
Analysis of a Fault-Tolerant Multiprocessor Scheduling Algorithm*

Daniel MOSS^, Rami Melhem, and Sunondo Ghosh
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

{mosse ,melhem,ghosh}Ocs . p i t t . edu

Keywords: Fault Tolerance, Real Time, Operat-
ing Systems, Primary/Backup, Redundancy

Abstract
Fault tolerance is an important aspect of real-time

computer systems, since timing constraints must not
be violated. When dealing with multiprocessor sys-
tems, fault tolerance becomes an even greater require-
ment, since there are more components that can fail.
In this paper, we present the analysis of a fault-
tolerant scheduling algorithm for real-time applica-
tions on multiprocessors. Our algorithm is based on
the principles of primary/backup t a l , k h p oaer-
loading (i.e., schedulin more than a sin e backu in
the same time interval!, and backup deafmation [.e.$
reclaiming the resources unused by backup tasks in
case of fault-free operation). A theoretical model is
developed to study a particular class of applications
and certain backup and overloading strategies.

The proposed scheme can tolerate a single fault of
any processor at any time, be it transient or perma-
nent. Simulation results offer evidence of little loss of
schedulability due to the addition of the fault toler-
ance capability. Simulation is also used to study the
length of time needed for the system to recover from
a fault (i.e., the time when the system is again able to
tolerate any fault).

1 Introduction
In critical real-time applications, a reliable envi-

ronment is required to guarantee that jobs will meet
their deadlines despite the presence of faults. Avoid-
ing faults is not always possible, since the system de-
signer does not know when a fault will occur or what
the fault will be. On the other hand, if a system takes
precautionary measures to handle faults, then it can
tolerate faults and still yield functionally and tempo-
rally correct results, thus providing the desired reliable
environment.

Among the basic mechanisms for fault tolerance
are checkpointing and component redundancy. The
more complex the underlying computing system, the
more difficult it becomes to design and implement such

*This work is supported in part by NSF grant CCR
9308886 to the Department of Computer Science, University
of Pittsburgh.

mechanisms. For instance, the number of faults likely
to occur increases with the number of hardware and
software components in the overall system. Moreover,
in real-time applications, handling of faults has to take
place within a limited interval of time and thus it is
more difficult than in applications where time is not
critical.

Fault-tolerant systems developed for real-time dis-
tributed applications are dedicated to one specific a p
plication, suffer substantial performance overheads, or
require special hardware. In this paper, we study a
general purpose fault-tolerant scheduling scheme for
real-time distributed applications, which does not re-
quire special hardware. The general problem of opti-
mal fault-tolerant scheduling of tasks is NP-complete
[3], and therefore different heuristics have been used
to schedule real-time tasks maximising some criteria

Our scheme is based on the primary/backup tech-
nique and proves to be best suited for low failure rates
and for applications that have large laxity. The p r t
mary/bachp (P B) approach allows multiple copies of
a task to be scheduled on different processors [13]. One
or more of these copies can be run to make sure that
the task completes before its deadline. In the PB a p
proach, the backup task is activated only if a fault
occurs while executing the primary task. As a special
case of the PB approach, a fault tolerant scheduling al-
gorithm for periodic tasks is proposed in [SI to handle
transient faults in a uniprocessor system. One of the
restrictions of this approach is that the period of any
task should be a multiple of the period of its preceding
tasks.

Son and Oh describe a PB scheduling strateg for
periodic tasks on multiprocessor systems [ll, 127. In
this strategy, a backup schedule is created for each
task in the primary schedule. The tasks are then ro-
tated such that the primary and backup schedules are
on different processors and do not overlap. In [12] the
number of processors required to provide a schedule
to tolerate a single failure is double the number of the
non-fault-tolerant schedule.

Two other works have studied fault-tolerant PB
scheduling [l, 51. In [l], there is a description of a
primary/standby approach, where the standby has ex-
ecution time smaller than the primary tasks (as in [SI).
Both primary and standby start execution mul tane-

[2, 7, 151.

16
0363-8928194 $3.00 Q 1994 IEEE

ously and if a fault affects the primary, the standby
will send its results. On the other hand, [5] presents
theoretical results assuming that an optimal schedule
exists and enhancing that schedule with the addition
of standby tasks. Not all schedules permit such addi-
tions.

Another approach for providing single fault toler-
ance in real-time systems is to dedicate a standby pro-
cessor as a spare. A major disadvantage of such ap-
proach is that no tasks are scheduled on the dedicated
spare processor.

In [4] , we present a general a p roach in which appli-
cation's software modules (tasksf are replicated across
processors in a way that guarantees that all the tasks
are executed within their deadlines despite some fixed,
user-specified number of faults. The novel ideas in
that approach are backup overloading and backup de-
allocation. In this paper we extend the scheme by
introducing the notion of weighed overloading, and we
study the effect of this notion on the schedulability
and resiliency of the system. We also present a Markov
model to analyze the schedulability when tasks have
unit execution time. For more general tasks, we evalu-
ate our scheme by a suite of simulated tests. In these
simulations we generate a synthetic workload, with
deadlines, worst case computation times, etc, and sim-
ulate the scheduler and the execution. We then use
several metrics to evaluate the performance of the al-
gorithm, such as the rejection rate of our scheduler,
the average time that a second fault may be tolerated,
and the schedulability for different system parameters.

