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Abstract - Among al l  software cache coherence 
strategaes, the ones that are based on the concept of 
tamestamps show the greatest potentaal an terms of 
cache performance. The early tamestamp methods suf- 
fer  from hzgh hardware overhead. Improvements have 
been proposed t o  reduce hardware overhead at the ex- 
pense of ezther ancreasang runtame overhead or sacra- 
ficang cache performance. I n  thzs paper, we dascuss the 
lamatataons of the prevzous tamestamp-based methods 
and propose a new software cache coherence scheme. 
Our scheme explozts the anter-level localaty wath sag- 
naficantly less hardware support than the early tames- 
tamp methods whale zntroduczng only constant run- 
tame overhead for each epoch durang the executaon of 
a program. Samulataon results show that the proposed 
scheme achaeves hagher performance than the prevaous 
schemes wath comparable hardware overhead. 

1 Introduction 
Private caches are critical components of high per- 

formance multiprocessor systems. The use of private 
caches reduces network traffic and memory access la- 
tency. However, it also introduces the cache coherence 
problem. A mechanism must be implemented to keep 
the caches coherent in order for a program to run cor- 
rectly on a multiprocessor system. 

Among the existing software controlled cache co- 
herence schemes, the methods based on the concept 
of timestamps are more effective in preserving cache 
lines across task boundaries than other software meth- 
ods [4, 91. The early timestamp-based methods, such 
as the version control method [3] and the timestamp 
method[lO], use an explicit timestamp table to store 
the current version number for each variable. They 
also use an additional field in each cache line to store 
the version number of the cache line. Although the 
cache performance of these methods approaches that 
of the hardware schemes, the maintenance of the table 
and the additional timestamp field introduces hard- 
ware and runtime overheads. The later methods, such 
as TS1 with a 1 bit timestamp [8], the generational 
algorithm [5] and the two-phase invalidation scheme 
(TPI) [6], try to reduce these overheads TS1 avoids 
most of the hardware overhead by eliminating the 
timestamp table and reducing the additional times- 
tamp field to one bit for each cache line. However, 
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explicit invalidation instructions are needed at the end 
of each level. Hardware support for an efficient cache 
invalidation mechanism introduces additional hard- 
ware overhead in TS1. The generational algorithm 
eliminates the timestamp table overhead by having 
all variables share the same timestamp. However, the 
author does not address implementation issues that 
greatly affect the algorithm’s performance. 

TPI  seems to be a promising software cache co- 
herence scheme. It requires reasonable hardware and 
runtime overhead and exploits data locality in most 
situations. The limitation of this method is that it 
does not always exploit data locality in the presence 
of nested looping structures in which serial loops en- 
close one or more parallel loops. These patterns are 
often encountered in scientific programs where loop 
bounds are commonly parameterized. 

In this paper, we propose a software cache coher- 
ence scheme which combines the advantage of the TS1 
and TPI scheme and overcomes their limitations. In 
addition, the performance of our method can be im- 
proved without incurring extra hardware or runtime 
penalty when better information is available at com- 
pile time. The hardware overhead of our scheme is 
close to that of TPI  and TS1 with parallel invalidation 
mechanism. Simulation results show that the cache 
hit ratio of our scheme is higher than that of TPI  
and almost the same as that of TS1. By reducing the 
runtime overhead, our scheme achieves better perfor- 
mance than TS1. Thus, the overall performance of 
our method is superior to both TPI  and TS1. 

The rest of the paper is organized as follows. 
In section 2 we describe the parallel computation 
model used in this work. A survey of the previous 
timestamp-based software cache coherence methods 
is given in section 3. In section 4 the timestamp- 
based selective invalidation software cache coherence 
scheme is presented. In section 5 a detailed compari- 
son between our method and the previous methods is 
given. Section 6 reports simulation results. Section 7 
summarizes the major contributions of this work. 

2 The Computation Model 
A parallel program is composed of a series of lev- 

els. Each level is either a parallel loop with no inter- 
nal synchronization (e.g., a DOALL loop) or a serial 
region (e.g., a DOSER loop) between parallel loops. 
Serial regions can be nested serial loops or those parts 
of serials loops that are not in parallel loops. The 
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execution of the program is composed of a series of 
epochs. Each epoch consists of one or more tasks 
which run in parallel. A task is the minimum compu- 
tation unit that can be scheduled and assigned to  a 
processor for execution at run time. In a serial epoch, 
a single task is scheduled and executed on a single 
processor. In a parallel epoch, multiple tasks are cre- 
ated at runtime and executed on multiple processors 
simultaneously . 

