symbol p which denotes an unde-
fined value. In the following definition, we use di, j) to
denote the instance with i and j as values of the outer and
inner loop indices, respectively.

This function maps a two-dimensional iteration space into
a linear space. A numbering function facilitates the expres-
sion of execution patterns which are used to develop repli-
cation strategies. The execution pattern of Fig. l a with the
numbering function ph is shown in Fig. lb.

Given a numbering function p, we use o" to refer to the
instance whose number under p is U , and & U) to denote
the processor that will execute instance d. For any given
regular loop with a function 4, the compiler can deter-
mine a legal schedule which maximizes the parallelism of
the execution of the loop. The timing function A describes
the mapping between instances and time slots under the
schedule. Thus, A(u) is the earliest time at which o" can be
executed. Formally, the execution pattern of a loop is a
pair of functions, <d , A>. The general loop pattern may be
described by the following general forms of 4 and A.

$(U) = U mod N; A(u) = A(u mod N) + 8 - 1:l
where A is the execution skew among the processors and B
is the idle time between the execution of successive in-
stances on each processor. For example, the skewed loop pat-
tern of Fig. 2a is a special case of (1) with A = 1 and B = 1
and the filly parallel pattern of Fig. 2b is a special case with
A = 0 and 8 = 1. The timing function A corresponding to a
legal schedule satisfies the data depelzdenczes, that is,

o"60" =+ A(u) > A(v).

We obtained the execution pattern of Fig. 1 by assigning
iterations of the inner loop to different processors. How-

0 1 2 3 4 5 0 1 2 9 4 5
PrOCeSsOrs Processors

(a1 (bl

Fig 2. Special cases of the general execution pattern, (a) skewed pat-
tern with 8= 1, A= I ; and (b) parallel pattern with 8 = 1, A= 0.

ever, the general pattern given by (1) also represents the
case where the processors are distributed along the outer
loop, as shown in the following example.

F o r i = O T o N - l O n P , D o
For j = 0 TOM- 1 Do

EndFor
A(&]) = F (A (z - 1,jN

EndFor
This is a special case of (1) with A = 1, 8= 1. The numbering
function for this case is defined as follows.

Fig. 2a shows a legal execution pattern under this numbering
function. In the remamder of the paper, we consider the case m
which the processors are assigned along the inner loop, since
the other case can be handled through the appropriate num-
bering function.

Other types of loops we will consider in this paper are
the triangular loop and the bisection loop. These two types of
loops can be uniformly illustrated by the following loop
form, where f(z) = z or f (z) = N - N.

2l

Fori = 0 To M - 1 Do
For j =f(i) To N - 1 On PI Do

EndFor
A(z, 1) = F(A(1 - I,] - 1))

EndFor
A legal execution pattern for the case wheref(i) = i is shown
in Fig. 3a and a legal execution pattern for the case where

f (i) = N -& is shown in Fig. 3b. For these types of loops,

we can use the following numbering function to convert
instances from the two-dime n space into a one-
dimension space

2

In the discussion so far, the number of processors is as-

0 1 2 3 Pro~ersor. 0 1 2 3 4 5 6 7 Proccrrors

(SI B.)

Fig. 3. (a) The triangular loop execution pattern; and (b) the bisection
execution pattern.

GONG ET AL: LOOP TRANSFORMATIONS FOR FAULT DETECTION IN REGULAR LOOPS ON MASSIVELY PARALLEL SYSTEMS 1241

Symbols

647 Mu)
s

sumed to be the same as the number of iterations of the
loop. However, in practice the number of iterations is usu-
ally much larger than the number of processors. In order to
generalize the concept of execution pattern, we assume
that, in the following loop, the number of loop iterations
(U> is greater than the number of processors (N). In this
loop, di, j) is either a sequence of assignment statements or
a nested loop.

F o r i = 0 To M - 1 Do
For j = 0 To U - 1 On

EndFor

Do
d(i, j)

EndFor

We use the following processor assignment functions for
the above loop.

(2)

Meaning
scheduling functions
data dependence relation

where a: = [El. Processor assignment function db(j) as-

signs iterations 0, N, 2N, ..., on processor Po; iterations 1,

N + 1, 2N t 1, ..., on P,, and so on. Assignment function
d,(j) divides the iterations into contiguous blocks with
identical sizes, except maybe the last one, and assigns
each block to one processor. Here the assignment func-
tions of (2) are equivalent to Cyclic and Block distribution
of loop iterations among the processors. For the case of
function d&), iterations 0 S i < M , 0 5 j < N can be repre-
sented as one execution pattern; iterations 0 5 i < M , N 5 j
< 2N as another identical execution pattern, and so on.
For the case of function d,(j), for any two integer constants
k and 1, we can take iterations i = k, IN < j < (I + 1)N as one
instance. Then the whole loop can be represented as an
execution pattern of a doubly nested loop.

Singly nested loops and multiply nested loops with
nesting level greater than two can also be easily handled by
our approach. As singly nested loop is just a special case of
double loop with M = 0. For the general cases of multiply
nested loop of the form,

For il = 0 TOM1 - 1 Do
...

For il-l = 0 To MI-1 - 1 Do
For il = 0 To MI, On Pd(il) Do

For in = 0 To Mn-l Do
...

Statements
...

EndFor

we can take the inside loop body after index i, as one
statement. Then the loop body starting from index il-, can
be represented as an execution pattern as above. Here, the
function d(iJ specifies the distribution of loop iterations
among the available processors, that is, the 4 function.

For the convenience of the readers, we end this section
by summarizing, in Table 1, the important symbols used in
this paper. Some of the symbols in Table 1 have not been
discussed yet and will be introduced in the next section.

