
____ 1996 International Conference on Parallel Processing

A Timestamp-based Selective Invalidation Scheme for
Multiprocessor Cache Coherence*

Xin Yuan Rami Melhem Rajiv Gupta
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

Abstract - Among al l software cache coherence
strategaes, the ones that are based on the concept of
tamestamps show the greatest potentaal an terms of
cache performance. The early tamestamp methods suf-
fer from hzgh hardware overhead. Improvements have
been proposed t o reduce hardware overhead at the ex-
pense of ezther ancreasang runtame overhead or sacra-
ficang cache performance. I n thzs paper, we dascuss the
lamatataons of the prevzous tamestamp-based methods
and propose a new software cache coherence scheme.
Our scheme explozts the anter-level localaty wath sag-
naficantly less hardware support than the early tames-
tamp methods whale zntroduczng only constant run-
tame overhead for each epoch durang the executaon of
a program. Samulataon results show that the proposed
scheme achaeves hagher performance than the prevaous
schemes wath comparable hardware overhead.

1 Introduction
Private caches are critical components of high per-

formance multiprocessor systems. The use of private
caches reduces network traffic and memory access la-
tency. However, it also introduces the cache coherence
problem. A mechanism must be implemented to keep
the caches coherent in order for a program to run cor-
rectly on a multiprocessor system.

Among the existing software controlled cache co-
herence schemes, the methods based on the concept
of timestamps are more effective in preserving cache
lines across task boundaries than other software meth-
ods [4, 91. The early timestamp-based methods, such
as the version control method [3] and the timestamp
method[lO], use an explicit timestamp table to store
the current version number for each variable. They
also use an additional field in each cache line to store
the version number of the cache line. Although the
cache performance of these methods approaches that
of the hardware schemes, the maintenance of the table
and the additional timestamp field introduces hard-
ware and runtime overheads. The later methods, such
as TS1 with a 1 bit timestamp [8], the generational
algorithm [5] and the two-phase invalidation scheme
(TPI) [6], try to reduce these overheads TS1 avoids
most of the hardware overhead by eliminating the
timestamp table and reducing the additional times-
tamp field to one bit for each cache line. However,

*This work is supported in part by the NSF awards CCR-
9157371 and ASC-9318185 to the University of Pittsburgh.
Contact author: xyuan@cs.pitt.edu.

explicit invalidation instructions are needed at the end
of each level. Hardware support for an efficient cache
invalidation mechanism introduces additional hard-
ware overhead in TS1. The generational algorithm
eliminates the timestamp table overhead by having
all variables share the same timestamp. However, the
author does not address implementation issues that
greatly affect the algorithm’s performance.

TPI seems to be a promising software cache co-
herence scheme. It requires reasonable hardware and
runtime overhead and exploits data locality in most
situations. The limitation of this method is that it
does not always exploit data locality in the presence
of nested looping structures in which serial loops en-
close one or more parallel loops. These patterns are
often encountered in scientific programs where loop
bounds are commonly parameterized.

In this paper, we propose a software cache coher-
ence scheme which combines the advantage of the TS1
and TPI scheme and overcomes their limitations. In
addition, the performance of our method can be im-
proved without incurring extra hardware or runtime
penalty when better information is available at com-
pile time. The hardware overhead of our scheme is
close to that of TPI and TS1 with parallel invalidation
mechanism. Simulation results show that the cache
hit ratio of our scheme is higher than that of TPI
and almost the same as that of TS1. By reducing the
runtime overhead, our scheme achieves better perfor-
mance than TS1. Thus, the overall performance of
our method is superior to both TPI and TS1.

The rest of the paper is organized as follows.
In section 2 we describe the parallel computation
model used in this work. A survey of the previous
timestamp-based software cache coherence methods
is given in section 3. In section 4 the timestamp-
based selective invalidation software cache coherence
scheme is presented. In section 5 a detailed compari-
son between our method and the previous methods is
given. Section 6 reports simulation results. Section 7
summarizes the major contributions of this work.

2 The Computation Model
A parallel program is composed of a series of lev-

els. Each level is either a parallel loop with no inter-
nal synchronization (e.g., a DOALL loop) or a serial
region (e.g., a DOSER loop) between parallel loops.
Serial regions can be nested serial loops or those parts
of serials loops that are not in parallel loops. The

111-114
0190-3918/96 $5.00 0 1996 IEEE

mailto:xyuan@cs.pitt.edu

1996 International Conference on Parallel Processing

.. l+L<=+

execution of the program is composed of a series of
epochs. Each epoch consists of one or more tasks
which run in parallel. A task is the minimum compu-
tation unit that can be scheduled and assigned to a
processor for execution at run time. In a serial epoch,
a single task is scheduled and executed on a single
processor. In a parallel epoch, multiple tasks are cre-
ated at runtime and executed on multiple processors
simultaneously .