This paper is organized as follows: in Section 2 we
give an overview of our fault-tolerant scheduling algo-
rithm, which is fully described in [4]. In that section
we also present some results about the fault-tolerant
capability of this scheme. In Section 3, we describe the
model for systems of tasks that have unit length, and
present solutions for that model. In Section 4, we show
the details of our fault tolerance approach and discuss
the cost and trade-offs involved using simulation re-
sults. Future work and conclusions are presented in
Section 5.

2 The Scheduling Scheme
We consider a system which consists of n inter-

connected identical processors and we assume that
there is a task scheduling processor that maintains
a global schedule. In our model, a task is a tuple
T; = (~ , r ; , d ; , c ;) , where a; is the arrival time, r; is
the ready time (earliest start time of the task), d, is the
deadline, and c; is maximum computation time (also
called worst case execution time). The tasks in our
model are aperiodic and independent, that is, have
no precedence constraints. We assume that a; = r;
and that the window of a task (w; = o!, - r ;) is at
least twice as large as the computation time, in or-
der to make it possible to schedule both the task and
its backup' within its time constraints. Tasks arrive
dynamically in the system.

'Each backup task is a copy of the primary task, that is, has
the same execution time and yields the s a m e results.

We assume that only one processor can fail at any
instant of time and that a second processor cannot
fail before the system recovers from the first failure.
We also assume that there exists some fault detection
mechanism that detects a site crashes (e.g., fail-signal
processors [lo]). Both permanent and transient faults
can be handled by our approach. We do not consider
the problem of software faults or correlated component
failures.

When a task arrives, if a schedule cannot be found
for the task and its backup, it is rejected (i.e., the
system does not try to schedule the task at a later
time). To achieve high schedulability while provid-
ing fault-tolerance, our method applies two techniques
while scheduling the primary and backup copies of the
tasks:

backup overloading which is scheduling backups
for multiple primary tasks during the same time
period in order to make efficient utilization of
available processor time, and

de-allocation of resources reserved for backup
tasks when the corresponding primaries complete
successfully.

The primary and backup copies of a task i will
be referred to as simply the primary (P r ;) , and the
backup (Bk;) . The time intervals on which the pri-
mary and the backup copies are scheduled are called
the primary and backup time slots, respectively. If the
backup copies of more than one task are scheduled to
run in the same time slot, that backup slot is said to
be overloaded. The backups of up to n - 1 tasks run-
ning on different processors can be overloaded on the
same slot if at most one processor can fail at a time.

For fault-tolerant purposes, reservations of re-
sources for backup copies must be guaranteed. Backup
copies, however, can have a different scheduling strat-
egy than primaries. Note, however, that scheduling
primary as well as backup tasks does not significantly
increase the running time the scheduling algorithm.
This time is proportional to the task window and the
average execution time of tasks. According to [8, 141,
for many applications the ratio window/computation
of tasks is not more than 11, which leads us to believe
that a good implementation of the scheme will not be
costly. Furthermore, in terms of algorithm complex-
ity, the cost of searching for a schedule for the backup
or not searching is the same (since we search at most
all tasks once).

In later sections of this paper, we will show that
our scheduling approach achieves higher schedulabil-
ity than the approach in which one of the processors
in the system is dedicated as a spare processor. This is
mainly because in the dedicated spare approach, the
spare processor is not used by any executing tasks dur-
ing the intervals of fault-free operation. This wasted
processor time could be used by some other task that
could be executed concurrently, if we can guarantee
that the backup tasks will be executed if needed.

Another disadvantage of the spare approach is that,
in real-time systems, tasks must be memory resi-
dent a t the time of execution. The spare approach,

17

thus, requires that all tasks be loaded in the local
spare processor memory prior to the execution of the
tasks. That implies that either the scheduling algo-
rithm must take into consideration the total memory
requirements by all tasks, or it must consider the time
to load tasks that are to be executed in case of failures.
Currently, none of the systemr that we are aware of
take into consideration the loading time. Therefore, it
would be a strain on the system, if all tasks needed to
be loaded up on one processor's memory.

Fault-Tolerant Scheduling Results
From the problem definition above it is easy to de-

rive the following propositions. Note that Pri and Bki
should be scheduled within ri and 4. The nomencla-
ture we use here is as follows: P (T) is the processor
on which T is scheduled to execute where T is either
Pri or Bki, beg(T) is the scheduled begin time of T ,
end(T) is the scheduled end time of T , and S(T) is
the time interval (slot) in which T is scheduled (i.e.,

Proposition 1 For a primaty/backup scheme, a task
Ti is guaranteed to ezecute in the resence of one per-
manent fault if and only if P (P r i f f P (B h) .

