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Abstract 
Fault tolerance is an important aspect of real-time 

computer systems, since timing constraints must not 
be violated. When dealing with multiprocessor sys- 
tems, fault tolerance becomes an even greater require- 
ment, since there are more components that can fail. 
In this paper, we present the analysis of a fault- 
tolerant scheduling algorithm for real-time applica- 
tions on multiprocessors. Our algorithm is based on 
the principles of primary/backup t a l ,  k h p  oaer- 
loading (i.e., schedulin more than a sin e backu in 
the same time interval!, and backup deafmation [.e.$ 
reclaiming the resources unused by backup tasks in 
case of fault-free operation). A theoretical model is 
developed to study a particular class of applications 
and certain backup and overloading strategies. 

The proposed scheme can tolerate a single fault of 
any processor at any time, be it transient or perma- 
nent. Simulation results offer evidence of little loss of 
schedulability due to the addition of the fault toler- 
ance capability. Simulation is also used to study the 
length of time needed for the system to recover from 
a fault (i.e., the time when the system is again able to 
tolerate any fault). 

1 Introduction 
In critical real-time applications, a reliable envi- 

ronment is required to guarantee that jobs will meet 
their deadlines despite the presence of faults. Avoid- 
ing faults is not always possible, since the system de- 
signer does not know when a fault will occur or what 
the fault will be. On the other hand, if a system takes 
precautionary measures to handle faults, then it can 
tolerate faults and still yield functionally and tempo- 
rally correct results, thus providing the desired reliable 
environment. 

Among the basic mechanisms for fault tolerance 
are checkpointing and component redundancy. The 
more complex the underlying computing system, the 
more difficult it becomes to design and implement such 

*This work is supported in part by NSF grant CCR 
9308886 to the Department of Computer Science, University 
of Pittsburgh. 

mechanisms. For instance, the number of faults likely 
to occur increases with the number of hardware and 
software components in the overall system. Moreover, 
in real-time applications, handling of faults has to take 
place within a limited interval of time and thus it is 
more difficult than in applications where time is not 
critical. 

Fault-tolerant systems developed for real-time dis- 
tributed applications are dedicated to one specific a p  
plication, suffer substantial performance overheads, or 
require special hardware. In this paper, we study a 
general purpose fault-tolerant scheduling scheme for 
real-time distributed applications, which does not re- 
quire special hardware. The general problem of opti- 
mal fault-tolerant scheduling of tasks is NP-complete 
[3], and therefore different heuristics have been used 
to schedule real-time tasks maximising some criteria 

Our scheme is based on the primary/backup tech- 
nique and proves to be best suited for low failure rates 
and for applications that have large laxity. The p r t  
mary/bachp ( P B )  approach allows multiple copies of 
a task to be scheduled on different processors [13]. One 
or more of these copies can be run to make sure that 
the task completes before its deadline. In the PB a p  
proach, the backup task is activated only if a fault 
occurs while executing the primary task. As a special 
case of the PB approach, a fault tolerant scheduling al- 
gorithm for periodic tasks is proposed in [SI to handle 
transient faults in a uniprocessor system. One of the 
restrictions of this approach is that the period of any 
task should be a multiple of the period of its preceding 
tasks. 

Son and Oh describe a PB scheduling strateg for 
periodic tasks on multiprocessor systems [ll, 127. In 
this strategy, a backup schedule is created for each 
task in the primary schedule. The tasks are then ro- 
tated such that the primary and backup schedules are 
on different processors and do not overlap. In [12] the 
number of processors required to provide a schedule 
to tolerate a single failure is double the number of the 
non-fault-tolerant schedule. 

Two other works have studied fault-tolerant PB 
scheduling [l, 51. In [l], there is a description of a 
primary/standby approach, where the standby has ex- 
ecution time smaller than the primary tasks (as in [SI). 
Both primary and standby start execution mul tane-  

[2, 7, 151. 
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ously and if a fault affects the primary, the standby 
will send its results. On the other hand, [5] presents 
theoretical results assuming that an optimal schedule 
exists and enhancing that schedule with the addition 
of standby tasks. Not all schedules permit such addi- 
tions. 

Another approach for providing single fault toler- 
ance in real-time systems is to dedicate a standby pro- 
cessor as a spare. A major disadvantage of such ap- 
proach is that no tasks are scheduled on the dedicated 
spare processor. 

In [4] , we present a general a p  roach in which appli- 
cation's software modules (tasksf are replicated across 
processors in a way that guarantees that all the tasks 
are executed within their deadlines despite some fixed, 
user-specified number of faults. The novel ideas in 
that approach are backup overloading and backup de- 
allocation. In this paper we extend the scheme by 
introducing the notion of weighed overloading, and we 
study the effect of this notion on the schedulability 
and resiliency of the system. We also present a Markov 
model to analyze the schedulability when tasks have 
unit execution time. For more general tasks, we evalu- 
ate our scheme by a suite of simulated tests. In these 
simulations we generate a synthetic workload, with 
deadlines, worst case computation times, etc, and sim- 
ulate the scheduler and the execution. We then use 
several metrics to evaluate the performance of the al- 
gorithm, such as the rejection rate of our scheduler, 
the average time that a second fault may be tolerated, 
and the schedulability for different system parameters. 