(1)
(2) u(i) = 0.0
(3) v(i) = 0.0
(4) ENDDOALL
(5)
(6)

DOALL i = 1, n

DOSER i = 1, n
DOALL j = 1, n

w(j) = 4 j) + v(j)
x(j) =

(7)
(8) ...
(9) ENDDOALL
(10) DOSER j= 1, n
(11)
(12)

DOALL k = 1, n

END DOALL
a = a+ 2.0

(15) END DOSER
(16) DOALL j = 1, n

w(k) = w(j) + a
(13)
(14)

(17)
(18)

.. = x(..)
w(..) = ..

(19) END DOALL
(20) END DOSER

1 1

..

j - K5-
..

pr9 / -1 3 3 5 9 1 1

..

4 4 6 10 12

I 13

6 14

Figure 1: A program and its levels and epochs.
To model dynamic scheduling schemes, we assume

that a task may be scheduled on any processor at
runtime. We also assume that every processor par-
ticipates in the execution of every epoch. If there is
no useful task to be assigned, the processor will run a
task that only performs the coherence operations.

An example parallel program, as well as its levels
and epochs during the execution of the program for n
= 2, is shown in Fig. 1. This example will also be used
in section 4 to describe our cache coherence scheme.
The parallel loop in lines (1)-(4) corresponds to Level
1. Level 2 corresponds to lines (6)-(9), level 3 to the

parallel loop in lines (11)- (13), level 4 to line (14)
and level 5 to lines (16) - (19). In the execution of the
program, the epoch number can be much larger than
the level number.

In this paper, we initially assume that a cache line
is one word long and that the cache uses a write-
through policy. Later we also briefly discuss exten-
sions to handle multi-word cache lines. Data vari-
ables are classified into private, shared read-only and
shared read-write. Only shared read-write variables
can cause cache coherence problems. When we refer
to a variable, it is assumed to be a shared read-write
variable.

3 Timestamp Based Methods
The Version Control Method

In the version control method [3], the current ver-
sion number (CVN) for each variable is kept in the
variable ID table in each processor. An entire array
is treated as a single variable. For the method to be
efficient, the variable ID table must be accessed in
parallel with the cache access. Each cache line has
an extra field called birth version number (BVN). At
the time the cache line is created (by either a read
or a write), the value of CVN (for read misses) or
CVN f 1 (for writes) is written into the BVN. At the
end of each level, the processor increments the CVN
for each variable that might have been modified in
that level. The compiler is responsible for determin-
ing the level boundary and generating code to increase
the CVNs. The cache line is valid only if its BVN is
bigger than or equal to the corresponding variable’s
CVN. The version control method is effective in pre-
serving the reuse of cache lines. The major limitation
of this method is the hardware and runtime overhead.
The timestamp method [lo] is not discussed here be-
cause it is similar to the version control method.
The TS1 Method

In TS1, one additional bit, referred to as the epoch
bit, is required for each cache line. The compiler de-
termines the levels and the variables modified in each
level. The epoch bit is reset at the end of each level
and is set when the cache line is referenced. At the end
of each level, invalidation instructions are issued to in-
validate all the variables modified in that level. An
invalidation instruction invalidates a specified cache
line only if (1) the address tag matches, and (2) the
cache line’s epoch bit is not set. Once a variable is
modified in an epoch, the variable is invalidated in all
the processors except the one that modified it. Thus,
the cache will always contain valid cache lines.

The performance and overhead of this scheme de-
pends heavily on the mechanism used to invalidate the
stale cache lines. Two implementations of the invali-
dation mechanism are proposed in [SI. The simple and
inexpensive invalidation mechanism uses a low level
invalidate instruction which could invalidate either a
particular line or a particular page. The high level
invalidate would then loop over the proper range of
pages and lines. Using this simple serial scheme, the
invalidation overhead is O (c : (si)), where si is the
size of the ith section to be I&?a\idated. A faster, but
more complex invalidation method was proposed in [8]

111-115

1996 International Conference on Parallel Processing
-

and [9]. This parallelscheme requires a full associated
address tag memory. A bit mask is used to determine
which addresses to invalidate. Using this invalidation
scheme, the runtime overhead is O(E:==, log(si)). Be-
sides the invalidation schemes, the runtime overhead
of TS1 also depends on t,he program structure when
using precise invalidation. When an epoch contains
many discontinuous sections to be invalidated, the
overhead for the epoch will be quite large.