Proof: If P(Pri) fails, then P(Bk,) cannot fail and
therefore P(Bki will execute successfully. However,

0 nor Bki can execute successfully.

For transient faults the proposition above is overly
conservative. The only restriction on the system ar-
chitecture for transient failures is to have the window
large enough to accommodate both the primary and
the backup. On the other hand, we must leave enough
time in the window for the primary, backup and extra
work, as follows:

Proposition 2 To allow Ti to ezecute in the presence
of any single fault, beg(Bh) should be larger than or
equal to end Pri) + ai, where 6, is the time it takes

ezecuting task Ti .

Proof: By contradiction: Assume end(Bki) = 4
and end(Pri) = beg(Pr,). Let a fault occur at time
end(Pri) - e. To start B h , it would take 6 > E units
of time. That means that the backup would end at

0

From the following result we can see that there are
some restrictions on the processors on which primary
and backup tasks can be scheduled.

Theorem 1 To allow any single fault to be tolerated,
only backups of tasks scheduled on different processors
can overlap. That is, S(Bk,) n S(Bk,) # 0 implies
P(Pr i) # P(Pr ,) .

Proof: By contradiction: Assume P Pri) =

ups overlap, the backup slot is sm s er than the sum

W) = tbe!7(T)l e 4 T) I) .

if P(Pri) = P(d k i) = p , and p fails, then neither Pri

to detect an 6 communicate an error occurring while

time end(Pr,) - e + 6i + q > 4.

P (P r j) and let end(Pri) = beg(Pr, Since t 6 e back-

of the two computation times: end(Bkj) - k g (B k i) <
ci + cj. Let a fault occur at t h e end(Pri) - E.
Then kg(S(Bki)) + ci + c, > d,. That means that
P(Pri) # P(Pr j) . 0

Another result refers to the time it takes for the
system to become fully resilient after a fault occurs in
processor Pi. We will call this latency time the time
to second fault (TTSF). This time is essentially the
maximum between the end time of backups for tasks
scheduled on Pi, and the end time of the primary tasks
on other ~ I O C ~ ~ S O I S with backups on Pi.

Theorem 2 If a permanent fault occurs at time t in
processor Pi , the system will be able to tolerate another
fault that occur at a time t', where
t' > m x { m z , (e n d Bk,) : P(Pr , = Pi},

P r j) : P(Bkj1 = Pi}}

Proof: When a fault occurs a t time t in Pi, any task
arrivin later than t will be scheduled (primary and
backup? on the n- 1 non-faulty processors. Thus, such
a task is guaranteed to complete even if a second fault
occurs. If a task, 3, is already scheduled when the

then such a task is also guaranteed to complete even
if a second fault occurs. Finally, if either P(Pr j) = Pi
or P Bkj) = Pi, then the restriction on t' guarantees

0 before a second fault occurs.
The propositions and theorems above will guide the

scheduling algorithm presented in the following sec-
tions.

3 Scheduling Uniform Tasks
We start the presentation of our solution with a

restricted form of the general model presented in Sec-
tion 2. Specifically, we restrict the tasks to have a
uniform worst case execution time, ci = 1. With
unit length tasks, backup slots may be easily over-
loaded since all backup tasks are of the same length.
In fact, a simple backup pre-allocation policy is to
reserve a slot for backup every n time slots on each
processor. Backup slots on the n processors can be
staggered (Figure l), that is, if a backup slot is pre-
allocated a t time t on processor Pi, then a backup slot
is pre-allocated a t time t + 1 on processor P (i + ~) ~ o d , , .
This pre-allocation allows for a simple assignment of
backups to tasks in a way that satisfies Theorem 1 .
Specifically, if a backup slot is pre-allocated a t time t
on Pi, then any task scheduled to run a t time t - 1
on P,, j # i, can use this slot as a backup. Because
the task scheduled to run on Pi at time t - 1 cannot
have its backup slot on the same processor (Proposi-
tion l) , then this task can use the backup slot at time
t + 1, which is on P(i+l)mdr. In other words, for a
task Ti, Bki is scheduled immediately after Pri with
probability (n-2)/ n-1) and is scheduled two slots later

scheme, n - 1 backup tasks can potentially be over-
loaded on the same backup slot. Also, the n - 1 pri-
mary tasks that may be scheduled between two backup

first fault OCCUIS and P(P7j) # Pi and P(Bkj) # Pi,

that L k, or Pr ., respectively, will successfully execute

than Pri with pro 6 ability l / (n - l) . Note that, in this

18

slots on a processor, P; have their backups on different
processors.