II di. 11. nu I statement instances II
I I I, 1) phy pvp pf 1 numbering functions

A(uL ALu) I timina functions
I , I I "

db(l)* dc(J) I processor assignment functions

4 DUPLICATION STRATEGIES FOR REGULAR LOOPS

Duplicating and comparing the results of executing state-
ment instances is the basis for the proposed approach to
fault detection. In order to implement this statement dupli-
cation approach, two issues need to be addressed. Namely,
the selection of the statement instances to be duplicated and
the scheme for scheduling duplicated executions and compar-
ing results. Our goal is to reduce, as much as possible, the
overhead incurred by the fault-detection mechanism. Before
we discuss duplication strategies we discuss the fault model
used in this paper. We consider only single transient faults.
The case of permanent faults is simpler to handle and is
discussed in 1191. We assume that a processor is faulty if
and only if it produces wrong results for all input data. We
also assume that interprocessor communication is fault free.
If errors resulting from transient faults are to be detected,
then every statement instance should be duplicated.

We concentrate on duplicating instances within loop
executions. The duplication of the execution of d' is speci-
fied by a function 4,. such that &,(U) is the set of processors
on which d is to execute. In general, if I Qr(u) I = 2, then an
error in the execution of 0" resulting from a fault in any of
the two processors in 4,.,(u) can be detected. The replica of
an instance 0" is called a seconda y instance and is denoted
byo: . To avoid confusion, we will refer to the original in-

stance of / as the primary instance 0; . In order to exploit
idle slots, the compiler appropriately selects the instances
to be duplicated as well as the processors where secondary
instances are to execute. Let qDS(u) be the processor on which
0: is to execute. Thus, if c" is duplicated, its mapping

function can be expressed by a multivalued function @,.,(U) =

{$p(u), @s(u)], where $ (U) = $(U). For a non-duplicated
statement, only primary instances exist and thus, @,.(U) =

As is the case in the absence of duplication, the copies
created by duplication must also satisfy data dependencies.
For an instance, o", the value of the timing function A is
now a set Ar(u) = {A@), A&)}, where A@) is the time at
which 0" executes and $ (U) is the time at which 0; exe-

cutes. Note that A@) may or may not be equal to A,(u).
Moreover, if 0" is not duplicated, then A&) = {Ap(u)].

Unlike the situation of nonduplicated execution, for the
duplicated timing function Ar, the data dependence condi-

{4p(ll)l.

1242 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 7, NO. 12, DECEMBER 1996

tion is determined by the semantics of the duplication. Two
different semantics are possible, the wait-for-both and the
wait-fur-one semantics. Specifically, if before duplication, an
instance, U depends on data calculated by another instance V ,
then after duplication, the wait-for-both semantics requires that
copies of 0" do not execute before all copies of 0" execute. This
condition can be expressed as follows:

(3)

where we abused the notation by assuming that max{A&v),
A,(v)) = A (v) if ov is not duplicated and min{Ap(u), A&)} =
dp (U) if 3 is not duplicated. The wait-for-both semantics
allows the data computed by duplicated instances to be
compared before it is used, thus preventing error propaga-
tion, at the cost of possible execution delay.

Under the wait-for-one semantics, data comparison does
not delay execution at the cost of possible delaying in error
detection and possible error propagation. In this case, cop-
ies of o" can execute as soon as IT; finishes execution. The

results of CT; and C T ~ are compared whenever G: finishes
execution. The data dependence condition under wait-for-
one semantics can be expressed as min{Ap(u), A&)) > Ap(v).
Moreover, if the duplication does not change the time at
which the primary instances execute, that is if Ap = A, and
assuming that A satisfies the data dependence condition,
then for A, to satisfy the data dependence condition it is
sufficient to ensure that

min{Ap(u), $ (U)) > max{Ap(v), A,(v)l

Vu, A,(u) 2 Ap(u). (4)

The data dependence condition under the wait-for-both
semantics is stronger than that under the wait-for-one se-
mantics. If a duplication scheme satisfies the former condi-
tion, it also satisfies the latter one. But the reverse is not true.
Some of the duplication schemes discussed in this section can
only satisfy the weaker data dependence condition.

After analyzing the execution pattern of a regular loop, by
carefully choosing the function, &, it is possible to control the
timing function A, and thus control the overhead in the du-
plicated execution pattern. In the remainder of this section,
we give some examples of adding duplicated instances to the
loops considered in the preceding section. We only present
the duplication strategies. The loop transformations that use
these strategies to generate the corresponding execution
patterns will be presented in the next section.

Different strategies may be used to duplicate the execu-
tion of the instances in the loop. For instance, if N is even,
then it is possible to duplicate the instances executing on a
processor, P, on either processor P - 1 or P + 1. Specifically,
the duplication strategy may be defined as follows:

For patterns with B > 1, no duplication overhead is asso-
ciated with the duplication strategy if the duplicated com-
putations are interleaved with the original computations as
shown in Fig. 4a. If 0 = 1, however, the duplication penalty
is 100% (see Fig. 4b). The 100% overhead in the case I9 = 1

and A = 0 cannot be avoided since the loop is fully parallel
and no processor is idle during the execution of the non-
duplicated loop. A similar argument applies if I9 = 1, /z > 0,
and the idle time resulting from the skewed execution is
much smaller than the total execution time of the loop. This
is the case when A(N - 1) is much smaller than M. How-
ever, if A(N - l) is large compared to M , then an attempt
should be made to use the idle time for duplicate computa-
tions. One technique that may be used if A(N - 1) 2 2 M is to
duplicate the instances executing on a processor, P, on ei-
ther processor P - or P + $ depending on whether P is
larger or smaller than F, respectively. A duplication pat-
tern corresponding to this strategy is shown in Fig. 5. In
this case, the addition of the fault detection capability does
not cause any duplication overhead. Formally, if a = [?I,
then the duplication scheme is specified as follows.

(6)
{$(U), $(U) + a} if $(U) mod a is even

' r (u) = {{$(U), $ (U) - a} if $(U) muda is odd

>
0 1 2 3 4 5 0 1 2 3 4 5

Processors PrOCeGlorE

Fig. 4 Duplication for transient fault detection.

I I I I I I I I I 5.

0 1 2 3 4 5 6 7
Processors

Fig. 5. Efficient duplication for Transient fault detection with /z = B = 1,
/z(N - I) 2 2M.

Finally, a duplication strategy for the triangular loop and
the bisection loop is given by the following formula (assuming
N is even).