(1) 
(2) u(i) = 0.0 
( 3 )  v(i) = 0.0 
(4) ENDDOALL 
(5) 
( 6 )  

DOALL i = 1, n 

DOSER i = 1, n 
DOALL j = 1,  n 

w(j) = 4 j )  + v(j) 
x(j) = 

( 7 )  
(8) ... 
(9) ENDDOALL 
(10) DOSER j= 1, n 
(11) 
(12) 

DOALL k = 1, n 

END DOALL 
a = a+ 2.0 

(15) END DOSER 
(16) DOALL j = 1, n 

w(k) = w(j) + a 
(13) 
(14) 

(17) 
(18) 

.. = x(..) 
w(..) = .. 

(19) END DOALL 
(20) END DOSER 

1 1  

.................................................................... 

j - K5- 
.................................................................... 

pr9 / -1 3 3 5 9 1 1  

.................................................................... 

4 4 6 10 12 

I 13 

6 14 

Figure 1: A program and its levels and epochs. 
To model dynamic scheduling schemes, we assume 

that a task may be scheduled on any processor at 
runtime. We also assume that every processor par- 
ticipates in the execution of every epoch. If there is 
no useful task to be assigned, the processor will run a 
task that only performs the coherence operations. 

An example parallel program, as well as its levels 
and epochs during the execution of the program for n 
= 2, is shown in Fig. 1. This example will also be used 
in section 4 to describe our cache coherence scheme. 
The parallel loop in lines (1)-(4) corresponds to Level 
1. Level 2 corresponds to  lines (6)-(9), level 3 to  the 

parallel loop in lines (11)- (13), level 4 to  line (14) 
and level 5 to lines (16) - (19). In the execution of the 
program, the epoch number can be much larger than 
the level number. 

In this paper, we initially assume that a cache line 
is one word long and that the cache uses a write- 
through policy. Later we also briefly discuss exten- 
sions to handle multi-word cache lines. Data vari- 
ables are classified into private, shared read-only and 
shared read-write. Only shared read-write variables 
can cause cache coherence problems. When we refer 
to a variable, it is assumed to  be a shared read-write 
variable. 

3 Timestamp Based Methods 
The Version Control Method 

In the version control method [3], the current ver- 
sion number (CVN) for each variable is kept in the 
variable ID table in each processor. An entire array 
is treated as a single variable. For the method to be 
efficient, the variable ID table must be accessed in 
parallel with the cache access. Each cache line has 
an extra field called birth version number (BVN). At 
the time the cache line is created (by either a read 
or a write), the value of CVN (for read misses) or 
CVN f 1 (for writes) is written into the BVN. At the 
end of each level, the processor increments the CVN 
for each variable that might have been modified in 
that level. The compiler is responsible for determin- 
ing the level boundary and generating code to increase 
the CVNs. The cache line is valid only if its BVN is 
bigger than or equal to  the corresponding variable’s 
CVN. The version control method is effective in pre- 
serving the reuse of cache lines. The major limitation 
of this method is the hardware and runtime overhead. 
The timestamp method [lo] is not discussed here be- 
cause it is similar to  the version control method. 
The TS1 Method 

In TS1, one additional bit, referred to as the epoch 
bit, is required for each cache line. The compiler de- 
termines the levels and the variables modified in each 
level. The epoch bit is reset at the end of each level 
and is set when the cache line is referenced. At the end 
of each level, invalidation instructions are issued to in- 
validate all the variables modified in that level. An 
invalidation instruction invalidates a specified cache 
line only if (1) the address tag matches, and (2) the 
cache line’s epoch bit is not set. Once a variable is 
modified in an epoch, the variable is invalidated in all 
the processors except the one that modified it. Thus, 
the cache will always contain valid cache lines. 

The performance and overhead of this scheme de- 
pends heavily on the mechanism used to  invalidate the 
stale cache lines. Two implementations of the invali- 
dation mechanism are proposed in [SI. The simple and 
inexpensive invalidation mechanism uses a low level 
invalidate instruction which could invalidate either a 
particular line or a particular page. The high level 
invalidate would then loop over the proper range of 
pages and lines. Using this simple serial scheme, the 
invalidation overhead is O ( c :  (si)), where si is the 
size of the ith section to be I&?a\idated. A faster, but 
more complex invalidation method was proposed in [8] 
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and [9]. This parallelscheme requires a full associated 
address tag memory. A bit mask is used to determine 
which addresses to invalidate. Using this invalidation 
scheme, the runtime overhead is O(E:==, log(si)). Be- 
sides the invalidation schemes, the runtime overhead 
of TS1 also depends on t,he program structure when 
using precise invalidation. When an epoch contains 
many discontinuous sections to be invalidated, the 
overhead for the epoch will be quite large. 