In summary, TS1 effectively preserves the reuses of
a cache line. Using precise invalidation, this scheme
can achieve the best cache hit ratio that any software
cache coherence method based on local knowledge can
possibly achieve [8]. The limitation is the runtime
overhead. The exploitation of higher cache hit ratio
by using precise invalidation results in larger runtime
overhead. Therefore, it is desirable to develop a mech-
anism to perform the invalidation more effectively.
The Generational Algorithm

The goal of the generational algorithm is to im-
prove over the version control method by making all
the variables in the program share one common CVN.
In the generational method, the shared CVN called
Current generatzon number (CGN) is stored in each
processor. The CGN is increased at the end of each
epoch. When a cache line is updated, the cache line
is provided with a valad generatzon number (VGN) in-
dicating when the cache line will become invalid. The
system invalidates a cache line implicitly by causing
CGN to become larger than the cache line’s VGN. The
compiler is responsible for determining the VGN for
all the memory references. By using a common CVN,
the generational algorithm eliminates the variable ID
table and the problems associated with it. However,
[5] does not address some important issues. For ex-
ample, it is not clear how the VGNs of the cache lines
are updated for the variables modified in a level. If
every cache line’s VGN is updated individually at the
end of each epoch, this method will incur greater run-
time overhead than TS1 does. Since the author does
not address these important issues, we are unable to
determine the efficiency of the method.
The TPI Scheme

In TPI, the timestamp field associated with the
cache line is updated with current epoch number for
both read and write instructions. The read instruc-
tion is supplied with an additional field to indicate
the epoch number of the last write to the variable.
The cache copies created after the specified last write
epoch are valid. Therefore, the stale cache copies are
detected by comparing the timestamp field with the
last write epoch number. When the current epoch
counter overflows, an explicit invalidation instruction
is used to invalidate t<he cache lines. As shown in
[6], the method can preserve most of the localities
with reasonable hardware and runtime overhead. Fur-
thermore, interprocedural analysis techniques can be
incorporated in this method to preserve the locality
across procedure boundaries [7]. The limitation of
this method is that it does not always handle nested
looping structures shown in Fig. 2 effectively.

The repeated read pattern occurs when a shared
variable is only read inside a nested loop and is writ-

(1) DOALL i = 1, 1000
(2) x(i) = ...
(3) END DOALL
(4) DOSER i = 1, N
(5)
(6) .. = x(j) ...
(7) ENDDOALL
(8) ... ! another level
(9) END DOSER

(a) Repeated read pattern.

DOALL j = 1, 1000

(1) DOALL i = 1, 1000
(2) x(i) = ...
(3) END DOALL
(4) DOSER i = 1, N
(5) DOALL j = 1, 1000

... = x(j) ...
x(j) = ...

(6)
(7)
(8) ENDDOALL
(9) ... ! another- level
(1O)END DOSER
(b) Write interference pattern.

(1) DOSER i = 1, 1000
DOSER j = 1, N

DOALL k = 1, 1000

END DOALL

(2)
(3)
(4)
(5)
(6)
(7)
(8)

...

END DOSER
DOALL j = 1, 1000

... = x(j) ...
x(j) = ...

(10) END DOALL
(11)END DOSER
(c) Unknown epoch number pattern.

Figure 2: Examples of reference patterns
ten in some epochs before the loop. An example is
shown in Fig. 2 (a). Consider the read reference of
x in line (6). For each distinct iteration of the serial
loop, the last write epoch for this reference is dif-
ferent. However, since the read instruction can only
carry one timestamp, it cannot preserve all this infor-
mation even if it can be determined by the compiler.
For the program to run correctly, the last write epoch
number for the reference is two epochs earlier. As a
result, the references to x in line (6) result in cache
misses since the cache copies created inside the serial
loop are separated by three epochs. Note that in TPI,
the DOSER is treated as serial epoch.

The wrzte znterference pattern occurs when (1) a
shared variable is written before a nested loop and is
read and written inside the loop, (2) the write to the
variable inside the loop takes more epochs to reach the
read than the write outside the loop does. Consider
the example in Fig. 2 (b). Both the writes to x in line
(2) and (7) reach the read of x in line (6). Since the
write in line (2) crosses only two epochs to reach the
read while the write in line (7) crosses three epochs,
the last write epoch number for the read is two epochs
earlier. Therefore, except first iteration, the reads in
line (6) result in cache misses.