Figure 1: Staggered backup slots in a multiprocessor
system

The slot pre-allocation for backups described above
may decrease the schedulability of tasks since primary
tasks may not be scheduled on slots reserved for back-
ups. In order to estimate the loss of schedulability
caused by the addition of the fault tolerance capability
(the backup slots), we consider the simple FIFO (first
come first served) scheduling of the primary tasks. We
assume that A,, is the average rate of task arrival
in the system with the number of tasks arriving at
any time t being uniformly distributed between 0 and
2A,,. In other words, if P,,(k) is the probability of k
tasks arriving a t a given time t , then Par(k) = 1
We also assume that the window sizes of the arriving
tasks have a uniform distribution with a minimum of
3 and a maximum of Wm,,. That is, if P,;,(w) is
the probability that an arriving task has a window w ,
then P,;,,(w) = & for w = 3,. . . , W,,,. Note
that the assumption that Pa, and Pw;,, are uniformly
distributed is not essential for the analysis technique
described next. The technique may be applied to other
distributions of Pa, and P,;,,.

2Aa,+1'

Figure 2: Transitions out of state S,, for a linear chain

FIFO scheduling is equivalent to maintaining a task
queue, Q, to which arriving tasks are appended. Given
that n - 1 tasks can be scheduled on each time slot',
then the position of a task in Q indicates its scheduled
execution time. If at the beginning of time slot t , a
task Ti is the kth task in Q, then is scheduled to
execute a t time slot t + LA].

When a task T, arrives a t time t, its schedulability
depends on the length of Q and on the window of the
task, w;. If is appended a t position q of Q and w; 2
1 5 1 , then the primary task, Pr; , is guaranteed to
execute before time t + w;. Otherwise, the task is not
schedulable since it will miss its deadline. Moreover, if
w, 2 151 +2, then Bk; is also guaranteed to execute
before t + w;.

'One slot is reserved for backups.

@ 0 tasks arrive

@ task arrives

@ 2 tasks arrive

3 tasks arrive

6 tasks arrive 000000
Figure 3: Transitions out of state SZ,~; A,, = n = 3.

The dynamics of the above system may be modeled
by a Markov process. For simplicity of presentation.
we start by modeling a system without deadlines, that
is, a system in which no tasks are rejected. Such a
system may be modeled by a linear Markov chain in
which each state represents the number of tasks in
Q and each transition represents the change in the
length of Q in one time unit. The probabilities of the
different transitions may be calculated from the rate
of task arrival. Specifically, if S,, represents the state
in which Q contains U tasks and U 2 n - 1, then the
probability of a transition from s,, to S u - (n - l) + k is
P,,(k) for k = 0 , . . . , 2A,,. This is because during a
time unit, n - 1 tasks are consumed from the queue
and k new tasks arrive with probability P,,(k). If
U < n - 1, then only U tasks can be consumed and
Par(k) becomes the probability of a transition from S,,
to s k . For example, Figure 2 shows the transitions in
the Markov chain assuming that A,, = n and n = 3.

When the k arriving tasks have finite window sizes,
some of these tasks may be rejected. Let Pq,k be
the probability that one of the k tasks are rejected
when the queue size is q. The value of p q & is the
probability that the window of the task is smaller
than + 6, where 6 is the extra time needed
to schedule the backup and is equal to 1 or 2 with
probability l /(n - 1) and (n - 2)/(n - 1 respec-

bility, Prej(r, k, q), that T out the k arriving tasks are
rejected is Prej(r, k, q) = C~(Pq,k)r(l-pq,k)k-r, where
C," is the number of possible ways to select T out of k
objects.

In order to keep track of the number of rejected
tasks, each state S, is divided into 2A,, + 1 states,
Su,rl T = 0 , . . . , 2A,,, where 2A,, is the maximum
number of tasks arriving, and possibly rejected, in
each time unit. A transition into state Su,r indi-
cates that T tasks are rejected. With this, a transi-
tion from S,, to S, is now broken down to transitions

tively. Hence, when the queue size is q , t k e proba-

19

to states S,,-r,r. Specifically, given that a state Su,il
0 5 a 5 2A,, represents a queue length of U, then
if U 2 n, the probability of transition from Su,i to
su - (n- l)+a -r,r is
P[su,i + Su-(n-i)+k-r,r] = Par(k)Pr,j(t, k ,u - n + 1) (1)

for k = 0 ,..., 2A,. and t = O , . . ., k
If U < n, then

P[su,i --t sa-,,] Par(k)Prej(r, k, 0) (2)

fur k = 0 , . e . , 2Aav and r = 0, . . . , k
In Figure 3, we illustrate the transitions out of state

S2,0, when n = 3 and 5 new tasks arrive. Specifically,
S2,o --t S S - ~ , ~ , r = 0 , 1 , . . ., 5 , correspond to r of the 5
tasks being rejected. The breakdown of the transitions
out of S2,o are not shown, but the target states are
shaded according to the number of tasks that arrive.
The top row of Figure 3 is when all tasks are accepted,
while row r represents r tasks being rejected. Note
that the number of states in each row of the Markov
chain is (n - 1)Wmaz since the length of Q may never
exceed this length.

By computing the steady state probabilities of be-
ing in the rejection states, it is possible to compute
the expected value of the number of rejected task, R
per time unit. Namely, if P,, U, v) is the steady state
probability of being in Su9v, t 6 en

(n-1)wmam 2A,,

R = x (v P 6 6 (u 9 v))

u=o v = l

The rate of task rejection is then computed by di-
viding R by the average number of arriving tasks, A,,.