In summary, TS1 effectively preserves the reuses of 
a cache line. Using precise invalidation, this scheme 
can achieve the best cache hit ratio that any software 
cache coherence method based on local knowledge can 
possibly achieve [8]. The limitation is the runtime 
overhead. The exploitation of higher cache hit ratio 
by using precise invalidation results in larger runtime 
overhead. Therefore, it is desirable to develop a mech- 
anism to perform the invalidation more effectively. 
The Generational Algorithm 

The goal of the generational algorithm is to im- 
prove over the version control method by making all 
the variables in the program share one common CVN. 
In the generational method, the shared CVN called 
Current generatzon number (CGN) is stored in each 
processor. The CGN is increased at the end of each 
epoch. When a cache line is updated, the cache line 
is provided with a valad generatzon number (VGN) in- 
dicating when the cache line will become invalid. The 
system invalidates a cache line implicitly by causing 
CGN to become larger than the cache line’s VGN. The 
compiler is responsible for determining the VGN for 
all the memory references. By using a common CVN, 
the generational algorithm eliminates the variable ID 
table and the problems associated with it. However, 
[5] does not address some important issues. For ex- 
ample, it is not clear how the VGNs of the cache lines 
are updated for the variables modified in a level. If 
every cache line’s VGN is updated individually at the 
end of each epoch, this method will incur greater run- 
time overhead than TS1 does. Since the author does 
not address these important issues, we are unable to 
determine the efficiency of the method. 
The TPI Scheme 

In TPI, the timestamp field associated with the 
cache line is updated with current epoch number for 
both read and write instructions. The read instruc- 
tion is supplied with an additional field to indicate 
the epoch number of the last write to the variable. 
The cache copies created after the specified last write 
epoch are valid. Therefore, the stale cache copies are 
detected by comparing the timestamp field with the 
last write epoch number. When the current epoch 
counter overflows, an explicit invalidation instruction 
is used to invalidate t<he cache lines. As shown in 
[6], the method can preserve most of the localities 
with reasonable hardware and runtime overhead. Fur- 
thermore, interprocedural analysis techniques can be 
incorporated in this method to preserve the locality 
across procedure boundaries [7]. The limitation of 
this method is that it does not always handle nested 
looping structures shown in Fig. 2 effectively. 

The repeated read pattern occurs when a shared 
variable is only read inside a nested loop and is writ- 

(1) DOALL i = 1, 1000 
(2) x(i) = ... 
(3) END DOALL 
(4) DOSER i = 1, N 
(5) 
(6) .. = x(j) ... 
(7) ENDDOALL 
(8) ... ! another level 
(9) END DOSER 

(a)  Repeated read pattern. 

DOALL j = 1, 1000 

(1) DOALL i = 1, 1000 
( 2 )  x(i) = ... 
( 3 )  END DOALL 
(4) DOSER i = 1, N 
(5) DOALL j = 1, 1000 

... = x(j) ... 
x(j) = ... 

(6) 
(7) 
(8) ENDDOALL 
(9) ... ! another- level 
(1O)END DOSER 
(b) Write interference pattern. 

(1) DOSER i = 1, 1000 
DOSER j = 1, N 

DOALL k = 1, 1000 

END DOALL 

(2) 
( 3 )  
(4) 
(5) 
(6) 
(7) 
( 8 )  

... 

END DOSER 
DOALL j = 1, 1000 

... = x(j) ... 
x(j) = ... 

(10) END DOALL 
(11)END DOSER 
( c )  Unknown epoch number pattern. 

Figure 2: Examples of reference patterns 
ten in some epochs before the loop. An example is 
shown in Fig. 2 (a). Consider the read reference of 
x in line (6). For each distinct iteration of the serial 
loop, the last write epoch for this reference is dif- 
ferent. However, since the read instruction can only 
carry one timestamp, it cannot preserve all this infor- 
mation even if it can be determined by the compiler. 
For the program to run correctly, the last write epoch 
number for the reference is two epochs earlier. As a 
result, the references to x in line (6) result in cache 
misses since the cache copies created inside the serial 
loop are separated by three epochs. Note that in TPI, 
the DOSER is treated as serial epoch. 