The unknown epoch number pattern occurs when
the runtime number of epochs inside a nested loop is
unknown at compile time. Consider the example in
Fig. 2 (c). The epochs between the write in line (9)
and the read in line (8) are unknown at compile time
due to the value of N being unknown. The compiler
must conservatively assume that it takes two epochs
for the write in line (9) to reach the read in line (8).
Therefore, the last write epoch for the read in line
(6) is two epochs earlier. However, in the execution
of the program, the level in lines (2) - 6) is usually
executed. As a result, the reads in line i 8) will cause
cache misses.

Some compiler techniques, such as epoch number

111-116

1996 International Conference on Parallel Processing

adjustment, loop peeling and guard execution, can
be used to alleviate some of the problems. How-
ever, we believe that the static estimation of the last
write epoch number, which is changed dynamically,
is the inherent limitation of this method. Therefore,
it would be desirable to use a static measurement to
decide whether a cache line is valid.

4 Timestamp-based Selective Invali-

Both TS1 and TPI improve the version control to
some extent. Each of the method has its own limi-
tation ~ the runtime overhead in TS1 and the degra-
dation of performance due to static estimation of dy-
namic epoch number in TPI. In this paper, we pro-
pose a timestamp-based selective invalidation scheme
(TBSIS). This scheme combines the ideas of both TS1
and TPI and overcomes their limitations. TBSIS im-
proves over TS1 by having almost the same capabil-
ity of preserving the cache line reuses and reducing
the runtime overhead. TBSIS improves over TPI by
having a static measurement, the level number, to
decide whether a cache line is valid and avoiding all
the problems in TPI when dealing with nested loops.
The hardware overhead of TBSIS is close to that of
TPI and TS1 with parallel invalidation. Simulation
results show that TBSIS exhibits better performance
than both TS1 and TPI.
4.1 Hardware Support

A timestamp field called Invalidation Level Number
(ILN) is associated with each cache line. The ILN is
composed of two parts, I L N , and I L N , . The I L N ,
is the most significant bit in the ILN and the ILN,.
represents the remaining bits. We will denote an ILN
as (ILN,, ILN,) .

A special invalidation instruction must be sup-
ported by the cache implementation. We will use
I N V L to represent the instruction, where L is a
level number. The invalidation instruction operates
on all the cache lines in the cache. The operations of
the instruction I N V L are (1) to invalidate all cache
lines whose ILN, = L and I L N , = 0, (2) to reset
the I L N , fields for all cache lines whose ILN,. = L
and I L N , = 1. Other cache lines are unaffected.

The I L N , bit is used to skip one invalidation. As
we will see later, this bit is mainly used to deal with
the looping structures. The logic for the instruction
is shown in Fig. 3. We assume that the cache imple-
mentation can support this instruction in 0(1) time.
The processor also needs to support the memory ref-
erence instructions ReadlLN and Write-ILN. Both
instructions are augmented with an extra ILN field.
Beside the traditional operations, these instructions
also update the ILN fields in the cache lines.
4.2 The Scheme

TBSIS is a generalization of TS1 [8]. The main idea
is still to explicitly invalidate the stale cache copies if
the variable is modified in the current epoch. By us-
ing more bits as timestamp for each cache line and
augmenting the compiler support, the explicit invali-
dation in TBSIS can be carried out more efficiently.

In TBSIS, an invalidation instruction INV L is is-
sued at the end of each epoch to invalidate all the

dation Scheme

Cache

ILN~ 1 ILN, I DATA 1
I I

Reset valid bit Reset ILN,bit

Figure 3: The logic of the invalidation instruction.

cache lines that must be invalidated in that epoch.
Here L is the level number corresponding to the epoch.
In order for the instruction to invalidate all the stale
cache lines, all these lines that are still valid before the
instruction should have I L N , = L and I L N , = 0.
The compiler determines the levels of the program,
and furthermore, it also determines a proper ILN for
each memory reference to ensure that the cache does
not contain the stale cache copies.

It is simple to ensure a coherent cache by using the
ILN field and the invalidation instruction. For exam-
ple, the compiler may provide each memory reference
with ILN equal to the current level number. TBSIS
is then reduced to the simple invalidation scheme [3]
which can only exploit the intra-level locality. To ex-
ploit maximum locality, the compiler should always
try to set ILN to the next write level number.