This paper is organized as follows: in Section 2 we 
give an overview of our fault-tolerant scheduling algo- 
rithm, which is fully described in [4]. In that section 
we also present some results about the fault-tolerant 
capability of this scheme. In Section 3, we describe the 
model for systems of tasks that have unit length, and 
present solutions for that model. In Section 4, we show 
the details of our fault tolerance approach and discuss 
the cost and trade-offs involved using simulation re- 
sults. Future work and conclusions are presented in 
Section 5. 

2 The Scheduling Scheme 
We consider a system which consists of n inter- 

connected identical processors and we assume that 
there is a task scheduling processor that maintains 
a global schedule. In our model, a task is a tuple 
T; = ( ~ , r ; , d ; , c ; ) ,  where a; is the arrival time, r; is 
the ready time (earliest start time of the task), d, is the 
deadline, and c; is maximum computation time (also 
called worst case execution time). The tasks in our 
model are aperiodic and independent, that is, have 
no precedence constraints. We assume that a; = r; 
and that the window of a task (w; = o!, - r ; )  is at 
least twice as large as the computation time, in or- 
der to make it possible to schedule both the task and 
its backup' within its time constraints. Tasks arrive 
dynamically in the system. 

'Each backup task is a copy of the primary task, that is, has 
the same execution time and yields the s a m e  results. 

We assume that only one processor can fail at any 
instant of time and that a second processor cannot 
fail before the system recovers from the first failure. 
We also assume that there exists some fault detection 
mechanism that detects a site crashes (e.g., fail-signal 
processors [lo]). Both permanent and transient faults 
can be handled by our approach. We do not consider 
the problem of software faults or correlated component 
failures. 

When a task arrives, if a schedule cannot be found 
for the task and its backup, it is rejected (i.e., the 
system does not try to schedule the task at a later 
time). To achieve high schedulability while provid- 
ing fault-tolerance, our method applies two techniques 
while scheduling the primary and backup copies of the 
tasks: 

backup overloading which is scheduling backups 
for multiple primary tasks during the same time 
period in order to make efficient utilization of 
available processor time, and 

de-allocation of resources reserved for backup 
tasks when the corresponding primaries complete 
successfully. 

The primary and backup copies of a task i will 
be referred to as simply the primary ( P r ; ) ,  and the 
backup (Bk;) .  The time intervals on which the pri- 
mary and the backup copies are scheduled are called 
the primary and backup time slots, respectively. If the 
backup copies of more than one task are scheduled to 
run in the same time slot, that backup slot is said to 
be overloaded. The backups of up to n - 1 tasks run- 
ning on different processors can be overloaded on the 
same slot if at most one processor can fail at a time. 

For fault-tolerant purposes, reservations of re- 
sources for backup copies must be guaranteed. Backup 
copies, however, can have a different scheduling strat- 
egy than primaries. Note, however, that scheduling 
primary as well as backup tasks does not significantly 
increase the running time the scheduling algorithm. 
This time is proportional to the task window and the 
average execution time of tasks. According to [8, 141, 
for many applications the ratio window/computation 
of tasks is not more than 11, which leads us to believe 
that a good implementation of the scheme will not be 
costly. Furthermore, in terms of algorithm complex- 
ity, the cost of searching for a schedule for the backup 
or not searching is the same (since we search at most 
all tasks once). 

In later sections of this paper, we will show that 
our scheduling approach achieves higher schedulabil- 
ity than the approach in which one of the processors 
in the system is dedicated as a spare processor. This is 
mainly because in the dedicated spare approach, the 
spare processor is not used by any executing tasks dur- 
ing the intervals of fault-free operation. This wasted 
processor time could be used by some other task that 
could be executed concurrently, if we can guarantee 
that the backup tasks will be executed if needed. 

Another disadvantage of the spare approach is that, 
in real-time systems, tasks must be memory resi- 
dent a t  the time of execution. The spare approach, 
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thus, requires that all tasks be loaded in the local 
spare processor memory prior to the execution of the 
tasks. That implies that either the scheduling algo- 
rithm must take into consideration the total memory 
requirements by all tasks, or it must consider the time 
to load tasks that are to be executed in case of failures. 
Currently, none of the systemr that we are aware of 
take into consideration the loading time. Therefore, it 
would be a strain on the system, if all tasks needed to 
be loaded up on one processor's memory. 