The wrzte znterference pattern occurs when (1) a 
shared variable is written before a nested loop and is 
read and written inside the loop, (2) the write to the 
variable inside the loop takes more epochs to reach the 
read than the write outside the loop does. Consider 
the example in Fig. 2 (b). Both the writes to x in line 
(2) and (7) reach the read of x in line (6). Since the 
write in line (2) crosses only two epochs to reach the 
read while the write in line (7) crosses three epochs, 
the last write epoch number for the read is two epochs 
earlier. Therefore, except first iteration, the reads in 
line (6) result in cache misses. 

The unknown epoch number pattern occurs when 
the runtime number of epochs inside a nested loop is 
unknown at compile time. Consider the example in 
Fig. 2 (c). The epochs between the write in line (9) 
and the read in line (8) are unknown at compile time 
due to the value of N being unknown. The compiler 
must conservatively assume that it takes two epochs 
for the write in line (9) to reach the read in line (8). 
Therefore, the last write epoch for the read in line 
(6) is two epochs earlier. However, in the execution 
of the program, the level in lines (2) - 6) is usually 
executed. As a result, the reads in line i 8) will cause 
cache misses. 

Some compiler techniques, such as epoch number 
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adjustment, loop peeling and guard execution, can 
be used to alleviate some of the problems. How- 
ever, we believe that the static estimation of the last 
write epoch number, which is changed dynamically, 
is the inherent limitation of this method. Therefore, 
it would be desirable to use a static measurement to 
decide whether a cache line is valid. 

4 Timestamp-based Selective Invali- 

Both TS1 and TPI improve the version control to 
some extent. Each of the method has its own limi- 
tation ~ the runtime overhead in TS1 and the degra- 
dation of performance due to static estimation of dy- 
namic epoch number in TPI.  In this paper, we pro- 
pose a timestamp-based selective invalidation scheme 
(TBSIS). This scheme combines the ideas of both TS1 
and TPI and overcomes their limitations. TBSIS im- 
proves over TS1 by having almost the same capabil- 
ity of preserving the cache line reuses and reducing 
the runtime overhead. TBSIS improves over TPI by 
having a static measurement, the level number, to 
decide whether a cache line is valid and avoiding all 
the problems in TPI when dealing with nested loops. 
The hardware overhead of TBSIS is close to that of 
TPI and TS1 with parallel invalidation. Simulation 
results show that TBSIS exhibits better performance 
than both TS1 and TPI.  
4.1 Hardware Support 

A timestamp field called Invalidation Level Number 
(ILN) is associated with each cache line. The ILN is 
composed of two parts, I L N ,  and I L N ,  . The I L N ,  
is the most significant bit in the ILN and the ILN,. 
represents the remaining bits. We will denote an ILN 
as (ILN,, ILN, ) .  

A special invalidation instruction must be sup- 
ported by the cache implementation. We will use 
I N V  L to represent the instruction, where L is a 
level number. The invalidation instruction operates 
on all the cache lines in the cache. The operations of 
the instruction I N V  L are (1) to invalidate all cache 
lines whose ILN,  = L and I L N ,  = 0, (2) to reset 
the I L N ,  fields for all cache lines whose ILN,. = L 
and I L N ,  = 1. Other cache lines are unaffected. 

The I L N ,  bit is used to skip one invalidation. As 
we will see later, this bit is mainly used to deal with 
the looping structures. The logic for the instruction 
is shown in Fig. 3. We assume that the cache imple- 
mentation can support this instruction in 0(1) time. 
The processor also needs to support the memory ref- 
erence instructions ReadlLN and Write-ILN. Both 
instructions are augmented with an extra ILN field. 
Beside the traditional operations, these instructions 
also update the ILN fields in the cache lines. 
4.2 The Scheme 

TBSIS is a generalization of TS1 [8]. The main idea 
is still to explicitly invalidate the stale cache copies if 
the variable is modified in the current epoch. By us- 
ing more bits as timestamp for each cache line and 
augmenting the compiler support, the explicit invali- 
dation in TBSIS can be carried out more efficiently. 

In TBSIS, an invalidation instruction INV L is is- 
sued at the end of each epoch to invalidate all the 

dation Scheme 

Cache 

ILN~ 1 ILN, I DATA 1 
I I 

Reset valid bit Reset ILN,bit 

Figure 3: The logic of the invalidation instruction. 

cache lines that must be invalidated in that epoch. 
Here L is the level number corresponding to the epoch. 
In order for the instruction to invalidate all the stale 
cache lines, all these lines that are still valid before the 
instruction should have I L N ,  = L and I L N ,  = 0. 
The compiler determines the levels of the program, 
and furthermore, it also determines a proper ILN for 
each memory reference to ensure that the cache does 
not contain the stale cache copies. 