4.3 Software Support
The major task of software support is to deter-

mine the next write level number for each memory
reference. Due to the branches in programs, there
may be several next write levels for a memory refer-
ence. The compiler must approximate the next write
level and/or introduce extra invalidation instructions
at selected points to handle such situations. Two ap-
proachs can be used to handles the multiple next write
level situation. The conservative approach assigns the
ILN conservatively and guarantee the program runs
correctly through all paths. The aggressive approach
assigns the ILN to be the one that saves the cache lines
along the most frequently executed path. This ap-
proach needs to introduce extra invalidation instruc-
tions along other paths to ensure the correctness of
the program. TBSIS adopts the second approach and
therefore, the compiler must determine the next write
level and find the proper place to introduce the extra
invalidation instructions.

For a memory reference, if there is a unique next
write level, then that level number will be the ILN
for the reference. There may be several possible next
write levels due to the branches in the program. If the
branch is a forward branch, the nearest level at which
the variable is modified is used as the next write level.
If there is a backward branch involved, the memory
reference is inside a loop. The next write level in the
innermost loop is considered as the next write level.
In this way, TBSIS always captures the locality inside
the loop. Using epoch f low graph [B], the next write
level information can be obtained in two steps. First,

111-117

1 996 International Conference on Parallel Processing
-

using the algorithm in [l], we determine the looping
structures in the flow graph. Then, for each memory
reference, the compiler searches forward for all the
writes to the same variable that can be reached by
the reference in the flow graph. Among the writes,
the write that is closest to the current point in the
innermost loop is the write of interest.

As for the placement of the extra invalidation in-
structions, a simple solution is to introduce extra in-
validation instructions at the exit of every loop to in-
validate all the cache lines whose ILN is equal to any
one level inside the loops. The invalidation instruc-
tion can be delayed until the first level that modifies
the variables that are modified in the loop. The com-
piler can use similar analysis as in the determination
of the next write level for one variable to determine
the place for the extra invalidation instruction. In the
remainder of this paper, we assume that the simple
approach is used.

(1) DOALL i = 1, n Level

(3) v(i) = 0.0
(4) ENDDOALL

(2) u(i) = 0.0 1

INV 1

(5)
(6)
(7) w(j) = u(j) + 2

(9) END DOALL
INV 2

DO i = 1, n
DOALL j = 1, n

(8) x(j) = v(j) + 4)

(10) DO j = 1, n
(11) DOALL k = 1, n

END DOALL
INV 3

a = a* 2.0 4
(I4) INV 4

(15) END DO

(16)

(18) END DOALL
INV 5

w(k) = w(j) + a 3 (12)
(13)

__I___________

INV 3 , 4 ! extrainv
DOALL j = 1, n

(17) .. = x(. .) 5

VW
U

V

U

V

W

X

a
W

a

X

(19) END DO
INV 2, 3, 4, 5 ! ext ra inv

Figure 4: An example.

4.4 An Example
In this section, we will describe the method through

an example. Fig. 4 is the example program in section
2 augmented with the invalidation instructions. The
value of ILN is (0, 6) for the write reference to U in
line (a), this is because the variable U is not modified
after line (2). Since there is no JNV 6 issued in the
program, the cache Copies will be valid throughout
the execution of the program. The value of ILN is
(1, 3) for the write reference to w in line (12) since
the reference is inside the serial loop and the next
write level is the next execution of level 3. Therefore,
the cache copies of w will be valid until the end of

Table 1: Cache lines and their ILN.

the next iteration and the read reference to w at line
(12) will be a cache hit. The next write level for the
write reference to x in line (8) is the next execution
of level 2. Therefore, the cache copies should survive
one INV 2 instruction at the end of the level 2 and the
ILN should be set to 1, 2). Assuming the variable n
is equal to 2 , Table 1 6 epicts the ILN of each variable
during the execution of the program.
4.5 Multi-word Cache Lines

TBSIS can be extended t<o handle multi-word cache
lines. Let us assume that each cache word is associ-
ated with an ILN and that arrays are aligned to the
cache line boundary. For a cache miss, if the reference
is to an array element, then all the ILNs are assigned
the ILN value in the instruction. If the reference is to
a scalar, only the ILN of the cache word corresponding
the scalar is assigned the ILN in the instruction, all
other ILNs in the cache line are assigned the current
level number. Therefore, those scalar cache lines that
are not accessed in the current epoch will be invali-
dated at the end of the epoch and the cache contains
clean data.

TBSIS can also be adapted if a single ILN is asso-
ciated with an entire cache line. If arrays are aligned
to cache line boundaries, then a single ILN per cache
line is sufficient to exploit spatial locality. To main-
tain cache coherence for scalars, a reference to a scalar
sets the ILN to be the minimum ILN of all the vari-
ables in the corresponding cache line. A frequently
accessed shared scalar can be placed in a separate
cache line.