Fault-Tolerant Scheduling Results 
From the problem definition above it is easy to de- 

rive the following propositions. Note that Pri and Bki 
should be scheduled within ri and 4. The nomencla- 
ture we use here is as follows: P ( T )  is the processor 
on which T is scheduled to execute where T is either 
Pri or Bki, beg(T) is the scheduled begin time of T ,  
end(T) is the scheduled end time of T ,  and S(T) is 
the time interval (slot) in which T is scheduled (i.e., 

Proposition 1 For a primaty/backup scheme, a task 
Ti is guaranteed to ezecute in the resence of one per- 
manent fault if and only if P ( P r i f f  P ( B h ) .  

Proof: If P(Pri )  fails, then P(Bk,) cannot fail and 
therefore P(Bki will execute successfully. However, 

0 nor Bki can execute successfully. 

For transient faults the proposition above is overly 
conservative. The only restriction on the system ar- 
chitecture for transient failures is to have the window 
large enough to accommodate both the primary and 
the backup. On the other hand, we must leave enough 
time in the window for the primary, backup and extra 
work, as follows: 

Proposition 2 To allow Ti to ezecute in the presence 
of any single fault, beg(Bh) should be larger than or 
equal to end Pri)  + ai, where 6, is the time it takes 

ezecuting task Ti .  

Proof: By contradiction: Assume end(Bki) = 4 
and end(Pri) = beg(Pr,). Let a fault occur at  time 
end(Pri) - e. To start B h ,  it would take 6 > E units 
of time. That means that the backup would end at 

0 

From the following result we can see that there are 
some restrictions on the processors on which primary 
and backup tasks can be scheduled. 

Theorem 1 To allow any single fault to be tolerated, 
only backups of tasks scheduled on different processors 
can overlap. That is, S(Bk,) n S(Bk,) # 0 implies 
P(Pr i )  # P(Pr , ) .  

Proof: By contradiction: Assume P Pri)  = 

ups overlap, the backup slot is sm s er than the sum 

W )  = tbe!7(T)l e 4 T ) I ) .  

if P(Pri )  = P(  d k i )  = p ,  and p fails, then neither Pri 

to detect an 6 communicate an error occurring while 

time end(Pr,) - e + 6i + q > 4. 

P ( P r j )  and let end(Pri) = beg(Pr, Since t 6 e back- 

of the two computation times: end(Bkj) - k g ( B k i )  < 
ci + cj.  Let a fault occur at t h e  end(Pri) - E. 
Then kg(S(Bki ) )  + ci + c, > d,. That means that 
P(Pri )  # P(Pr j ) .  0 

Another result refers to the time it takes for the 
system to become fully resilient after a fault occurs in 
processor Pi. We will call this latency time the time 
to second fault (TTSF). This time is essentially the 
maximum between the end time of backups for tasks 
scheduled on Pi, and the end time of the primary tasks 
on other ~ I O C ~ ~ S O I S  with backups on Pi. 

Theorem 2 If a permanent fault occurs at time t in 
processor Pi , the system will be able to tolerate another 
fault that occur at a time t', where 
t' > m x {  m z , ( e n d  Bk,) : P(Pr ,  = Pi}, 

P r j )  : P(Bkj1 = Pi}} 

Proof: When a fault occurs a t  time t in Pi, any task 
arrivin later than t will be scheduled (primary and 
backup? on the n- 1 non-faulty processors. Thus, such 
a task is guaranteed to complete even if a second fault 
occurs. If a task, 3, is already scheduled when the 

then such a task is also guaranteed to complete even 
if a second fault occurs. Finally, if either P(Pr j )  = Pi 
or P Bkj)  = Pi, then the restriction on t' guarantees 

0 before a second fault occurs. 
The propositions and theorems above will guide the 

scheduling algorithm presented in the following sec- 
tions. 

3 Scheduling Uniform Tasks 
We start the presentation of our solution with a 

restricted form of the general model presented in Sec- 
tion 2. Specifically, we restrict the tasks to have a 
uniform worst case execution time, ci = 1. With 
unit length tasks, backup slots may be easily over- 
loaded since all backup tasks are of the same length. 
In fact, a simple backup pre-allocation policy is to 
reserve a slot for backup every n time slots on each 
processor. Backup slots on the n processors can be 
staggered (Figure l), that is, if a backup slot is pre- 
allocated a t  time t on processor Pi, then a backup slot 
is pre-allocated a t  time t + 1 on processor P ( i + ~ ) ~ o d , , .  
This pre-allocation allows for a simple assignment of 
backups to tasks in a way that satisfies Theorem 1 . 
Specifically, if a backup slot is pre-allocated a t  time t 
on Pi, then any task scheduled to run a t  time t - 1 
on P,, j # i, can use this slot as a backup. Because 
the task scheduled to run on Pi at time t - 1 cannot 
have its backup slot on the same processor (Proposi- 
tion l ) ,  then this task can use the backup slot at time 
t + 1, which is on P(i+l)mdr. In other words, for a 
task Ti, Bki is scheduled immediately after Pri with 
probability (n-2)/ n-1) and is scheduled two slots later 

scheme, n - 1 backup tasks can potentially be over- 
loaded on the same backup slot. Also, the n - 1 pri- 
mary tasks that may be scheduled between two backup 

first fault OCCUIS and P(P7j )  # Pi and P(Bkj )  # Pi, 

that L k, or Pr ., respectively, will successfully execute 

than Pri with pro 6 ability l / (n - l ) .  Note that, in this 
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slots on a processor, P; have their backups on different 
processors. 