It is simple to ensure a coherent cache by using the 
ILN field and the invalidation instruction. For exam- 
ple, the compiler may provide each memory reference 
with ILN equal to the current level number. TBSIS 
is then reduced to the simple invalidation scheme [3] 
which can only exploit the intra-level locality. To ex- 
ploit maximum locality, the compiler should always 
try to set ILN to the next write level number. 

4.3 Software Support 
The major task of software support is to deter- 

mine the next write level number for each memory 
reference. Due to  the branches in programs, there 
may be several next write levels for a memory refer- 
ence. The compiler must approximate the next write 
level and/or introduce extra invalidation instructions 
at selected points to handle such situations. Two ap- 
proachs can be used to handles the multiple next write 
level situation. The conservative approach assigns the 
ILN conservatively and guarantee the program runs 
correctly through all paths. The aggressive approach 
assigns the ILN to be the one that saves the cache lines 
along the most frequently executed path. This ap- 
proach needs to  introduce extra invalidation instruc- 
tions along other paths to ensure the correctness of 
the program. TBSIS adopts the second approach and 
therefore, the compiler must determine the next write 
level and find the proper place to introduce the extra 
invalidation instructions. 

For a memory reference, if there is a unique next 
write level, then that level number will be the ILN 
for the reference. There may be several possible next 
write levels due to the branches in the program. If the 
branch is a forward branch, the nearest level at which 
the variable is modified is used as the next write level. 
If there is a backward branch involved, the memory 
reference is inside a loop. The next write level in the 
innermost loop is considered as the next write level. 
In this way, TBSIS always captures the locality inside 
the loop. Using epoch f low graph [B], the next write 
level information can be obtained in two steps. First, 
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using the algorithm in [l], we determine the looping 
structures in the flow graph. Then, for each memory 
reference, the compiler searches forward for all the 
writes to the same variable that can be reached by 
the reference in the flow graph. Among the writes, 
the write that is closest to the current point in the 
innermost loop is the write of interest. 

As for the placement of the extra invalidation in- 
structions, a simple solution is to  introduce extra in- 
validation instructions at the exit of every loop to in- 
validate all the cache lines whose ILN is equal to any 
one level inside the loops. The invalidation instruc- 
tion can be delayed until the first level that modifies 
the variables that are modified in the loop. The com- 
piler can use similar analysis as in the determination 
of the next write level for one variable to determine 
the place for the extra invalidation instruction. In the 
remainder of this paper, we assume that the simple 
approach is used. 

(1) DOALL i = 1, n Level 

( 3 )  v(i) = 0.0 
(4) ENDDOALL 

(2) u(i) = 0.0 1 

INV 1 

(5) 
(6) 
( 7 )  w(j) = u(j) + .... 2 

(9) END DOALL 
INV 2 

DO i = 1, n 
DOALL j = 1, n 

( 8 )  x(j) = v(j) + 4) 

(10) DO j =  1, n 
(11) DOALL k = 1, n 

END DOALL 
INV 3 

a = a* 2.0 4 
(I4) INV 4 

(15) END DO 

(16) 

(18) END DOALL 
INV 5 

w(k) = w(j) + a 3 (12) 
(13) 

__I___________ 

INV 3 , 4  ! extrainv 
DOALL j = 1,  n 

(17) .. = x( . . )  5 

VW 
U 

V 

U 

V 

W 

X 

a 
W 

a 

X 

(19) END DO 
INV 2, 3, 4, 5 ! ext ra inv  

Figure 4: An example. 

4.4 An Example 
In this section, we will describe the method through 

an example. Fig. 4 is the example program in section 
2 augmented with the invalidation instructions. The 
value of ILN is (0, 6) for the write reference to U in 
line (a), this is because the variable U is not modified 
after line (2).  Since there is no JNV 6 issued in the 
program, the cache Copies will be valid throughout 
the execution of the program. The value of ILN is 
(1, 3) for the write reference to w in line (12) since 
the reference is inside the serial loop and the next 
write level is the next execution of level 3. Therefore, 
the cache copies of w will be valid until the end of 

Table 1: Cache lines and their ILN. 

the next iteration and the read reference to  w at line 
(12) will be a cache hit. The next write level for the 
write reference to x in line (8) is the next execution 
of level 2. Therefore, the cache copies should survive 
one INV 2 instruction at the end of the level 2 and the 
ILN should be set to  1, 2).  Assuming the variable n 
is equal to 2 ,  Table 1 6 epicts the ILN of each variable 
during the execution of the program. 
4.5 Multi-word Cache Lines 