If no faults occur, the time interval used by the
backups can be re-utiliaed (backup de-allocation .
has occurred, then the backup pre-allocated during
time slot t + 1 may be used to schedule a new task. In
other words, if k tasks arrive during slot t , and k > 0,
then one of these tasks can be scheduled in the deallo-
cated backup slot, and the remaining k - 1 tasks can
be treated as above. The effect of backup deallocation
may be analysed by changing the transition probabil-
ities in the above Markov chain. More specifically, the
change of the transition probabilities in equation (1)
is as follows:

Backup deallocation means that if at time t no fa ul t

P[su,i --t %-(n-1),01 = Par(O)

P[su,i + Su-(n-l)+k-l-r,r] = Par(k)Prej(T, k-1, U-n-I-1)

f o r k = 1, ..., 2 A a v a n d r = 0 , ..., k - 1
The probabilities in equation (2) are changed similarly.

In Figure 4, we plot the rate of task rejection as a
function of the number of processors, n, for the case
A,, = n with and without backup deallocation. The
decrease in rejection rate due to backup deallocation is
clear. Note that, from a schedulability point of view,

dedicating one of the n processors as a spare is equiv-
alent to staggering the backup slots among the n pro-
cessors when these slots are not deallocated. Hence,
Figure 4 can be also looked a t as a comparison be-
tween our strategy and the strategy of dedicating one
spare as a backup.

Figure 4: Rejection rate as a function of the number
of processors

4 Scheduling Non-Uniform Tasks
4.1 Task Model and Scheduling

In this section we remove the restriction of the pre-
vious section about the execution times of the tasks.
Here the execution time is modeled as in Section 2 by
a parameter c,.

Since the execution times of tasks are not fixed, we
cannot pre-allocate the backup tasks as in Section 3.
Also, the analysis of such systems becomes more com-
plex. Therefore we will present a heuristic for the
scheduling of tasks arriving dynamically, with differ-
ent computation times and analyze this heuristic using
simulations.

A free slot is the time not used by primaries and
backups. Forward Slack is the maximum amount of
time a slot can be postponed without violating any
tasks' timing constraints. Forward slack will be called
slack.

While scheduling the tasks and their backups, we
maintain a list of the existing slots. Whenever a new
task is received, the primary is scheduled as early as
possible. As for scheduling backups, deallocation and
overloading imply possibly conflicting heuristics. On
the one hand, the chance of reutilizing the deallocated
backup for scheduling other tasks increases if back-
ups are scheduled as late as possible. On the other
hand, maximizing the overloading provides an efficient
utilisation of the resources but may not result in the
backups being scheduled as late as possible. In [4] we

20

simulated an algorithm in which overloading is always
favored. In this section, we study the relative merits of
overloading and late backup scheduling. Specifically,
we consider a parametric cost in which a parameter 62
represents the importance of overloading versus late
scheduling. We call the scheme that uses such a para-
metric scheduling algorithm weighted overloading.

Clearly, the scheduling policy for the backup will in-
fluence the schedulability of the tasks submitted to the
system. When faced with the choice between overload-
ing a backup, Bk,, on a previously scheduled backup
slot and scheduling Bk; as late as possible, we use the
user-defined parameter n to maximize the quantity
defined by

cost = backup-end + R x overlap-length (3)

where overlap-length is the length of Bk; which over-
laps with a previously scheduled backup. That means
that if R = 0, we will schedule the backup as late as
possible and if R = 00, we will attempt to overload as
much as possible. This allows for tuning the parame-
ter according to the system state.

7

, , I

I I I I I I I I I I I I I I

I I I I I I I I I

R,

Pr
i i i i i i i i t i i i i i i i i i i i i l I ‘ I I I

Figure 5: Scheduling 4 tasks on 4 processors. The
black box represents the possible schedules of Blc4

An Example

A simple schedule for four tasks is shown in Fig-
ure 5. The first three tasks3 (TI = (O , O , 6, 15),Tz =
(1 ,1 ,4 ,17) , T3 = (1, 1 , 3 , 9)) are scheduled in PI, P2
and P3, while their backups are scheduled in P z , P3
and PI, respectively. Note that we chose to schedule
these tasks according to their lastest completion time,
that is, their deadlines. Now consider a fourth task,
T4 = (2 ,2 ,6 ,20) : Bk4 is scheduled in processor P4,
since it is the earliest possible schedule for that task.
Thereafter, we attempt to schedule its backup, Bk4.

Note that the backup can be scheduled in proces-
sors PI, P z and P3. That is because the primary is
in processor P4, and therefore the backup cannot is
placed in the same processor. The question now is
a t what time, and in which processor to schedule the
backup? We show that it depends on the parameter
R of the algorithm. We base our example on Equa-
tion (3). The results of the tasks and their value t are
shown in Table 1. We select specific positions for Bk4
(complete, partial, and no overload) to illustrate the

3Remember that a task is represented by the arrival time,
ready time, computation time, and deadline.

possibilities and how the heuristic works. In the table,
the highlighted cost is chosen.