(7) qqu) = {$tu), N - 1 - $tu)}
No duplication overhead is associated with this strategy if
the duplicated computation follows the execution pattern
shown in Fig. 6.

GONG ET A L LOOP TRANSFORMATIONS FOR FAULT DETECTION IN REGULAR LOOPS ON MASSIVELY PARALLEL SYSTEMS 1243

I

p 6

I ~ ~ - . . - , ? 1 I I " lhC,,>,.n , , .n..~,m

Fig. 6. (a) Duplication for triangular loop pattern; and (b) Duplication for
bisection loop.

The execution patterns in Figs. 4 and 5 satisfy the
stronger condition (3). This is because in all those patterns
(except the one for the fully parallel loop pattern), A&) =
$(U) , for any instance U. Therefore condition (3) becomes
v& j A@) > Ap(v). In other words, if the execution pat-
terns without duplication satisfy the data dependence con-
dition, then the execution patterns with duplication satisfy
the data dependence condition (3). In the case of the fully
parallel loop pattern, since there is no data dependencies,
condition (3) is automatically satisfied. It is easy to check
that the execution patterns of Fig. 6 satisfy only the weaker
condition (4).

5 DUPLICATION THROUGH LOOP
TRANSFORMATIONS

In order to automatically implement duplication strategies
through the compiler we must devise loop transformations
that achieve duplicated computations and comparisons.
Corresponding to the situations discussed in the preceding
section, we will develop several duplication transformations.

Fori = 0 TOM- 1 Do
Forj = 0 To N- 1 On P, Do

If j mod 2 = 0 Then
A(i, j) = dA(i , j - A), A(i - 8+ A, j + A))
Temp(j) = F (A (~ , j - h + l) , A (i - 8+ A, j + A + 1));
Check(Temp(j)=A(i, j + 1))

Temp(j) = HAG, j - I - l), A(i -8+ A, j + h - 1));
Check(Temp(j) = A(i, j - 1))
A(i, j) = F(A(i, j - I) , A(i - I9 + h, j + 4)

Else

EndIf
EndFor

EndFor
Fig. 7. Loop transformations ZTFD: for transient fault detection.

The first task of the transformations is to duplicate ap-
propriate statement instances and schedule their execution
on appropriate processors. We present duplication trans-
formation for the general loop where execution pattern was
expressed in terms of parameters A and 8. Some examples
of the execution patterns after transformation were illus-
trated in Fig. 4 of the preceding section. To detect transient
faults, each instance executed by a processor is duplicated
on a neighboring processor. The execution of duplicated
instances is scheduled to exploit idle slots that may be pre-
sent in the original loop's schedule, as shown in Fig. 7.

The second task of the transformation is to introduce
code for performing the checks. Specifically, if a statement
A = f (d l , ..., d,) is selected for duplication, then the compiler

inserts a secondary statement, Temp = f (d l , ..., d,), where
Temp is an auxiliary variable not used elsewhere in the pro-
gram. The variable Temp should reside in the memory of
the processor that executes the duplicated statement. In
addition, we introduce the execution of statement Check(A
= Temp) in the two processors that execute the same state-
ment. Thus, the two processors that execute statement A =
f (d l , ..., d,) and Temp = f (d l , ..., d,) are able to check each
other.

To show that the transformation zTFD of Fig. 7 produces
the execution pattern of Fig. 4, we observed that:

1) According to the numbering function A, the instance
which computes A(i, j) is o : ~ + ~ ; the secondary in-

stance is the one that computes Temp(j + 1)
when j is even, and the one that computes Temp(j - 1)
when j is odd;

2) When j is even, processor PI will execute the instances
in the following order:

3) When j is odd, processor PI will execute the instances
in the following order:

o;-l,o;, O,N+~-l o N + ~ 2*N+j11 0 2 * N + ~ ' p ' 0 s , p ,...

So this transformed loop provides exactly the execution
pattern shown in Fig. 4 that satisfies the data dependence
condition (3).

For transformation z ~ D , the checking could be done in
several different ways with different efficiency and over-
head. The straightforward way of checking is to perform
the checking immediately after the execution of each in-
stance, as is shown in Fig. 7. This approach results in mini-
mal delay between the occurrence of a fault and its detec-
tion. However, in order to perform the comparison checks,
the processors that have independently executed a state-
ment must exchange the results, which generates commu-
nication traffic. The communication overhead generated
due to the exchange of results could be reduced at the cost
of delaying fault detection. These overhead-reducing trans-
formations are shown in Fig. 8. The delay allows all the
checks to be grouped into a single computation of larger
granularity (the last loop in Fig. 8a). This, in turn, allows
the messages to be combined. Even though the detection of
a transient fault is delayed, we are able to identify the pre-
cise loop iteration during which an error occurred. This
reduced communication-overhead is at the expense of
memory overhead since it uses a two dimensional array
Temp(i, j) . Finally we can borrow the idea from 151 to delay
the checking to the end of the loop and instead of ex-
changing all the results, the processors exchange a single
value which is the sum of all the results that are to be com-
pared, see Fig. 8b. Thus, the overhead of communication is
further reduced. However, the precise iteration in which an
error occurred cannot be detected using this technique.

Fori = 0 TOM- 1 Do
For j = 0 To N - 1 OnP, Do

If j mod 2 = 0 Then
A(i, j) = F(A(i, j - A), A(i - 8+ A, j + A))

1244 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 7, NO. 12, DECEMBER 1996

EndFor
EndFor
- The following code performs checking:
Fori = 0 To M - 1 Do

I f] mod 2 = 0
Then Check(Temp(2, j) = A(z, j + 1))
Else Check(Temp(z, j) = A(i, j - 1))
EndIf

Forj = 0 To N - 1 On Pj Do

EndFor
EndFor

Initialize Sum and Temp arrays to 0
Forz=OToM-l Do

For]=OToN-l OnP]Do

(a) zGc: Delayed Checking with Grouped Communication.