TBSIS can be extended t<o handle multi-word cache 
lines. Let us assume that each cache word is associ- 
ated with an ILN and that arrays are aligned to the 
cache line boundary. For a cache miss, if the reference 
is to an array element, then all the ILNs are assigned 
the ILN value in the instruction. If the reference is to 
a scalar, only the ILN of the cache word corresponding 
the scalar is assigned the ILN in the instruction, all 
other ILNs in the cache line are assigned the current 
level number. Therefore, those scalar cache lines that 
are not accessed in the current epoch will be invali- 
dated at the end of the epoch and the cache contains 
clean data. 

TBSIS can also be adapted if a single ILN is asso- 
ciated with an entire cache line. If arrays are aligned 
to cache line boundaries, then a single ILN per cache 
line is sufficient to exploit spatial locality. To main- 
tain cache coherence for scalars, a reference to a scalar 
sets the ILN to be the minimum ILN of all the vari- 
ables in the corresponding cache line. A frequently 
accessed shared scalar can be placed in a separate 
cache line. 

5 Some Comparisons 
TBSIS vs TS1 

Compared to  TS1 with serial invalidation, TBSIS 
requires a higher hardware overhead. However, TB- 
SIS has significantly less runtime overhead. In our 
simulation study, TBSIS has an average of 11.8% 
speedup on a 16-processor system and 30:9% speedup 
on a 64 processor system with regard to the total 
memory reference time against TS1 with serial in- 
validation. The speedup is gained by reducing the 
runtime overhead. 

TS1 with parallel invalidation and TBSIS have 
comparable hardware overhead. TBSIS requires fully 

I 1  1-118 



1996 International Conference on Parallel Processing 

DOALL m = 1,1000 Level 
x (m) = ... 1 

END DOALL 
INV i 

if (m is odd) ILN = j 
else ILN = k 

(1) DOALL i = 1, 1000 Level var ILN 

( 3 )  END DOALL 
(2) x(i) = ... 1 x (0 ,4 )  

INV 1 

DOALLl m = 1, 999, 2 

END DOALL 
INV j 

x(m) = ... j ILN = 1 

... _--____-__ 
DOALL m = 2, 1000, 2 

x(m) = ... k ILN = 1 
END DOALL 
INV k 

... 

DOALL m = 1,1000 
x(m) = ... 1 

END JlOAT,L 
INV 1 

Figure 5: Precise invalidation. 

associative ILN memory (6 bits per word) and a reg- 
ular address tag memory. TS1 requires a fully as- 
sociative address tag and epoch bit memory (around 
20 bits per word) with a bit mask register. TBSIS 
has a better runtime overhead, especially when ex- 
ploiting precise invalidation. Consider the example in 
Fig. 5. To exploit precise invalidation, TS1 requires 
multiple invalidation instructions to  be issued at the 
end of an epoch. For instance, each processor must 
issue 499 invalidation instructions in TS1 at the end 
of level I C .  In TBSIS, precise invalidation is done by 
assigning proper ILN for memory reference instruc- 
tion. Regardless of the program structure, only 1 in- 
validation instruction is needed in TBSIS. However, 
conditional assignment statements may be needed to 
assign proper ILNs as shown in Fig. 5. The disadvan- 
tage of TBSIS is the potential over-invalidation when 
the program exits a nested loop. However, the misses 
caused by the over-invalidation is almost negligible 
compared to the total number of references since most 
of the references are inside the nested loop. In our 
performance study, TBSIS has an avera e speedup of 
1.8% for 16 processor systems and 14.9k for 64 pro- 
cessor systems against TS1 with parallel invalidation. 
TBSIS ;s TPI - 

In comDarison to  TPI.  TBSIS reauires a slightlv 
larger ovgrhead. However, TBSIS always exgoits 
data locality inside loops, which accounts for a signif- 
icant fraction of the data locality in a program, while 
TPI fails to preserve cache lines in situations where 
memory references are separated by non-unique num- 
ber of epochs. Simulation results confirm that our 
method preserves the reuse of cache lines more effec- 
tively. Next, we show how TBSIS handles the pat- 
terns for which TPI  fails to  exploit the locality. 