Figure 1: Staggered backup slots in a multiprocessor 
system 

The slot pre-allocation for backups described above 
may decrease the schedulability of tasks since primary 
tasks may not be scheduled on slots reserved for back- 
ups. In order to estimate the loss of schedulability 
caused by the addition of the fault tolerance capability 
(the backup slots), we consider the simple FIFO (first 
come first served) scheduling of the primary tasks. We 
assume that A,, is the average rate of task arrival 
in the system with the number of tasks arriving at 
any time t being uniformly distributed between 0 and 
2A,,. In other words, if P,,(k) is the probability of k 
tasks arriving a t  a given time t ,  then Par(k) = 1 
We also assume that the window sizes of the arriving 
tasks have a uniform distribution with a minimum of 
3 and a maximum of Wm,,. That is, if P,;,(w) is 
the probability that an arriving task has a window w ,  
then P,;,,(w) = & for w = 3,. . . , W,,,. Note 
that the assumption that Pa, and Pw;,, are uniformly 
distributed is not essential for the analysis technique 
described next. The technique may be applied to other 
distributions of Pa, and P,;,,. 

2Aa,+1' 

Figure 2: Transitions out of state S,, for a linear chain 

FIFO scheduling is equivalent to maintaining a task 
queue, Q, to which arriving tasks are appended. Given 
that n - 1 tasks can be scheduled on each time slot', 
then the position of a task in Q indicates its scheduled 
execution time. If at the beginning of time slot t ,  a 
task Ti is the kth task in Q, then is scheduled to 
execute a t  time slot t + LA]. 

When a task T, arrives a t  time t, its schedulability 
depends on the length of Q and on the window of the 
task, w;.  If is appended a t  position q of Q and w; 2 
1 5 1 ,  then the primary task, Pr; ,  is guaranteed to 
execute before time t + w;. Otherwise, the task is not 
schedulable since it will miss its deadline. Moreover, if 
w, 2 151 +2, then Bk; is also guaranteed to execute 
before t + w;. 

'One slot is reserved for backups. 

@ 0 tasks arrive 

@ task arrives 

@ 2 tasks arrive 

3 tasks arrive 

6 tasks arrive 000000 
Figure 3: Transitions out of state SZ,~; A,, = n = 3. 

The dynamics of the above system may be modeled 
by a Markov process. For simplicity of presentation. 
we start by modeling a system without deadlines, that 
is, a system in which no tasks are rejected. Such a 
system may be modeled by a linear Markov chain in 
which each state represents the number of tasks in 
Q and each transition represents the change in the 
length of Q in one time unit. The probabilities of the 
different transitions may be calculated from the rate 
of task arrival. Specifically, if S,, represents the state 
in which Q contains U tasks and U 2 n - 1, then the 
probability of a transition from s,, to S u - ( n - l ) + k  is 
P,,(k) for k = 0 , .  . . , 2A,,. This is because during a 
time unit, n - 1 tasks are consumed from the queue 
and k new tasks arrive with probability P,,(k). If 
U < n - 1, then only U tasks can be consumed and 
Par(k) becomes the probability of a transition from S,, 
to s k .  For example, Figure 2 shows the transitions in 
the Markov chain assuming that A,, = n and n = 3. 

When the k arriving tasks have finite window sizes, 
some of these tasks may be rejected. Let Pq,k be 
the probability that one of the k tasks are rejected 
when the queue size is q. The value of p q &  is the 
probability that the window of the task is smaller 
than + 6, where 6 is the extra time needed 
to schedule the backup and is equal to 1 or 2 with 
probability l /(n - 1) and (n - 2)/(n - 1 respec- 

bility, Prej(r, k, q), that T out the k arriving tasks are 
rejected is Prej(r, k, q )  = C~(Pq,k)r(l-pq,k)k-r, where 
C," is the number of possible ways to select T out of k 
objects. 