Table 1: Cost of scheduling in different positions of
different processors, with different values of R

Notice that for each value of the weight, the lo-
cation of the backup would be different. There are
ranges of values of weight that would not influence
the scheduling of the backups. However, these situa-
tions depend on the task set and the current schedule.
For example, when Sa = 1 in processor P3, scheduling
Bkl either at times 13 or 14 would yield the same cost.

4.2
Since we are interested in studying the effect of

de-allocation and overloading on the schedulability of
tasks, we consider a low-complexity scheduler. Simple
schedulers are likely to be used in actual systems due
to the low overhead and ease of implementation.

The primary for task i is scheduled as follows: We
look at each processor to find if Pr; can be scheduled
between r; and 4. If there is a free slot larger than
c, on a processor P between r; and d,, then we know
Pr, can be scheduled on P. If Pr, cannot be scheduled
without overlapping another time interval slot., then
we have to check if we can reschedule slot,. This can
be done by checking the slack of slot,. If the slack of
slot, added to the preceding free slot is greater than c,,
then Pr; can be scheduled after shifting slot. forward.

is scheduled as fohows: Let
the earliest schedule of primary Pr , be on processor
Pj. We look at the possible schedules for the backup
on processors other than P,. We try to schedule the
backup on a free slot or overload it on an existing
backup slot, according to the Equation (3 . It is clear
that the information about the forward s 1 acks of pri-
mary slots need to be maintained so that they can
be moved forward if necessary. However, to keep the
complexity and running time of the algorithm low, our
algorithm does not move backup slots. This is because
the backup slot may be supporting more than one pri-
mary and if the backup slot is moved, the slacks of all
those primaries will change. This may (and probably
wiU) have a cascading effect and each time a backup
slot is moved, it will be very costly to recalculate the
slacks. This cascading effect can ripple through all
tasks in the system, extending to processors other than
the one that the backup is scheduled on. In contrast,
shifting primaries will affect only tasks on a single pro-
cessor. Since the scheduling algorithm only uses for-
ward slacks, only the two processors on which the new
slots are scheduled are affected.

Finally the task is committed as follows: once the
schedules for both the primary and the backup have
been found, we commit the task, that is, we guarantee

Steps to Schedule the Task

The backup for task

21

that the task will be completed before its deadline even
in the presence of a single fault.

4.3 Simulation and results
To study the scheduling algorithm presented in Sec-

tion 4, we have performed a number of simulations. To
the best of our knowledge, no simulation studies have
been done for fault-tolerant scheduling of aperiodic
tasks in dynamic real-time multiprocessor systems.

The schedule generated by the algorithm described
in Section 4.2 can tolerate any single transient or per-
manent fault. In the case of a transient failure, only
the failed task is run on the backup while in the case
of a permanent failure, all tasks on the failed proces-
sor are rescheduled on their respective backups. This
fault tolerance capability, however, comes at the cost
of increasing the number of rejected tasks. The first
goal of our simulation is to estimate this cost for the
varying parameters as discussed below.
As we have mentioned, another approach for pro-

viding single fault tolerance in real-time systems is to
dedicate a standby processor as a spare. The second
goal of our simulation is to compare the schedulability
of our scheme with that of the single spare processor
scheme (or simply the spare scheme).

In the simulation, we measured the rejection rate
of tasks as a function of the load, the window size, the
number of processors, the time it takes for the system
to tolerate a second fault (TTSF), and the weight.

4.3.1 Simula tor and Simulation Parameters

Our simulator is a discretoevent simulator where the
events driving the simulation are the arrival, start, and
completion of a task as well as occurrence of faults.
The interface with the visualisation tool [9] can be
toggled at simulation dispatch time, and the simulator
reads the simulation parameters from files and runs
the simulation for each set of parameters. An output
file is generated, from which several scripts extract the
relevant information.

We generated task sets for the computation of the
schedules and ran each policy on the same task set.
The simulation parameters that can be controlled are:

number of processors n: this is a fixed user
input.

the average computa t ion time, c: the compu-
tation time of the arriving tasks is assumed to be
uniformly distributed with mean c.

the load y: This parameter represents the aver-
age percentage of processor time that would be
utilised if the tasks had no real-time constraints
and no fault-tolerance requirements. Larger 7
values leads to larger task inter-arrival time.
Specifically, the inter-arrival time of tasks is as-
sumed to be uniformly distributed with mean

a parameter 6: it controls the window sise, which
is uniformly distributed with mean c x 0.

a = c / (7 * n).

the overload weight, Q: it regulates the impor-
tance of overloading in contrast to scheduling the
backup as late as possible.

We ran simulations for task sets of 1,000 tasks. For
each set of parameters we generated 100 task sets and
calculated the average of the results generated. Con-
sistent with the model, we assume Vi,r i = %, yield-
ing a dynamic system. Formally, 01 = rl = 0 and
vi = ai, where ai is the interarrival time. The
load ranges from sero to one i.e., 0 < y 5 1). For

inter-arrival rate is 1. This means that, on an aver-
age, one task arrives in the system every unit of time
and thus the load on each of the 4 processors is 1.
These parameters are summarised in Table 2.