Fig. 6 shows how the repeated read pattern is han- 
dled in our method. The read reference to  x in line 
(6) has I L N  = (0,4). Since the instruction INV 4 is 

(4) 
(5) 

(7) END DOALL 
INV 2 

DO i = 1, N 
DOALL j = 1, 1000 

( 6 )  .. = x(j) ... 2 x ( % 4 )  

( 8 )  ... 
INV 3 

3 

(9) END DO 

Figure 6: The repeated read pattern. 
not executed until the end of the program, the cache 
lines created in line (6) will be valid throughout the 
program under TBSIS. Fig. 7 shows how the write 
interference pattern is handled. The write reference 
to x in line (7) has the I L N  = (1,2). Therefore, Ihe 
cache line created by the statement can survive till 
the next execution of level 2 and the read references 
to  x in line (6) will result in cache hits. Fig. 8 shows 
how the unknown epoch number pattern is handled. 
The write reference to  x in line (9) have the ILN = (1, 
2), therefore, the cache line created by that statement 
can survive till the next execution of level 2 and the 
read references to x in line (8) will result in cache hits 
no matter how many epochs are executed at level 1. 

(1) DOALL i = 1 ,  1000 Level v w  ILN 

( 3 )  ENDDOALL 
(2) x(i) = ... 1 x (0, 2) 

INV 1 

(4) 
(5) 

DO i = 1, N 
DOALL j = 1, 1000 

... = x(j) ... 2 x (1, 2) 
x(j) = ... 

(6) 
( 7 )  
(8) ENDDOALL 

INV 2 

(9) ... 
INV 3 

(10) END DO 

Figure 7: The write interference pattern. 

Counter Overflow and Timestamp Size 
Many of the timestamp based methods, such as 

the version control method and TPI,  suffer from 
the counter overflow problem. Once the timestamp 
counter is reset, additional actions must be taken to 
ensure the cache coherence. Our method does not 
have the counter overflow problem. Using a shorter 
timestamp only results in the performance penalty 
for not being able to  preserve the cache line for a 
longer time, while in other methods, using a shorter 
timestamp results in an additional overhead for deal- 
ing with counter overflow. Besides, TBSIS preserves 
cache lines for 2n-1 static levels which is usually much 
larger than the 2n-1 dynamic epochs. Thus, our 
method can use a shorter timestamp to provide the 
same cache performance. 
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16 89.09 93.17 89.29 89.10 
32 44.56 48.64 44.76 44.57 
64 22.30 26.37 22.50 22.30 

(1)  DO i = 1, 1000 Level var ILN 
(2) DO j = I, N 
( 3 )  DOALL k = 1,1000 

(5) ENDDOALL 
(4) ... 1 

INV 1 

(6) END DO 

(7) 
(8) ... = x(j) ... 

(10) END DOALL 
INV 2 

INV 1 ! extra  INV instruction 
DOALL j = 1, 1000 

(9) x(j) = ... 2 x (1, 2 )  

(11) END DO 

Figure 8: The unknown epoch number pattern. 

6 Performance Study 
To compare TBSIS with other schemes, simulations 

were conducted on three parallel programs for three 
software cache coherence protocols: TS1, TPI and 
TBSIS. We study both cache hit ratio and total num- 
ber of cycles for memory reference, which includes the 
memory reference cycles and overhead cycles. 

The benchmarks are written in CRAFT FOR- 
TRAN and are executed on a CRAY-T3D. The sim- 
ulation is carried out by adding code in the source 
program that simulates the cache in each processor. 
For each memory reference that refers to the shared 
data, a routine is called to simulate the effect of the 
cache. We assume that no interprocedural analysis 
is performed by the compiler and thus, all the cache 
lines are invalidated at the subroutine boundaries. 

Table 2: General characteristics. 

The first benchmark program, l p ,  uses Gauss-Siedel 
iterations to solve Laplace equations on a 64 x 64 dis- 
cretized unit square with Dirichlet boundary condi- 
tions. The second program tsch is a program that 
simulates the evolution of a self-gravitating system 
using a self consistent field approach. The third pro- 
gram e p  is the NAS’s embarrassingly parallel bench- 
mark [a]. The outermost loop iteration number of the 
ep  program is reduced by a factor of 256 to shorten the 
simulation time. Table 2 shows the general character- 
istics of the three benchmarks used in our experiment. 
The epoch number is obtained from the execution of 
the program on 32 processors. The level numbers are 
the maximum level number among all subroutines in 
each program. 

The architecture simulated consists of direct- 
mapped, write through caches. The block size is one 
word. Only the references to the shared data are sim- 
ulated. We use 6-bit timestamp for TPI  and TBSIS. 
Table 3 shows the simulation results for different cache 
sizes using 16 processors. Table 4 shows the result for 
64K word cache using different number of processors. 