In order to keep track of the number of rejected 
tasks, each state S, is divided into 2A,, + 1 states, 
Su,rl  T = 0 , .  . . , 2A,,, where 2A,, is the maximum 
number of tasks arriving, and possibly rejected, in 
each time unit. A transition into state Su,r indi- 
cates that T tasks are rejected. With this, a transi- 
tion from S,, to S, is now broken down to transitions 

tively. Hence, when the queue size is q ,  t k e proba- 
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to states S,,-r,r. Specifically, given that a state Su,il 
0 5 a 5 2A,, represents a queue length of U, then 
if U 2 n, the probability of transition from Su,i to 
su - (n- l )+a -r,r is 
P[su,i + Su-(n-i)+k-r,r] = Par(k)Pr,j(t, k ,u  - n + 1) (1)  

for  k = 0 ,..., 2A,. and t = O , . .  ., k 
If U < n, then 

P[su,i --t sa-,,] Par(k)Prej(r, k,  0) ( 2 )  

fur k = 0 ,  . e . , 2Aav and r = 0, . . . , k 
In Figure 3, we illustrate the transitions out of state 

S2,0, when n = 3 and 5 new tasks arrive. Specifically, 
S2,o --t S S - ~ , ~ ,  r = 0 , 1 , .  . ., 5 ,  correspond to r of the 5 
tasks being rejected. The breakdown of the transitions 
out of S2,o are not shown, but the target states are 
shaded according to the number of tasks that arrive. 
The top row of Figure 3 is when all tasks are accepted, 
while row r represents r tasks being rejected. Note 
that the number of states in each row of the Markov 
chain is (n - 1)Wmaz since the length of Q may never 
exceed this length. 

By computing the steady state probabilities of be- 
ing in the rejection states, it is possible to compute 
the expected value of the number of rejected task, R 
per time unit. Namely, if P,, U, v )  is the steady state 
probability of being in Su9v, t 6 en 

(n-1)wmam 2A,, 

R =  x ( v P 6 6 ( u 9 v ) )  

u=o v = l  

The rate of task rejection is then computed by di- 
viding R by the average number of arriving tasks, A,,. 

If no faults occur, the time interval used by the 
backups can be re-utiliaed (backup de-allocation . 
has occurred, then the backup pre-allocated during 
time slot t + 1 may be used to schedule a new task. In 
other words, if k tasks arrive during slot t ,  and k > 0, 
then one of these tasks can be scheduled in the deallo- 
cated backup slot, and the remaining k - 1 tasks can 
be treated as above. The effect of backup deallocation 
may be analysed by changing the transition probabil- 
ities in the above Markov chain. More specifically, the 
change of the transition probabilities in equation (1) 
is as follows: 

Backup deallocation means that if at  time t no fa ul t 

P[su,i --t %-(n-1),01 = Par(O) 

P[su,i + Su-(n-l)+k-l-r,r] = Par(k)Prej(T, k-1, U-n-I-1) 

f o r k =  1, ..., 2 A a v a n d r = 0 ,  ..., k - 1  
The probabilities in equation ( 2 )  are changed similarly. 

In Figure 4, we plot the rate of task rejection as a 
function of the number of processors, n, for the case 
A,, = n with and without backup deallocation. The 
decrease in rejection rate due to backup deallocation is 
clear. Note that, from a schedulability point of view, 

dedicating one of the n processors as a spare is equiv- 
alent to staggering the backup slots among the n pro- 
cessors when these slots are not deallocated. Hence, 
Figure 4 can be also looked a t  as a comparison be- 
tween our strategy and the strategy of dedicating one 
spare as a backup. 

Figure 4: Rejection rate as a function of the number 
of processors 

4 Scheduling Non-Uniform Tasks 
4.1 Task Model and Scheduling 

In this section we remove the restriction of the pre- 
vious section about the execution times of the tasks. 
Here the execution time is modeled as in Section 2 by 
a parameter c,. 

Since the execution times of tasks are not fixed, we 
cannot pre-allocate the backup tasks as in Section 3. 
Also, the analysis of such systems becomes more com- 
plex. Therefore we will present a heuristic for the 
scheduling of tasks arriving dynamically, with differ- 
ent computation times and analyze this heuristic using 
simulations. 

A free slot is the time not used by primaries and 
backups. Forward Slack is the maximum amount of 
time a slot can be postponed without violating any 
tasks' timing constraints. Forward slack will be called 
slack. 

While scheduling the tasks and their backups, we 
maintain a list of the existing slots. Whenever a new 
task is received, the primary is scheduled as early as 
possible. As for scheduling backups, deallocation and 
overloading imply possibly conflicting heuristics. On 
the one hand, the chance of reutilizing the deallocated 
backup for scheduling other tasks increases if back- 
ups are scheduled as late as possible. On the other 
hand, maximizing the overloading provides an efficient 
utilisation of the resources but may not result in the 
backups being scheduled as late as possible. In [4] we 
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simulated an algorithm in which overloading is always 
favored. In this section, we study the relative merits of 
overloading and late backup scheduling. Specifically, 
we consider a parametric cost in which a parameter 62 
represents the importance of overloading versus late 
scheduling. We call the scheme that uses such a para- 
metric scheduling algorithm weighted overloading. 