If1 mod 2 = 0
Then A(i, 1) = F(A(z, 1 - a), A(i - B+ A, j + 1));

Sum(]) = Sum(j) + Ab, j)
~ ~ ~ 0) = ~ewrp (j i + ~(A(i,j- a+ ~) , A o - B+ A,] +a+ 1))

~ ~ ~ (~ i = ~ ~ p (i i + F(A(z,~ - a- i) , ~ (i - B+ a,] +A- 1))
Else

A(z, J) = F (A ~ , 1 - 0, A(z - B + l, I + I));
Sumo) = Sumo) + Ahj)

Endlf
EndFor

EndlFor
- The following code performs checking
Forj = 0 To N - 1 On PI Do

If J mod 2 = 0
Then Ckeck(Temp(1) = Sum(j + 1))
Else Check(Temp(1) = Sum(] - 1))

(b) zRc: Delayed Checking with Reduced Communication.
Fig 8 Transformations for efficient checking

To show how to achieve the efficient duplication shown in
Fig. 5, we present the following transformation for the case
where /z = B = 1 and (N - 1) 2 2M. In this transformed loop,
we do not show the checking statementb). The checking ap-
proaches shown in Fig. 8 can also be applied here.

For the triangular loop and the bisection loop the trans-
formation shown in Fig. 10 achieves the capability of detect-
ing transient faults. In this loop, mirror(j) = N - 1 - j. With an
argument similar to the one used for the transformations of
Fig. 7, it is easy to show that transformations zip and zTL re-
sult in the execution patterns of Figs. 5 and 6, respectively.

Fori = 0 TOM - 1 Do

A(i,j) = ~(A(i , j) ,A(i , j - 1))

Temp(2, 1 - N / 2) =
F(A(~, j - N/2),A(z, 1 - N / 2 - 1))

Else

EndIf
EndFor

For j = 0 TON- 1 On Pj Do
If j < N / 2 Then

Else

EndIf

Temp(z,i + N/2) = ~ (A (i , l + N/2),A(1,1+

A(i, j) = ~(A(i , j) ,A(i , j - 1))

EndFor
EndFor

Fig. 9. qP' Transformation for efficient usage of idle processors.

Fori = 0 To M - 1 Do
For j =f(i) To N - 1 On PI Do

EndFor
A(i,j) = F (A (~ - 1,j - I))

EndFor
Fori=OToM-l Do

For j = i To N - 1 On Pmzyyoy() Do

EndFor
Temp(z,i) = F(A(z - 1,~ - l){

EndFor
Fig. 10. CTL: Transformation of triangle and bisection loops.

In all the loop transformations shown in t
computing the secondary copy Temp, we always use the
data computed in a primary copy, that is, operands are ac-
cessed from array A. Actually, in all the transformations,
except the one for the triangular and bisection loops, it is
also possible to use the values computed by a secondary
copy, that is, operands can be accessed from array Temp, as
long as the transformation generates a legal execution pat-
tern that satisfies the wait-for-all condition. The choice of
whether the value computed by the primary or the secon-
dary copy is used may be driven by other consideration,
such as communication efficiency. For the transformation
of the triangular and bisection loops, since it satisfies only
the wait-for-one condition, it must use the values computed
by the primary copies to compute all secondary copies.

A GENERAL LOOP
~ R A ~ ~ ~ O R M A T ~ ~ N FRAMEWORK

The loop transformation techniques described in the last
section rely on data dependence analysis. Accurate data
dependence information enables efficient loop transforma-
tion which can reduce the overhead caused by the added
fault-detection capability. In this section, we present a gen-
eral framework which, for a given regular loop, selects the
appropriate transformation for fault detection.
more, the framework can estimate the overhead
by the transformed loop.

Given a multiply-nested regular loop, each data depend-
ence can be represented by a dependence distance vector 6=
(dl, ..., dm), where d , is the dependence distance along the ith
dimension. Thus for any regular loop L, all the dependencies
can be represented by a set of dependence vectors, D(L) = {&
..., S;}. For example, for the following loop, the dependence
distance vector set is D(L) = {(0, 1), (1, -l)}.

Fori = 0 TOM- 1 Do
Fori = 0 TO N - 1 Do

I , j) = A(i, j - 1) + A(z - 1, j + 1)
O(i' '1 ("" B(i, j) = A(i, j) * C

GONG ET AL LOOP TRANSFORMATIONS FOR FAULT DETECTION IN REGULAR LOOPS ON MASSIVELY PARALLEL SYSTEMS 1245

EndFor
EndFor
A loop is called a fully parallel loop if all the proces-

sors allocated to this loop can execute their assigned in-
stances in a fully parallel fashion. The following theorem
captures the property of a fully parallel loop in terms of
its dependence vectors.
THEOREM 1. Let L be a doubly-nested regular loop, with a sched-

uling function, &di, j)) = j * c for some integer constant
c. A11 processors can execute their assigned instances in a
fully parallel fashion, if the following condition holds.

(D(L) 0) v (V6= (di, d2) E D(L), d l > 0) (8)
The above condition implies that L is the general execution
pattern with A = 0 and 0 = 1. This theorem is also true for
the case in which qXdi, j)) = i k c and d2 > 0.

PROOF. Let instance di, j) corresponds to loop iteration (i, j).
Processor PI executes instances d i , j) where 0 < i < M . If
D(L) = 0, namely there is no dependence at all, then it
is obvious that the loop is a fully parallel loop. Suppose
D(L) # 0, we can prove the theorem by induction on
the time t. For t = 1, processor PI has to execute instance
40, j) . Since dl > 0 for any dependency S= (al, d2), 4 0 ,
j) doesn’t depend on any other instance of the loop. So
for the first time unit, all processors PI, where 0 2 j < N,
can execute their first instance in parallel. Suppose that
for t < n, all processors execute their instances in paral-
lel. Then at time unit t = n, instances d i , j) , i < n are al-
ready finished. Again, since dl > 0 for any dependency,
instance d n , j) can only depend on some instance di, j)
with i < n which has already been executed. So proces-

0
From the data dependence condition, we know that for

any two instances CT and 0’ , if there is a dependence path
form oto 0’ of length p , then the earliest time slot in which
o’ can be executed is at least p time slots later than the
time slot in which cr is executed. The following theorem
specifies the condition under which there will be a depend-
ence path of length p from one instance to another instance.
THEOREM 2. For any doubly-nested regular loop L, if there is a

sor PJ can execute d n , j) at time n.

set {4, ..., Sp} such that

(k = l J
then there is a dependence path of length p from di, j) to
di + dl, j + d2).