5 Some Comparisons
TBSIS vs TS1

Compared to TS1 with serial invalidation, TBSIS
requires a higher hardware overhead. However, TB-
SIS has significantly less runtime overhead. In our
simulation study, TBSIS has an average of 11.8%
speedup on a 16-processor system and 30:9% speedup
on a 64 processor system with regard to the total
memory reference time against TS1 with serial in-
validation. The speedup is gained by reducing the
runtime overhead.

TS1 with parallel invalidation and TBSIS have
comparable hardware overhead. TBSIS requires fully

I 1 1-118

1996 International Conference on Parallel Processing

DOALL m = 1,1000 Level
x (m) = ... 1

END DOALL
INV i

if (m is odd) ILN = j
else ILN = k

(1) DOALL i = 1, 1000 Level var ILN

(3) END DOALL
(2) x(i) = ... 1 x (0 ,4)

INV 1

DOALLl m = 1, 999, 2

END DOALL
INV j

x(m) = ... j ILN = 1

... _--____-__
DOALL m = 2, 1000, 2

x(m) = ... k ILN = 1
END DOALL
INV k

...

DOALL m = 1,1000
x(m) = ... 1

END JlOAT,L
INV 1

Figure 5: Precise invalidation.

associative ILN memory (6 bits per word) and a reg-
ular address tag memory. TS1 requires a fully as-
sociative address tag and epoch bit memory (around
20 bits per word) with a bit mask register. TBSIS
has a better runtime overhead, especially when ex-
ploiting precise invalidation. Consider the example in
Fig. 5. To exploit precise invalidation, TS1 requires
multiple invalidation instructions to be issued at the
end of an epoch. For instance, each processor must
issue 499 invalidation instructions in TS1 at the end
of level I C . In TBSIS, precise invalidation is done by
assigning proper ILN for memory reference instruc-
tion. Regardless of the program structure, only 1 in-
validation instruction is needed in TBSIS. However,
conditional assignment statements may be needed to
assign proper ILNs as shown in Fig. 5. The disadvan-
tage of TBSIS is the potential over-invalidation when
the program exits a nested loop. However, the misses
caused by the over-invalidation is almost negligible
compared to the total number of references since most
of the references are inside the nested loop. In our
performance study, TBSIS has an avera e speedup of
1.8% for 16 processor systems and 14.9k for 64 pro-
cessor systems against TS1 with parallel invalidation.
TBSIS ;s TPI -

In comDarison to TPI. TBSIS reauires a slightlv
larger ovgrhead. However, TBSIS always exgoits
data locality inside loops, which accounts for a signif-
icant fraction of the data locality in a program, while
TPI fails to preserve cache lines in situations where
memory references are separated by non-unique num-
ber of epochs. Simulation results confirm that our
method preserves the reuse of cache lines more effec-
tively. Next, we show how TBSIS handles the pat-
terns for which TPI fails to exploit the locality.

Fig. 6 shows how the repeated read pattern is han-
dled in our method. The read reference to x in line
(6) has I L N = (0,4). Since the instruction INV 4 is

(4)
(5)

(7) END DOALL
INV 2

DO i = 1, N
DOALL j = 1, 1000

(6) .. = x(j) ... 2 x (% 4)

(8) ...
INV 3

3

(9) END DO

Figure 6: The repeated read pattern.
not executed until the end of the program, the cache
lines created in line (6) will be valid throughout the
program under TBSIS. Fig. 7 shows how the write
interference pattern is handled. The write reference
to x in line (7) has the I L N = (1,2). Therefore, Ihe
cache line created by the statement can survive till
the next execution of level 2 and the read references
to x in line (6) will result in cache hits. Fig. 8 shows
how the unknown epoch number pattern is handled.
The write reference to x in line (9) have the ILN = (1,
2), therefore, the cache line created by that statement
can survive till the next execution of level 2 and the
read references to x in line (8) will result in cache hits
no matter how many epochs are executed at level 1.

(1) DOALL i = 1 , 1000 Level v w ILN

(3) ENDDOALL
(2) x(i) = ... 1 x (0, 2)

INV 1

(4)
(5)

DO i = 1, N
DOALL j = 1, 1000

... = x(j) ... 2 x (1, 2)
x(j) = ...

(6)
(7)
(8) ENDDOALL

INV 2

(9) ...
INV 3

(10) END DO

Figure 7: The write interference pattern.