Clearly, the scheduling policy for the backup will in- 
fluence the schedulability of the tasks submitted to the 
system. When faced with the choice between overload- 
ing a backup, Bk,, on a previously scheduled backup 
slot and scheduling Bk; as late as possible, we use the 
user-defined parameter n to maximize the quantity 
defined by 

cost = backup-end + R x overlap-length (3) 

where overlap-length is the length of Bk; which over- 
laps with a previously scheduled backup. That means 
that if R = 0, we will schedule the backup as late as 
possible and if R = 00, we will attempt to overload as 
much as possible. This allows for tuning the parame- 
ter according to the system state. 

7 
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Figure 5: Scheduling 4 tasks on 4 processors. The 
black box represents the possible schedules of Blc4 

An Example 

A simple schedule for four tasks is shown in Fig- 
ure 5. The first three tasks3 (TI = ( O , O ,  6, 15),Tz = 
(1 ,1 ,4 ,17 ) ,  T3 = (1, 1 , 3 , 9 ) )  are scheduled in PI, P2 
and P3, while their backups are scheduled in P z ,  P3 
and PI, respectively. Note that we chose to schedule 
these tasks according to their lastest completion time, 
that is, their deadlines. Now consider a fourth task, 
T4 = (2 ,2 ,6 ,20 ) :  Bk4 is scheduled in processor P4, 
since it is the earliest possible schedule for that task. 
Thereafter, we attempt to schedule its backup, Bk4. 

Note that the backup can be scheduled in proces- 
sors PI,  P z  and P3. That is because the primary is 
in processor P4, and therefore the backup cannot is 
placed in the same processor. The question now is 
a t  what time, and in which processor to schedule the 
backup? We show that it depends on the parameter 
R of the algorithm. We base our example on Equa- 
tion (3). The results of the tasks and their value t are 
shown in Table 1. We select specific positions for Bk4 
(complete, partial, and no overload) to illustrate the 

3Remember that a task is represented by the arrival time, 
ready time, computation time, and deadline. 

possibilities and how the heuristic works. In the table, 
the highlighted cost is chosen. 

Table 1: Cost of scheduling in different positions of 
different processors, with different values of R 

Notice that for each value of the weight, the lo- 
cation of the backup would be different. There are 
ranges of values of weight that would not influence 
the scheduling of the backups. However, these situa- 
tions depend on the task set and the current schedule. 
For example, when Sa = 1 in processor P3, scheduling 
Bkl either at times 13 or 14 would yield the same cost. 

4.2 
Since we are interested in studying the effect of 

de-allocation and overloading on the schedulability of 
tasks, we consider a low-complexity scheduler. Simple 
schedulers are likely to be used in actual systems due 
to the low overhead and ease of implementation. 

The primary for task i is scheduled as follows: We 
look at each processor to find if Pr; can be scheduled 
between r; and 4. If there is a free slot larger than 
c, on a processor P between r; and d,, then we know 
Pr, can be scheduled on P. If Pr, cannot be scheduled 
without overlapping another time interval slot., then 
we have to check if we can reschedule slot,. This can 
be done by checking the slack of slot,. If the slack of 
slot, added to the preceding free slot is greater than c,, 
then Pr; can be scheduled after shifting slot. forward. 

is scheduled as fohows: Let 
the earliest schedule of primary Pr ,  be on processor 
Pj. We look at the possible schedules for the backup 
on processors other than P,. We try to schedule the 
backup on a free slot or overload it on an existing 
backup slot, according to the Equation (3 . It is clear 
that the information about the forward s 1 acks of pri- 
mary slots need to be maintained so that they can 
be moved forward if necessary. However, to keep the 
complexity and running time of the algorithm low, our 
algorithm does not move backup slots. This is because 
the backup slot may be supporting more than one pri- 
mary and if the backup slot is moved, the slacks of all 
those primaries will change. This may (and probably 
wiU) have a cascading effect and each time a backup 
slot is moved, it will be very costly to recalculate the 
slacks. This cascading effect can ripple through all 
tasks in the system, extending to processors other than 
the one that the backup is scheduled on. In contrast, 
shifting primaries will affect only tasks on a single pro- 
cessor. Since the scheduling algorithm only uses for- 
ward slacks, only the two processors on which the new 
slots are scheduled are affected. 

Finally the task is committed as follows: once the 
schedules for both the primary and the backup have 
been found, we commit the task, that is, we guarantee 

Steps to Schedule the Task 

The backup for task 
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that the task will be completed before its deadline even 
in the presence of a single fault. 

4.3 Simulation and results 
To study the scheduling algorithm presented in Sec- 

tion 4, we have performed a number of simulations. To 
the best of our knowledge, no simulation studies have 
been done for fault-tolerant scheduling of aperiodic 
tasks in dynamic real-time multiprocessor systems. 