PROOF. We prove this theorem by using induction on p. For
the case p = 1, since there is a dependence vector
6, = (al, d2), by definition of dependence distance, it is
true that di, j) M i + d,, j + d2). Assume the result is
true for p = n - 1. For p = n, let the sum of the first n - 1
dependence distance vectors be (all, d12), the last one
be 6, = (d21, dZ2), and dll + dZ1 = d,, d12 + d22 = d2. Since

the result holds for p = n - 1, there is a dependence
path of length n - 1 from di, j) to di + d,l, j + d1J;
and due to S,, di + d,,, j + d12)S4i + d,, 4 d2*, j + d,, +

dZ) = di + d l , j + d2). So there is a dependence path of

0
COROLLARY. For any double-nested regular loop L, if there is a

length n from d i , j) to d i + dl, j + 4).

set {6,, ..., $1 such that

(10)

then there is a dependence path of length p from di, j) to
di + 1, j) .

Suppose d i , j) and di + 1, j) are two consecutive in-
stances assigned to the same processor, then the longest
dependence path from di, j) to di + 1, j) will determine the
idle slots for the processor.
THEOREM 3. Let L be a double-nested regular loop, with a sched-

uling function qKdi, j)) = j . If the longest dependence path
from di, j) to 4i + 1, j) is of length k, for some k > 1, then
L is a general rectangular loop with A > 0 and 8 = k. This
is also true for the case that qKdi, j)) = i and the longest
dependence path from di, j) to d i , j + 1) is of length k, for
some k > 1.

PROOF. Since there is a dependence path of length greater
than 1 from di, j) to di + 1, j) / there must exist at least
one dependence from instance di, j) to di, j + c) for
some c > 0 and there is a dependence path from
di, j + c) to o(i + 1, j) . This is also true for i = 0. There-
fore not all instances 4 0 , j) can be executed at time
t = 0 due to the dependence, that is, A > 0. Further-
more, the value of A is the minimal c such that d i , j M
di, j + c). Suppose instance d i , j) is executed at time t,
and o(i + 1, j) at time t, by the same processorr due to
the dependence path from di, j) to d i + 1, j) , it must

0

The next theorem characterizes a skewed loop in terms
of its dependence vectors.
THEOREM 4. Given a doubly-nested regular loop L with a sched-

uling function qKdi, j)) = j such that the processors cannot
execute their assigned instances in parallel. The loop L is a
general rectangular loop with A > 0 if

(11)

PROOF. Since the processors cannot execute their instances
in parallel the conditions in theorem 1 are not true.
Thus, there must be at least one dependence
6= (d l , d2) with dl = 0 which inhibits parallel execu-
tion of all instances do, j) . Consequently, A > 0. 0

The above theorems provide the foundation for the fol-
lowing general loop transformation framework. This
framework examines the following regular loop L, where
f (i) is either i or 0, and determines the transformation that
should be applied to the loop for fault detection.

be the case that tl - t, > 1, that is, 0> 1.

VS= (dl , d2) E D(L), d2 > 0

1246 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 12, DECEMBER 1996

Fori = 0 TOM-1 Do
Fori =f(i) To N - 1 Do

di, j)
EndFor

EndFor

STEP 1. Determine the scheduling function ~ i , j) for state-

STEP 2. Apply data dependence analysis to find all data de-

ment instance (i, j).

pendencies, D(L) = {&, ..., &.

its execution pattern as follows.
STEP 3. Select a transformation for the loop L according to

(a) If f(z) > z Then apply the transformation tTL.

(b) Else If (D(L) = a) v (V 6= (dl , d,) E (L), d , > 0) Then
/* a fully parallel loop by theorem l.*/

apply transformation rTFD to detect faults;
(c) Else If 3 D'(L) L: D(L), I D'(L) I > 1 A C D'(L) = (1,O)
Then

/* a general loop by theorem 3 */
apply transformation rTFD to detect faults;

(d) Else If 'd 6= (al, d,) E D(L), dl 8 0 Then
/" a skewed loop by Theorem 4. */
If /Z(N - 1) 2 2mThen apply transformation q p ;
Else apply transformation zTFD to detect faults;

In the above framework, in the place of transformation
z ~ ~ ~ / z ~ ~ ~ , we may use the transformation zGC or zRC to
reduce the overhead if we do not care when or where the
fault occurs. In this framework, we first obtain the 4 func-
tion and apply data dependence analysis to get the set of
dependence distance vectors D(L). Then based on the 4
function and D(L), the execution pattern of the loop L can
be determined.

For Case 3b, by Theorem 1, L is a fully parallel loop. The
overhead of detecting transient fault is the sum of the

time, comparison time, and communica-
erhead would be much more than 100%.

By applying the grouping communication technique and
delayed comparison shown in Fig. 8, the overhead can be
reduced to almost loo%, which is the best one can expect
for a fully parallel loop. To detect permanent fault, only the
last statement instance of each processor needs to be dupli-
cated. Generally, the overhead would be just a small per-
centage of the original execution time. For Case 3c, by
Theorem 2, L is the general rectangular loop with B > 1 and
A > 0. Each processor will be idle for (8- 1) time slots after
it executes one instance. So we can exploit the spare capac-
ity for the purposes of fault detection.

7 PERFORMANCE MEASUREMENTS
In order to empirically estimate the overhead of the com-

fault-detection approach, we have developed
ironment (TE) on the multiprocessor computer

CRAY-T3D using PVM [18]. At this time, the TE does not
have a full-fledged compiler for the parallel programming
model. Instead, programs are translated into parallel in-
termediate code which is executed by interpreters running
on each processors of the CRAY-TSD. Interprocessor com-
munication is carried out by the PVM primitives. We first

request a subsystem of the CRAY-T3D computer (up to 128
processing elements) and then load the interpreter to each
of those PES. The intermediate CO provided to the inter-
preter includes the necessary communication instructions.
The interpreter(s) read in the program from a file and exe-
cute it through interpretatlon. We carried out experiments
using benchmark programs belonging to various catego-
ries. First we explain results for eneral loop with A = 1,
B= 2, and then skewed loop, and fi we summarize the re-
sults for all of the benchmark loops considered.