To compute the TTSF, a fault is injected at a spe-
cific (and arbitrarily chosen) time instant, t. Theo-
rem 2 is then applied to compute t'. We repeat this
experiment 1000 times and average the results to ob-
tain the mean TTSF.

example if 7 = 1, P = 4, an d c = 4, then the task

4.3.2 Analysis of results

We start by analysing the effect of the weight on the
schedulability and on the time to second fault (TTSF).
The results are shown in Figures 6 through 8. Then
we show the results for the comparison of different
schemes in Figure 9, the effect of each technique in
Figure 10, and the effect of Merent window sizes in
Figure 11.

Id= 1.0
0.4

035

0.3

3 025 d
3 0.2 c

Figure 6: Effect of the parameter weight in the rejec-
tion rate

In Figure 6 we show the variation on the schedu-
lability for different weights. For small window sizes,
the optimal weight is between 0 and 1 (see Figure 7),
while for larger windows, the maximum schedulability
is obtained when Q = 0. The variation, however, for

22

Q parameter I name I distribution I values assumed U
, , I ' computation time c uniform m e a n 5

load 7 umform mean=0.5,0.6,. ... 1.0
inter-arrival time a uniform mean=c/(r * n)

number of tasks IT I fixed [1,000
number of Drocessors I n I fixed H

window sise I P 1 uniform I mean=@
weight I fixed 1 0.0.1.0.2.0.5.1.2.5.10. 15.20

Table 2: Parameters for Simulations

035i 0.3

025 -
o,2 " ...

..................
"

0.0s o"l
Figure 7: Rejection rate for window = 3

different weights is relatively small. For instance, for
window equal to 3 and load equal to 1.0, the rejection
rate for 4 processors, varies from 0.2461 (at f2 = 0) to
0.2814 (at f2 = 20).

When we consider the weight in conjunction with
the Time To Second Fault (TTSF in Figure 8), we
can see that, although the weight has little influence
on TTSF, the larger the window size, the larger the
TTSF is. This is expected, since the larger window
increases the length of the schedule.

The small sensitivity of the rejection rate and the
TTSF to the weight indicates that the position of the
backup task has little influence on the schedulability
of tasks. This is because the processor time reserved
for backups is reclaimed through de-allocation. This
means that a simple strategy for scheduling backups
may be preferred to a complex policy that increases
the run time of the scheduling algorithm.

In Figure 9, we compare the rejection rate of
three schemes, namely the spare scheme, our scheme,
and the no-fault-tolerance (NOFT) scheme for differ-
ent number of processors. In the NOFT scheme no
backups or spares are used; in the spare scheme, the

t

Figure 8: Schedulability versus weight for different
windows and number of processors

primaries are scheduled by the same algorithm used
in our scheme and backups are implicitly scheduled
on the spare processor. Note that our scheme consis-
tently performs better than the single spare scheme,
for all values of window siee.

In Figure 10, we can see the effect of using over-
loading and de-allocation in the schedulability of task
sets plotted against the number of processors. The
graph in that figure shows the different rejection rates
for when we use overloading, de-allocation, both, and
neither techniques. Note that whenever overloading
is present ("both" and "overloading only"), we com-
pare the results for weight = 0 and weight = 100. An
interesting result of these simulations is that the ef-
fect of using deallocation reverses the effect of using
overloading. In other words, when only overloading
is used, higher weight (more overloading) decreases
the rejection rate; when de-allocation is also used, a
higher weight has the reverse effect, since de-allocation
is more beneficial when backups are scheduled as late
as possible (f2 = 0).

It is clear that the use of either method significantly

23

load = 1.0, window=7

overloading only, weight=100 i-
deallocation only -X- -

both techniques, weight=100 A -
both techniques, we igh t s ff -

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Processors

Figure 10: Rejection rate as a function of number of processors, using Merent techniques

4 S 6 1 8 9 IO
IYlmbaofRoa5m

Figure 9: Comparison of rejection rates, as a function
of load, for spare, our, and NOFT schemes

improves the schedulability of task sets, but the differ-
ence from one to both techniques shows a less drastic
improvement. This leads us to believe that using ei-
ther overloading or de-allocation in the scheduling of
real-time fault-tolerant tasks wil l enhance the schedu-
lability, but not much is gained from doing both. Al-

though we do not show the results here, similar be-
havior is exhibited when the load is smaller or larger
than 1.0.

Figure 11: Rejection rate as a function of number of
processors, for different windows

In Figure 11, we can see the effect of having dif-
ferent window sises on the schedulability (plotting the
rejection rate versus the number of processors). Note

24

that the schedulability of our method is higher when
the window is large and when there are more proces-
sors. Again, although we do not show the results here,
similar behavior is exhibited when the load is smaller
or larger than 1.