The schedule generated by the algorithm described 
in Section 4.2 can tolerate any single transient or per- 
manent fault. In the case of a transient failure, only 
the failed task is run on the backup while in the case 
of a permanent failure, all tasks on the failed proces- 
sor are rescheduled on their respective backups. This 
fault tolerance capability, however, comes at  the cost 
of increasing the number of rejected tasks. The first 
goal of our simulation is to estimate this cost for the 
varying parameters as discussed below. 
As we have mentioned, another approach for pro- 

viding single fault tolerance in real-time systems is to 
dedicate a standby processor as a spare. The second 
goal of our simulation is to compare the schedulability 
of our scheme with that of the single spare processor 
scheme (or simply the spare scheme). 

In the simulation, we measured the rejection rate 
of tasks as a function of the load, the window size, the 
number of processors, the time it takes for the system 
to tolerate a second fault (TTSF), and the weight. 

4.3.1 Simula tor  and Simulation Parameters 

Our simulator is a discretoevent simulator where the 
events driving the simulation are the arrival, start, and 
completion of a task as well as occurrence of faults. 
The interface with the visualisation tool [9] can be 
toggled at  simulation dispatch time, and the simulator 
reads the simulation parameters from files and runs 
the simulation for each set of parameters. An output 
file is generated, from which several scripts extract the 
relevant information. 

We generated task sets for the computation of the 
schedules and ran each policy on the same task set. 
The simulation parameters that can be controlled are: 

number of processors n: this is a fixed user 
input. 

the average computa t ion  time, c: the compu- 
tation time of the arriving tasks is assumed to be 
uniformly distributed with mean c. 

the load y: This parameter represents the aver- 
age percentage of processor time that would be 
utilised if the tasks had no real-time constraints 
and no fault-tolerance requirements. Larger 7 
values leads to larger task inter-arrival time. 
Specifically, the inter-arrival time of tasks is as- 
sumed to be uniformly distributed with mean 

a parameter 6: it controls the window sise, which 
is uniformly distributed with mean c x 0. 

a = c / ( 7  * n). 

the overload weight, Q: it regulates the impor- 
tance of overloading in contrast to scheduling the 
backup as late as possible. 

We ran simulations for task sets of 1,000 tasks. For 
each set of parameters we generated 100 task sets and 
calculated the average of the results generated. Con- 
sistent with the model, we assume Vi,r i  = %, yield- 
ing a dynamic system. Formally, 01 = rl = 0 and 
vi  = ai, where ai is the interarrival time. The 
load ranges from sero to one i.e., 0 < y 5 1). For 

inter-arrival rate is 1. This means that, on an aver- 
age, one task arrives in the system every unit of time 
and thus the load on each of the 4 processors is 1. 
These parameters are summarised in Table 2. 

To compute the TTSF, a fault is injected at  a spe- 
cific (and arbitrarily chosen) time instant, t. Theo- 
rem 2 is then applied to compute t'. We repeat this 
experiment 1000 times and average the results to ob- 
tain the mean TTSF. 

example if 7 = 1, P = 4, an d c = 4, then the task 

4.3.2 Analysis of results 

We start by analysing the effect of the weight on the 
schedulability and on the time to second fault (TTSF). 
The results are shown in Figures 6 through 8. Then 
we show the results for the comparison of different 
schemes in Figure 9, the effect of each technique in 
Figure 10, and the effect of Merent  window sizes in 
Figure 11. 

Id= 1.0 
0.4 

035 

0.3 

3 025 d 
3 0.2 c 

Figure 6: Effect of the parameter weight in the rejec- 
tion rate 

In Figure 6 we show the variation on the schedu- 
lability for different weights. For small window sizes, 
the optimal weight is between 0 and 1 (see Figure 7), 
while for larger windows, the maximum schedulability 
is obtained when Q = 0. The variation, however, for 
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Q parameter I name I distribution I values assumed U 
, ,  I ' computation time c uniform m e a n 5  

load 7 umform mean=0.5,0.6,. ... 1.0 
inter-arrival time a uniform mean=c/(r * n) 

number of tasks IT I fixed [ 1,000 
number of Drocessors I n I fixed . . . . . .  H 

window sise I P  1 uniform I mean=@ 
weight I fixed 1 0.0.1.0.2.0.5.1.2.5.10. 15.20 

Table 2: Parameters for Simulations 
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Figure 7: Rejection rate for window = 3 

different weights is relatively small. For instance, for 
window equal to 3 and load equal to 1.0, the rejection 
rate for 4 processors, varies from 0.2461 (at f2 = 0) to 
0.2814 (at f2 = 20). 

When we consider the weight in conjunction with 
the Time To Second Fault (TTSF in Figure 8), we 
can see that, although the weight has little influence 
on TTSF, the larger the window size, the larger the 
TTSF is. This is expected, since the larger window 
increases the length of the schedule. 