We applied transformations zPFD, zTFD, zGC and Z ~ C to the
following doubly-nested loop and executed it under differ-
ent granularity and on different number of processors.

Fori = 0 To 511 Do
For j = 0 To K On Pab(j. Do

A(i, j) = (A(i,I - 1) + A(z - 1,j + 1) +
A(i - 1,j) + A(i + l,j))/

EndFor
EndFor
The above loop can be found in applications such as im-

age processing and the numeric solution of two-
dimensional partial differential equations. It produces the
general execution pattern with A = 1 and B = 2. We first
fixed the processor number N to 16 and varied the iteration
number K . Then we fixed K = 65,536 and used different
number of processors. The results are shown in Fig. 11. The
overhead is given by

T,-T 0, =- x 100%
T

where T, and T are the execution time (in CPU clock cycle)
of the loop after and before the transformation, respec-
tively. Since the function d&j) distributes a block to each
processor, when K becomes larger each processor gets a
larger block. From Fig. l la, we can see that for large com-
putation instances (large K) the overhead ratio increases
slightly. From Fig. l l a and l lb, it is clear that the overhead
is relatively low for wide ranges of K and N (between 7%
and 24%). Intuitively, the overhead of duplicating execu-
tion should be more than 100% without exploiting any idle
slots. By exploiting the idle slots, the overhead is reduced
to less than 25%. Furthermore, the delayed checking tech-
nique is quite effective.

overhead 18,

Wlrh delcyea EheckrnD

WILh samnisl.il*n With reduced C D m n l F l t i e n

NlZh deleyed chcrkrng

512 1024 zolla 4096 81% 16388 31168 65536 K '1 8 16 32 61 1 m N

la1 lbl

Fig. 11. Overhead for general loop (A = 1, 0 = 2) with respect to (a)
(b) varying number of processors N.

erhead of different transformations on
a skewed loop (execution pattern with /I = B = I), we consid-
ered Livermore Loop 5 and rewrote it into the form given
below:

GONG ET AL. LOOP TRANSFORMATIONS FOR FAULT DETECTION IN REGULAR LOOPS ON MASSIVELY PARALLEL SYSTEMS 1247

Forj=OToKOn P b ~ Do

EndFor

d (3
XCj) = ZCj)YYCj) - XCj - 1))

Since M = 1 for this > 2h4 is true for N > 3.
sformation z, of Fig. 9. The

en in Fig. 12, are consis-

mvernesa ,a , - DeLectlnB Lrenslenr faults overhead l e i __ Derecrl”g LTdn61enr iau,~s

Wlih delayed checlvng

Wlrh reduced C O - n l C e i l D ”

... Wlth delayed checkm9

WLth reduced c o m 1 c a t l o n

...

I , , , , , , 1 I , 1 , I , , , I ,

512 1024 2048 41016 *19* 16284 12768 65516 x 4 8 16 12 54 128 N

1-1 lhl

2. Overhead for skewedloop (2 = 1, 0 = 2) with respect to (a)
varying granularity K; and (b) varying number of processors N.

We applied loop transformations for fault detection to
all the regular loops from the Livermore Loop benchmark

processor number is fixed as N = 64, and inner
loop iteration is fixed as K = 65,536. The results are summa-

8 RELATED WORK
Replication of computations for fault det
tolerance can be carried out at various levels of granularity.
For example, it could be done at process le
action level 1281, at procedure level 1141,
level as we proposed in this paper. While replication of
computation at a coarse-grained level incurs smaller over-
head, it has a serious drawback. A fault is detected only at
the end of the whole computation irrespective of the time at
which the fault occurs. For computation that ne
time to complete, this is undesirable.

The approach of 151 is also a statement level duplicatio
approach. The authors extend the algorithm-based check-
ing techniques to deal with more general applications by
exploiting linearity property of Fortran Do loops. For a loop
with loop variables 1 I i < m and j , suppose A(i) is
array variables with index i, B(j) the set of array
with index j , and CCi, j) the set of array va
ces (i, j) . Then, a statement D(i, j) = f(A(i),
to be i-linear if for some wk, 1 I k I m,

rized in the Table 2.

f (c k=l
5 k=l w k C (k , j)) TABLE 2

FOR LIVERMORE LOOPS
AVERAGE OVERHEAD OF FAULT DETECTION

The variable i is said to be the checking variable. For loops
that satisfy the linearity property, the two sid
computed on two different processors a
detect a fault. We compare the approach
proach of this paper as follows.

1) Class of Loops: While the approach proposed in this
paper deals with the class of regular loops, the ap-
proach of [5] deals with the class of loops with linear-
ity property. These two classes are not the same and
neither of these two classes is a superset of the other.

2) Overhead: For loops that are regular and satisfy the
linearity property, we can compare the two ap-
proaches as follows. The approach propos
paper achieves low cost by exploiting th
slots during the execution of a regular loo
proach of [5] does not explicitly exploit idle proces-
sors that might exist during the execution of a pro-
gram. Instead, it tries to reduce the overhead through
carefully choosing the checking variable to reduce the
duplicated computations and data exchanges. This
technique achieves low cost fault-detection only for
special applications such as matrix multiplication. For
example, the image processing loop given in the last
section satisfies the linearity property. Even though
there are many idle time slots during the execution
of the loop, the approach of [51 will not be able to
exploit them since it has to compute the two sides of
(12) at the end of the loop. Therefore, for these kind
of loops, the approach of this paper will achieve
lower overhead than the approach of [5]. The ad-
vantage of the approach of 151 is in dealing with
fully parallel loops, since it can detect transient
faults with less than 100% overhead. It also pio-
neered the using of delayed checking technique.