5 Concluding Remarks and Future
Work

In this paper, we study a fault-tolerant schedul-
ing method that tolerates processor faults, be them
transient or permanent. We show that the overload-
ing and de-allocation of backup slots provide an e€-
ficient utilisation of the resources. Our results show
positive correlation between the schedulability of task
sets and the load on the system, as well as between
the schedulability and the length of the average task
window size. Both theoretical and simulation results
indicate that the reclaiming of resources reserved for
backup tasks (de-allocation) is the most important
factor when scheduling tasks in a primarylbackup
fashion. With backup de-allocation, elaborate meth-
ods for increasing the overloading of backups seem
to have only a small effect on schedulability and re-
siliency. Thus, fast and simple scheduling algorithms
should be used for backups.

Our method can tolerate more than one processor
failure. As it stands, the scheme can tolerate succes-
sive permanent faults that are separated by a sufficient
time interval. Once the time to second failure (TTSF)
of the system is established, it is easy to relate the
TTSF to the mean-time-to-failure (MTTF) and the
reliability of the processors. The goal is to guarantee
that within some multiples of MTTF, all tasks existing
a t the time of the failure complete. The new tasks ar-
riving after the first failure will have their primary and
backup copies scheduled on the non-faulty processors
and thus can handle a second fault.

To handle more than a single simultaneous fault,
we can schedule more than one backup copies for each
task. In this case, resiliency and overhead of the sys-
tem will increase. Note that, although the scheduling
policy for this case will be different from the one pre-
sented in this paper, the mechanisms we have devel-
oped remain the same.

The next step in this research is to further improve
the scheduling algorithm by allowing backups for more
than one primary from the same processor to be sched-
uled in the same backup slot (see Theorem 1). This is
only possible if the actual computation times of tasks
have high variances. We also intend to improve the
simulator to measure the scheduling overhead, and to
determine how effective this scheme is when coupled
with a resource allocation scheme for distributed sys-
tems.

References
[I] S. Balaji, Lawrence Jenkins, L.M. Patnaik, and P.5.

Goel. Workload Redistribution for Fault Tolerance in
a Hard Real-Time Distributed Computing System. In
ZEEE Fault Tolerance Computing Symposium (FTCS-
191, pages 366-373, 1989.

Ben A. Blake and Karsten Schwan. Experimental
Evaluation of a Real-Time Scheduler for a Multi-
processor System. ZEEE Trans. on Soft. Eng., SE-
17(1):34-44, Jan. 1991.

M. R. Garey and D. S. Johnson. Computers
and Intractability, a Guide to the Theory of NP-
Completeness. W. H. Freeman Company, San Fran-
cisco, 1979.
Sunondo Ghosh, Rami Melhem, and Daniel Mosst.
Fault-Tolerant Scheduling on a Hard Real-Time Mul-
tiprocessor System . In International Parallel Pro-
cessing Symposium, April 1994.

C.M. Krishna and Kang G. Shin.
Tasks with a Quick Recovery from Failure.
Trans on Computers, 35(5):448-455, May 1986.
A.L. Liestman and R.H. Campbell. A Fault-tolerant
Scheduling Problem. Trans Software Engineering, SE-

On Scheduling
IEEE

12(11):1089-1095, NOV 1988.
C. L. Liu and J. W.Layland. Scheduling Algorithms
for Multiprogramming in Hard Real-Time Environ-
ment. jacm, pages 46-61, January 1973.
J. J. Molini, S. K. Maimon, and P. H. Watson. Real-
Time System Scenarios. In l l th Real-Time Systems
Symposium, pages 214-225, Lake Buena Vista, FL,
Dec 1990. IEEE.
Daniel Mosst. Tools for Visualizing Scheduling Algo-
rithms. In Computers in University Education Work-
ing Conference, Irvine, CA, Jul 1993. IFIP.
Sam K. Oh and Glenn MacEwen. Toward Fault-
tolerant Adaptive Real-Time Distributed Systems.
External Technical Report 92-325, Department of
Computing and Information Science, Queen’s Univer-
sity, Kingston, Ontario, Canada, January 1992.

Yingfeng Oh and Sang Son. Multiprocessor Support
for Real-Time Fault-Tolerant Scheduling. In ZEEE
1991 Workshop on Architectural Aspects of Real-Time
Systems, pages 76-80, San Antonio, TX, Dec 1991.

Yingfeng Oh and Sang Son. Fault-Tolerant Real-Time
Multiprocessor Scheduling. Technical Report TR-92-
09, University of Virginia, April 1992.

D.K. Pradhan. Fault Tolerant Computing: Theory
and Techniques. Prentice-Hall, NJ, 1986.
Robert L. Sedlmeyer and David J. Thuente. The Ap-
plication of the Rate-Monotonic Algorithm to Signal
Processing Systems. Real- Time Systems Symposium,
Development Sessions, 1991.

[15] J. Xu and D. L. Parnas. Scheduling processes with re-
lease times, deadlines, precedence, and exclusion rela
tions. IEEE Trans. on Soft. Eng., SE-16(3):360-369,
March 1990.

25