The small sensitivity of the rejection rate and the 
TTSF to the weight indicates that the position of the 
backup task has little influence on the schedulability 
of tasks. This is because the processor time reserved 
for backups is reclaimed through de-allocation. This 
means that a simple strategy for scheduling backups 
may be preferred to a complex policy that increases 
the run time of the scheduling algorithm. 

In Figure 9, we compare the rejection rate of 
three schemes, namely the spare scheme, our scheme, 
and the no-fault-tolerance (NOFT) scheme for differ- 
ent number of processors. In the NOFT scheme no 
backups or spares are used; in the spare scheme, the 

t 

Figure 8: Schedulability versus weight for different 
windows and number of processors 

primaries are scheduled by the same algorithm used 
in our scheme and backups are implicitly scheduled 
on the spare processor. Note that our scheme consis- 
tently performs better than the single spare scheme, 
for all values of window siee. 

In Figure 10, we can see the effect of using over- 
loading and de-allocation in the schedulability of task 
sets plotted against the number of processors. The 
graph in that figure shows the different rejection rates 
for when we use overloading, de-allocation, both, and 
neither techniques. Note that whenever overloading 
is present ("both" and "overloading only"), we com- 
pare the results for weight = 0 and weight = 100. An 
interesting result of these simulations is that the ef- 
fect of using deallocation reverses the effect of using 
overloading. In other words, when only overloading 
is used, higher weight (more overloading) decreases 
the rejection rate; when de-allocation is also used, a 
higher weight has the reverse effect, since de-allocation 
is more beneficial when backups are scheduled as late 
as possible (f2 = 0). 

It is clear that the use of either method significantly 
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load = 1.0, window=7 
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Figure 10: Rejection rate as a function of number of processors, using Merent  techniques 
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Figure 9: Comparison of rejection rates, as a function 
of load, for spare, our, and NOFT schemes 

improves the schedulability of task sets, but the differ- 
ence from one to both techniques shows a less drastic 
improvement. This leads us to believe that using ei- 
ther overloading or de-allocation in the scheduling of 
real-time fault-tolerant tasks wil l  enhance the schedu- 
lability, but not much is gained from doing both. Al- 

though we do not show the results here, similar be- 
havior is exhibited when the load is smaller or larger 
than 1.0. 

Figure 11: Rejection rate as a function of number of 
processors, for different windows 

In Figure 11, we can see the effect of having dif- 
ferent window sises on the schedulability (plotting the 
rejection rate versus the number of processors). Note 

24 



that the schedulability of our method is higher when 
the window is large and when there are more proces- 
sors. Again, although we do not show the results here, 
similar behavior is exhibited when the load is smaller 
or larger than 1. 

5 Concluding Remarks and Future 
Work 

In this paper, we study a fault-tolerant schedul- 
ing method that tolerates processor faults, be them 
transient or permanent. We show that the overload- 
ing and de-allocation of backup slots provide an e€- 
ficient utilisation of the resources. Our results show 
positive correlation between the schedulability of task 
sets and the load on the system, as well as between 
the schedulability and the length of the average task 
window size. Both theoretical and simulation results 
indicate that the reclaiming of resources reserved for 
backup tasks (de-allocation) is the most important 
factor when scheduling tasks in a primarylbackup 
fashion. With backup de-allocation, elaborate meth- 
ods for increasing the overloading of backups seem 
to have only a small effect on schedulability and re- 
siliency. Thus, fast and simple scheduling algorithms 
should be used for backups. 

Our method can tolerate more than one processor 
failure. As it stands, the scheme can tolerate succes- 
sive permanent faults that are separated by a sufficient 
time interval. Once the time to  second failure (TTSF) 
of the system is established, it is easy to  relate the 
TTSF to the mean-time-to-failure (MTTF) and the 
reliability of the processors. The goal is to guarantee 
that within some multiples of MTTF, all tasks existing 
a t  the time of the failure complete. The new tasks ar- 
riving after the first failure will have their primary and 
backup copies scheduled on the non-faulty processors 
and thus can handle a second fault. 

To handle more than a single simultaneous fault, 
we can schedule more than one backup copies for each 
task. In this case, resiliency and overhead of the sys- 
tem will increase. Note that, although the scheduling 
policy for this case will be different from the one pre- 
sented in this paper, the mechanisms we have devel- 
oped remain the same. 

The next step in this research is to further improve 
the scheduling algorithm by allowing backups for more 
than one primary from the same processor to be sched- 
uled in the same backup slot (see Theorem 1). This is 
only possible if the actual computation times of tasks 
have high variances. We also intend to  improve the 
simulator to  measure the scheduling overhead, and to 
determine how effective this scheme is when coupled 
with a resource allocation scheme for distributed sys- 
tems. 
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