As can be seen, the overhead of detecting either transient
or permanent faults is relatively low for skewed and trian-
gular loops. For the eight fully parallel loops, more than
100% average overhead for detecting transient faults is no

there is no idle time slots to exploit. How-
ed loops and triangular loops the overhead is

small because the idle slots were effectively exploited by
the transformations.

The impact of the extra communications introduced by
the checking on the total execution time is relatively small
because

1) the results sent for checking can usually be sent in
messages carrying the data needed for computation;

2) the communication delay is usually overlapped with
computations; and

Its for one duplicated instance are grouped in
sage and usually the granularity of a dupli-

cated instance is much larger than one statement in-
stance.

Hence, the actual number of communications required by
the checking operations is much smaller than the number
of duplicated results.

1248 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 12, DECEMBER 1996

3) Round Off Error: Another problem of the approach M
[5] is that the round off errors accumulate in different
ways for the two sides of (12), thus making it highly
unlikely that the equality is preserved exactly [12].
This problem does not exist in the approach proposed
in this paper since exactly the same computations are
duplicated.

From the above discussion, we can see that the two ap-
proaches are complementary to each other. It would be a
good idea to combine the approach of this paper and the
approach of 151 to develop a more powerful system that can

1) deal with both regular loops and loops with Zinearity
property;

2) deal with both loops that produce many idle time
slots at execution time and loops that produce few or
no idle time slots.

9 CONCLUDING REMARKS
We proposed a compiler-assisted approach to fault detec-
tion on distributed-memory systems and developed a loop
transformation framework through which a regular loop is
transformed to duplicate computations and introduce
checks to detect faults. This approach achieves the follow-
ing goals:

1) Applicability: No specialized hardware is required and
the techniques used are applicable to existing sys-
tems. The fault detection approaches are imple-
mented entirely in software through a compiler.

2) On-line Checking: The checking is performed concur-
rently with the execution of application programs.
This is essential for detecting transient faults which
occurs more often than permanent faults.

3) Efficiency: Analysis techniques are developed to en-
able the merging of duplicated computation with the
original computation in a manner that reduces the in-
crease in overall execution time. The results of ex-
periments show that full coverage can be obtained
with small overhead for non-fully-parallel regular

4) Automatic Implementation: The implementation of the
analysis techniques and fault detection algorithms are
carried out through the compiler. Thus, the augmen-
tation of a program for fault tolerance can be
achieved without any assistance from the user.

In this paper, we concentrated on scheduling duplicated
computations on idle slots that result from data dependen-
cies. Communication delay may also create idle slots dur-
ing execution. The efficient utilization of those slots for
scheduling duplicated computations is studied in detail in
1201. Furthermore, the work of this paper can be expanded
as follows. First, the extension of the proposed approach to
fault location and error masking, specifically, by triplicat-
ing computation instances on three processors. Second, the
study of efficient replication strategies for program con-
structs that are more general than the loop construct dis-
cussed in this paper. Third, the design of a user interface
that provides necessary information to the user and allows
the user to select the duplication strategy.

loops.

\

ACKNOWLEDGMENTS
The authors thank the anonymous referees for their thor-
ough reviewing and helpful comments. The presentation of
this paper has been greatly improved after the authors fol-
lowed the suggestions made by the anonymous referees.
This work was supported, in part, by an
8092826 and National Science Foundatio
dential Young Investigator Award C
University of Pittsburgh.

REFERENCES
N. Alewine, S. Chen, C' Li, W. Fuchs, and W. Hwu, "Branch Re-
covery With Compiler-Assisted Multiple Instruction Retry," Proc.
22nd Ann. lnt'l Symp. Fault-Tolerant Computing, pp. 66-73,1992.
J.M. Anderson and M.S. Lam, "Global Optimizations for Parallel-
ism and Locality on Scalable Parallel Machines," Proc. SIGPLAN
Conf. Programming Language Design and Implementation, pp. 112-
125,1993.
T. Anderson, P. Barrett, D. Halliwell, and M. Moulding, "Software
Fault Tolerance: An Evaluation," IEEE Trans. Software Eng.,
vol. 11, no. 12, pp. 1,502-1,510, Dec. 1985.
A. Avizienis and J. Kelly, "Fault Tolerance by Design Diversity:
Concepts and Experiments," Computer, vol. 17, no. 8, pp. 67-80,
Aug. 1984.
V. Balasubramanian and P. Banerjee, "Compiler-Assisted Synthe-
sis of Algorithm-Based Checking in Multiprocessors," IEEE Trans.
Computers, vol. 39, no. 4, pp. 436-446, Apr. 1990.
D. Blough and G. Masson, "Performance Analysis of a General-
ized Concurrent Error Detection Procedure," lEEE Trans. Comput-
ers, vol. 39, no. 1, pp. 47-62, Jan. 1990.
D. Blough and A. Nicolau, "Fault Tolerance in Super-scalar and
VLIW Processors," Proc. IEEE Workshop Fault-Tolerant Parallel and
Distributed Systems, pp. 193-200,1992,
M. Breuer and A. Ismaeel, "Roving Emulation as a Fault Detec-
tion Mechanism," IEEE Trans. Computers, vol. 35, no. 11, pp. 933-
939, Nov. 1986.
D. Callahan and K. Kennedy, "Compiling Programs for Distrib-
uted-Memory Multiprocessors," J. Supercomputing, pp. 151-169,
Feb. 1988.
B. M. Chapman, P. Mehrotra, and H. P. Zima, "Programming in
Vienna Fortran," Scientific Programming, pp. 31-50, Jan. 1992.
B. M. Chapman, P. Mehrotra, and H. P. Zima, "High Performance
Fortran Without Templates: An Alternative Model for Distribu-
tion and Alignment," Proc. Fourth ACM SIGPLAN Symp. Principles
and Practice of Parallel Programming, pp. 92-101,1993.
A. R. Chowdhury and P. Banerjee, "Tolerance Determination for
Algorithm-Based Check Using Simplified Error Analysis Tech-
niques," Proc. 2993 FTCS, pp. 290-298, June 22-24,1993.
"CM Fortran User's Guide for the CM-5," Thinking Machines,
1992.
E. Cooper, "Replicated Distributed Programs," Proc. 10th ACM
Symp. Operating System Principles, pp. 63-78, Dec. 1-4,1985.
R. Cytron and J. Ferrante, "What's in a Name? -or- The Value of
Renaming for Parallelism Detection and Storage Allocation," Proc.
Int'l Conf. Parallel Processing, pp. 19-27, Aug. 1987.
A. Dahbura, K. Sabnani, and W. Hery, "Spare Capacity as a
Means of Fault Detection and Diagnosis in Multiprocessor Sys-
tems," IEEE Trans. Computers, vol. 38, no. 6, pp. 881-891, June
1989.
J. Feo, "An Analysis of the Computational and Parallel Complex-
ity of the Livermore Loops," Parallel Computing, pp. 163-185, July
1988.
A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.
Sunderam, "PVM 3 User's Guide and Reference Manual," Oak
Ridge National Laborary, Oak Ridge, TN 37831.
C. Gong, R. Melhem, and R. Gupta, "Compiler Assisted Fault
Detection for Distributed-Memory Systems," Proc. 2994 Scalable
High Performance Computing Conference, Knoxville, Tenn, pp. 373-
380, May 23-25,1994.
C. Gong, "Compiler-Assisted Approaches to Fault Detection on
Distributed-Memory Systems, PhD thesis.