’able 3: Hit ratio for different cache size (16 PES). 

Table 4: Hit ratio for different PE  numbers (64KW 
cache). 

For the e p  program, 64k word cache size is not large 
enough to exploit all the data locality in 16 proces- 
sor systems. Therefore, the hit ratio increases with 
the number of processors, since the total cache size 
increases with the number of processors. In a 16 pro- 
cessor system, TS1 and TBSIS have better hit ratio 
than TPI. TS1 actually has a slightly higher cache 
hit ratio. But the difference is so small that it doesn’t 
show in the table where values are rounded off. For 
the l p  program, 64K word cache size is large enough to 
exploit all the possible data locality. Therefore, when 
the number of processors is increased, the hit ratio 
decreases significantly. TS1 and TBSIS have better 
hit ratio than TPI. TS1 actually has a slightly higher 
cache hit ratio when the cache size is large enough. 
But the difference is so small that it doesn’t show in 
the table. For tscf program, the cache hit ratio is 
almost the same when the number of processors in- 
creases. All the three cache coherence methods have 
exactly the same cache hit ratio. The reason is the ex- 
tensive usage of subroutine in this program. Without 
interprocedural analysis, the software cache coherence 
methods fail to exploit most of inter-level locality. 

Table 5: Total memory reference cycles( x lo6) .  

4.52 4.00 
3.47 1.62 1.77 1.26 

8.26 8.13 
32 I 14.12 1 8.49 1 6.33 1 6.20 I 1 64 8.80 7.30 I 5.14 1 5.01 

Table 5 compares the total cycles for memory ref- 
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cycles TSl(para. inv.) 

2 0.147 I 2.3% 
overhead percent 

Table 6: Runtime overhead percentage. 

TBSIS 
overhead I percent 

0.012 I 0.2% 

erences. The total cycles consist of memory reference 
cycles and protocol overhead cycles. We assume that 
a cache hit takes 1 cycle, a parallel invalidation in 
TS1 and TBSIS takes 2 cycles, a serial invalidation 
to invalidate a page of 512 words or a certain cache 
word in TS1 takes 1 cycle, a cache miss takes 40 cy- 
cles. Table 6 shows the runtime overhead percent- 
age of all the protocols. TPI  incurs the least runtime 
overhead. However, it has lower cache hit ratio than 
both TS1 and TBSIS. Thus the performance of TPI  
is worse than that of TS1 and TBSIS. The overhead 
incurred by TS1 with serial invalidation ranges from 
2.6% to 22.1% in 16 processor system and 15.5% to 
31.5% in 64 processor system. With parallel invali- 
dation scheme, TS1 greatly reduces the runtime over- 
head. However, we still observe 29.9% overhead in 
e p  program with 64 processors. Since TBSIS incurs 
constant overhead in each epoch and achieves almost 
the same cache hit ratio as TS1, its performance is 
better. TBSIS is faster than other methods in the 
e p  and lp programs. For the tscf program, TPI  has 
slightly higher performance than TBSIS. The speedup 
of TBSIS is shown in Table 7. 

Table 7: Percentage speedup of TBSIS. 

8 
16 

prog I PE I TSl(ser.) I TSl(para.) I TPI 
2.5 1 3.6 1 54.2 

0.588 8.8% 0.048 0.8% 
1.176 16.0% 0.096 1.5% 

I I I I 

Table 8: Effect of invalidation cycle. 

1 4  i 0.294 I 4.5% I 0.024 I 0.4% I I I I 

Table 8 shows the effect of invalidation cycles on 
the total performance for both TS1 and TBSIS. We 
study the case of the lp  program in 32 processor sys- 
tem. As shown in the table, the performance of TS1 
is greatly affected by the efficiency of invalidation 
scheme while TBSIS sustains a graceful degradation 
and achieves reasonably good performance with slow 
invalidation. 

7 Conclusion 
In this paper, we propose a new software cache 

coherence protocol based on the timestamp concept. 
Our method combines the ideas in TS1 and TPI  and 
overcomes their limitations. Furthermore, with im- 
proved compiler techniques, the performance of our 
protocol can be further improved without extra hard- 
ware and runtime overheads. In our protocol, the 
timestamp is used for the invalidation of cache lines. 
By using the timestamp, selective invalidation of O( 1) 
time is possible. This scheme has the characteristic 
of high cache performance and low hardware and run- 
time overhead. 
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