Counter Overflow and Timestamp Size
Many of the timestamp based methods, such as

the version control method and TPI, suffer from
the counter overflow problem. Once the timestamp
counter is reset, additional actions must be taken to
ensure the cache coherence. Our method does not
have the counter overflow problem. Using a shorter
timestamp only results in the performance penalty
for not being able to preserve the cache line for a
longer time, while in other methods, using a shorter
timestamp results in an additional overhead for deal-
ing with counter overflow. Besides, TBSIS preserves
cache lines for 2n-1 static levels which is usually much
larger than the 2n-1 dynamic epochs. Thus, our
method can use a shorter timestamp to provide the
same cache performance.

111-119

1996 International

tscf

Conference on Parallel Processing

16 89.09 93.17 89.29 89.10
32 44.56 48.64 44.76 44.57
64 22.30 26.37 22.50 22.30

(1) DO i = 1, 1000 Level var ILN
(2) DO j = I, N
(3) DOALL k = 1,1000

(5) ENDDOALL
(4) ... 1

INV 1

(6) END DO

(7)
(8) ... = x(j) ...

(10) END DOALL
INV 2

INV 1 ! extra INV instruction
DOALL j = 1, 1000

(9) x(j) = ... 2 x (1, 2)

(11) END DO

Figure 8: The unknown epoch number pattern.

6 Performance Study
To compare TBSIS with other schemes, simulations

were conducted on three parallel programs for three
software cache coherence protocols: TS1, TPI and
TBSIS. We study both cache hit ratio and total num-
ber of cycles for memory reference, which includes the
memory reference cycles and overhead cycles.

The benchmarks are written in CRAFT FOR-
TRAN and are executed on a CRAY-T3D. The sim-
ulation is carried out by adding code in the source
program that simulates the cache in each processor.
For each memory reference that refers to the shared
data, a routine is called to simulate the effect of the
cache. We assume that no interprocedural analysis
is performed by the compiler and thus, all the cache
lines are invalidated at the subroutine boundaries.

Table 2: General characteristics.

The first benchmark program, l p , uses Gauss-Siedel
iterations to solve Laplace equations on a 64 x 64 dis-
cretized unit square with Dirichlet boundary condi-
tions. The second program tsch is a program that
simulates the evolution of a self-gravitating system
using a self consistent field approach. The third pro-
gram e p is the NAS’s embarrassingly parallel bench-
mark [a]. The outermost loop iteration number of the
ep program is reduced by a factor of 256 to shorten the
simulation time. Table 2 shows the general character-
istics of the three benchmarks used in our experiment.
The epoch number is obtained from the execution of
the program on 32 processors. The level numbers are
the maximum level number among all subroutines in
each program.

The architecture simulated consists of direct-
mapped, write through caches. The block size is one
word. Only the references to the shared data are sim-
ulated. We use 6-bit timestamp for TPI and TBSIS.
Table 3 shows the simulation results for different cache
sizes using 16 processors. Table 4 shows the result for
64K word cache using different number of processors.

’able 3: Hit ratio for different cache size (16 PES).

Table 4: Hit ratio for different PE numbers (64KW
cache).

For the e p program, 64k word cache size is not large
enough to exploit all the data locality in 16 proces-
sor systems. Therefore, the hit ratio increases with
the number of processors, since the total cache size
increases with the number of processors. In a 16 pro-
cessor system, TS1 and TBSIS have better hit ratio
than TPI. TS1 actually has a slightly higher cache
hit ratio. But the difference is so small that it doesn’t
show in the table where values are rounded off. For
the l p program, 64K word cache size is large enough to
exploit all the possible data locality. Therefore, when
the number of processors is increased, the hit ratio
decreases significantly. TS1 and TBSIS have better
hit ratio than TPI. TS1 actually has a slightly higher
cache hit ratio when the cache size is large enough.
But the difference is so small that it doesn’t show in
the table. For tscf program, the cache hit ratio is
almost the same when the number of processors in-
creases. All the three cache coherence methods have
exactly the same cache hit ratio. The reason is the ex-
tensive usage of subroutine in this program. Without
interprocedural analysis, the software cache coherence
methods fail to exploit most of inter-level locality.

Table 5: Total memory reference cycles(x lo6) .

4.52 4.00
3.47 1.62 1.77 1.26

8.26 8.13
32 I 14.12 1 8.49 1 6.33 1 6.20 I 1 64 8.80 7.30 I 5.14 1 5.01

Table 5 compares the total cycles for memory ref-

111-120

1996 International Conference on Parallel Processing

cycles TSl(para. inv.)