GONG ET AL: LOOP TRANSFORMATIONS FOR FAULT DETECTION IN REGUL .AR LOOPS ON MASSIVELY PARALLEL SYSTEMS 1249

[211 ”High Performance Fortran Forum,” DRAFT High Performance
Fortran Language Spectfication, Ver. 1 .O Technical Report, Rice
Univ., Jan. 1993.

1221 S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng,
”An Overview of the Fortran D Programming System,” Proc
Fourth Workshop Languages and Compilers for Parallel Computing,
pp. el-e17,1991.

1231 C. Koelbel, P. Mehrotra, and J. Rosendale, ”Supporting Shared
Data Structure on Distributed Memory Architectures,” Proc. Sec-
ond ACM SIGPLAN Symp. on Pvznciples and Practice of Parallel Pro-
gramming, pp. 177-186, SIGPLAN, ACM, 1990

12.41 J. Long, W. Fuchs, and J. Abraham, ”Compiler-Assisted Static
Checkpoint Insertion,” Proc. 22nd Ann. Int’l Symp Fault-Tolerant
Computing, pp. 58-65,1992.

[251 M Quinn, P. Hatcher, and K. Jourdenais, “Compiling C* Pro-
grams for a Hypercube Multicomputer,” Pruc ACM/SIGPLAN

[26] M. Quinn and P. Hatcher, “Compiling SIMD Programs for MIMD
Architecthres,“ Proc. Int’l Conf. Computer Languages, pp. 291-296,
1990.

[27] L. Shombert and D. Siewiorek, ”Using Redundancy for Concur-
rent Testing and Repairing of Systolic Arrays,” Pruc. 17th Int’l
Symp Fault-Tolemnt Computing, pp. 244-249,1987.

[281 T. P. Ng, ”Replicated Transactions,” Proc Ninth Int’l Conf Distrzb-
uted Computing Systems, pp. 474-481,1988.

[29] S. Tridandapani, A Somani, and U. Sandadi, “Low Overhead
Multiprocessor Allocation Strategies Exploiting System Spare Ca-
pacity for Fault Detection and Location,” IEEE Trans. Computers,
vol. 44, no 7, pp. 865-877, July, 1995.

1301 M. Wolfe, Optimizing Supercomptler for Supercomputers. Cam-
bridge, Mass.: MIT Press, 1989.

PPEALS, pp. 57-65, July, 1988.

Chun Gong received the BS degree in com-
puter science from the Peking University, Bei-
jing, People’s Republic of China, in 1982, and
the PhD degree in computer science from the
University of Pittsburgh in 1995. From 1985 to
1988,he was a research assistant at the Institute
of Software, Academia Sinica. From 1988 to
1990, he was visiting the School of Computer
Science, Carnegie Mellon University. Currently,
he is a software design engineer at Hewlett-

Rami Melhem received a BE degree in electrical
engineering from Cairo University in 1976, an MA
degree in mathematics and an MS degree in
computer science from the University of Pitts-
burgh in 1981, and the PhD degree in computer
science from the University of Pittsburgh in 1983.

He is a professor of computer science at the
University of Pittsburgh. Previously, he was an
assistant professor at Purdue University and an
assistant and associate professor at the Univer-
sity of Pittsburgh.

He has published numerous papers in the area of fault tolerance,
systolic architectures, parallel computing, and optical computing. He
served on program committees of several conferences and workshops,
and is general chair of the Third International Conference on Massively
Parallel Processing Using Optical Interconnections.

He is on the editorial board of E€€ Transactions on Computers, and
was a guest editor of a special issue of the Journal of Parallel and DE-
tributed Computing on Optical computing and lnterconnection Systems.

Dr Melhem is a member of the IEEE Computer Society, the ACM,
and the International Society for Optical Enginering

Rajiv Gupta received the BTech degree in
electrical engineering from the Indian Institute of
Technology, New Delhi, in 1982, and the PhD
degree in computer science from the University
of Pittsburgh, in 1987. He was a senior member
of the research staff at Philips Laboratories from
1987 to 1990. Currently, he is an associate pro-
fessor in the Department of Computer Science
at the University of Pittsburgh.

His primary areas of research interest include
Darallelizina comDilers, Darallel architectures,

and compilation techn’iques. Dr.-Gupta ‘is a recipient of the National
Science Foundation’s 1991 Presidential Young Investigator Award. He
serves as an Associate Editor for Parallel Computing Journal, and has
served as a program committee member for several conferences in the
field of parallel architectures and compilation technique$.

Dr. Gupta is a member of the IEEE Computer Society, ACM, Sig-
plan, and Sigarch.6

Packard’s Massachusetts Language Lab. His
primary interests include compiler optimization, parallelizing compilers,
and reliable distributed computing.