2 0.147 I 2.3%
overhead percent

Table 6: Runtime overhead percentage.

TBSIS
overhead I percent

0.012 I 0.2%

erences. The total cycles consist of memory reference
cycles and protocol overhead cycles. We assume that
a cache hit takes 1 cycle, a parallel invalidation in
TS1 and TBSIS takes 2 cycles, a serial invalidation
to invalidate a page of 512 words or a certain cache
word in TS1 takes 1 cycle, a cache miss takes 40 cy-
cles. Table 6 shows the runtime overhead percent-
age of all the protocols. TPI incurs the least runtime
overhead. However, it has lower cache hit ratio than
both TS1 and TBSIS. Thus the performance of TPI
is worse than that of TS1 and TBSIS. The overhead
incurred by TS1 with serial invalidation ranges from
2.6% to 22.1% in 16 processor system and 15.5% to
31.5% in 64 processor system. With parallel invali-
dation scheme, TS1 greatly reduces the runtime over-
head. However, we still observe 29.9% overhead in
e p program with 64 processors. Since TBSIS incurs
constant overhead in each epoch and achieves almost
the same cache hit ratio as TS1, its performance is
better. TBSIS is faster than other methods in the
e p and lp programs. For the tscf program, TPI has
slightly higher performance than TBSIS. The speedup
of TBSIS is shown in Table 7.

Table 7: Percentage speedup of TBSIS.

8
16

prog I PE I TSl(ser.) I TSl(para.) I TPI
2.5 1 3.6 1 54.2

0.588 8.8% 0.048 0.8%
1.176 16.0% 0.096 1.5%

I I I I

Table 8: Effect of invalidation cycle.

1 4 i 0.294 I 4.5% I 0.024 I 0.4% I I I I

Table 8 shows the effect of invalidation cycles on
the total performance for both TS1 and TBSIS. We
study the case of the lp program in 32 processor sys-
tem. As shown in the table, the performance of TS1
is greatly affected by the efficiency of invalidation
scheme while TBSIS sustains a graceful degradation
and achieves reasonably good performance with slow
invalidation.

7 Conclusion
In this paper, we propose a new software cache

coherence protocol based on the timestamp concept.
Our method combines the ideas in TS1 and TPI and
overcomes their limitations. Furthermore, with im-
proved compiler techniques, the performance of our
protocol can be further improved without extra hard-
ware and runtime overheads. In our protocol, the
timestamp is used for the invalidation of cache lines.
By using the timestamp, selective invalidation of O(1)
time is possible. This scheme has the characteristic
of high cache performance and low hardware and run-
time overhead.

References
[l] Aho, A.V., Sethi, R. and Ullman, J.D. “Compil-

ers: Principles, Techniques and Tools.” Addison-
Wesley, Reading, Massachusetts, 1986.

[a] Bailey, D. et al. “The NAS Parallel Bench-
marks.” RNR Technical report, RNR-94-007,
March, 1994.

[3] H . Cheong and A. Veidenbaum ”Compiler-
directed Cache Management for Multiprocessor.”
IEEE Computer, 23(6):39-47, June 1990.

[4] H. Cheong, “Life-span strategy - A Compiler-
based Approach to Cache Coherence.” In Pro-
ceedings of 1992 International Conference on Su-
percomputing, 1992.

[5] T. Chiueh, “A Generational Algorithm to Multi-
processor Cache Coherence.” In Proceedings of
the 1993 International Conference on Parallel
Processing, pages 120-124, 1993.

[6] L. Choi and P. Yew “A Compiler-Directed Cache
Coherence Scheme with Improved Intertask Lo-
cality.” In Supercomputing ’94, pages 773-782,
1994.

[7] L. Choi and P. Yew “Interprocedural Array
Data-Flow Analysis for Cache Coherence.” In
8th Intl. Workshop on Languages and Compilers
f o r Parallel Comp., pages 6.1-6.15, Aug. 1995.

[8] E.Darnell and K. Kennedy “Cache Coherence
Using Local Knowledge.” In Supercomputing’93,
pages 720-729, 1993.

[9] A. Louri and H. Sung. “A Compiler Directed
Cache Coherence Scheme With Fast and Paral-
lel Explicit Invalidation.” In Proc. of the 1992
International Conference on Parallel Processing,
pages 2-9, Aug 1992.

[lo] S. Min and J. Baer. “Design and Analysis of
a Scalable Cache Coherence Scheme Based on
Clocks and Timestamps.” IEEE Trans. on Par-
al le l and Dist. Systems, 3(1):25-44, Jan. 1992.

111-121

