
IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 4, APRIL 1994 413

Computational Arrays with Flexible Redundancy
John Ramirez and Rami Melhem, Member, IEEE

Abstmct- Different multiple redundancy schemes for fault
detection and correction in computational arrays are proposed
and analyzed. The basic idea is to embed a logical array of nodes
onto a processor/switch array such that d processors, 1 2 d 5 4,
are dedicated to the computation associated with each node.
The input to a node is directed to the d processors constituting
that node, and the output of the node is computed by taking
a majority vote among the outputs of the d processors. The
proposed processor/switch array (PSVA) is versatile in the sense
that it may be configured as a nonredundant system or as a system
which supports double, triple or quadruple redundancy. It also
allows for spares to be distributed in the PSVA in a way that
permits spare sharing among nodes, thus enhancing the overall
system reliability.

In addition to choosing the required degree of redundancy,
the flexibility of the PSVA architecture allows for the embedding
of redundant arrays onto defective PSVA’s and for run-time
reconfiguration to avoid faulty processors and switches. Dif-
ferent embedding and reconfiguration algorithms are presented
and analyzed using Markov chain techniques, using Probability
arguments, and via simulation.

Index Terms- Multiple redundancy, fault tolerant arrays, re-
configuration, embedding, defect avoidance, fault masking.

I. INTRODUCTION
OST research in fault tolerant computational arrays has M concentrated on defect avoidance and fault coverage

(see for e.g., [2], [3], [5], [l l] , [18], [191, [211) while only
few research efforts have been directed toward fault detection
and correction in such arrays. The roving spare technique [20],
the weighted checksum coding [4], [8] iind over1apping.H
processes [14] are examples of approaches that may be used
to detect (and in some cases correct) transient or permanent
run-time faults. However, in these approaches, a latency period
may elapse before faulty processors are detected and identified.
If the processor array is subject to severe recovery time
constraints, or if the production of faulty results may be
disastrous, then the use of modular redundancy is appropriate.

Active modular redundancy has been used in highly re-
liable computing systems (see e.g., [6], [71, [131, 1231) to
detect and dynamically mask faults. Recently, Kiskis and
Shin [101 suggested a technique for embedding triple modular
redundancy into hypercubes by assigning each task to three
processors in the hypercube. Their goal is to mask any single
fault and yet, retain the logical hypercube connection. In the
context of computational arrays, modular redundancy may be

Manuscript received January 31, 1992; revised June 15, 1992. This work
was supported in part under NSF Grant MIP-8911303. This work was
presented in part at the 1991 International Conference on Parallel Processing.

The authors are with the Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA 15260.
IEEE Log Number 9214053.

achieved by replicating each node in a logical array d times.
The input to a node is directed to its d replicas, and the
output of the node is computed by taking a majority vote
among the outputs of the d replicas. In Section 2 of this
paper, we introduce a versatile architecture which is based
on interleaved arrays of processors and switches, and which
permits the implementation of different degrees of redundancy.
For example, two dimensional logical arrays may be embedded
onto this architecture with d = 1 for no fault tolerance, d = 2
for fault detection, d = 3 for fault correctiodmasking and
d = 4 if additional sparing is required.

The flexibility of the suggested architecture also allows for
reconfiguration strategies that may be applied at fabrication
time, compile time or at run time. At fabrication or compile
time, reconfiguration may be applied to embed a specified
logical array onto the architecture in a way that avoids defects
or faults, respectively. At run time, reconfiguration may be
used to repair the array after faults or to improve the quality
of the embedding, thus improving the reliability of the system
[16]. In all cases, the new configuration should be valid in
the sense that it should allow for each logical node to be
appropriately connected to its logical neighbors via the existing
physical communication links. Conditions for the validity
of configurations are discussed in Section I11 assuming that
processors and switches may fault, but that a faulty switch
may be used as a short circuit connection [9], [12].

Two strategies are presented for embedding logical arrays
onto defective processor switchhoter arrays (PSVA’s for short)
with a given redundancy. In Section IV, a greedy strategy
is discussed to embed a maximal size logical array onto a
given defective PSVA. In this strategy, nodes are embedded
sequentially, and each logical node is mapped according to
the information available about the mappings of the previous
nodes. We show that the problem of embedding a maximal
linear array onto a defective PSVA can be solved optimally in
linear time. For two-dimensional arrays, finding optimal solu-
tions seems to require exponential time complexity, and thus,
we explore linear time algorithms that produce sub-optimal
solutions. The second embedding strategy is for mapping
a fixed size array onto a defective PSVA. It starts from
a fixed embedding and incrementally changes it to avoid
defectdfaults. This strategy is discussed in Section V. The
yield of both strategies, which is the probability of successfully
completing the embedding, is analyzed using Markov chain
techniques, using probability arguments, and via simulation.

The above two reconfiguration schemes are driven by a
centralized controller or a host, and thus are suitable for
fabrication-time defect tolerance and compile-time fault tol-
erance. In Section VI, we consider run-time faults in PSVA’s

0018-9340/94$04.00 0 1994 IEEE

414 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. 4. APRIL 1994

mode1 model mode3

(a) (b)
Fig. 1.
modes of a switch. Square = switchlvoter, circle = processor.

A processor switchlvoter may. (a) A 3 x 3 PSVA. (b) The pass

assuming that a logical array is already embedded onto the
PSVA such that at least d processors constitute each logical
node. If, at run-time, some elements of the PSVA become
faulty, then some logical nodes may be left with less than
d processors while some other nodes may have more than d
processors. In this case, it may be possible to distributively
reconfigure the system at run time to guarantee that each node
is d redundant, thus restoring the system’s functionality.

In the rest of the paper, it is assumed that communication
links are fault free. Reconfiguration algorithms that are more
sophisticated than those presented in this paper are needed to
reconfigure around faulty links. It is also assumed;as in most
multiple redundancy systems, that no two faulty processors
produce the same result and that no two processors fault
simultaneously at run time. Finally, the analysis and simulation
studies are based on random fault distributions in which
switchhoter failures are independent of processor failures.

11. A VERSATILE ARCHITECTURE FOR REDUNDANT ARRAYS

In this section, we introduce the Processor SwitchNoter Ar-
ray architecture (PSVA). It consists of a mesh-connected m a y
of switcldvoters (referred to as switches), where each switch
is connected to four processors in the manner indicated in Fig.
1. Conversely, each processor (except border processors) is
connected to four switches. Let n,. and n, be the numbers
of rows of switches and columns of switches, respectively, in
the PSVA. Then, the number of switches is n,. x n,, and the
number of processors is (n, + 1) x (n, + 1). If, for simplicity,
we assume that n,. = n, = ns, then a switch may be denoted
by switchi,j, 1 5 i , j 5 n, and a processor may be denoted
by proci,j,O 5 i, j 5 ns.

A connection between a switch and one of the processors
associated with it may be active or inactive. A switch may
have up to four active connections at a time, but a processor
may have only one. The active set, Ci,j, for switchi,j is
defined to be the set of processors with active connections to
that switch. Let ci,j denote the cardinality of Ci,j. Clearly, for
any i , j : 0 5 C i j 5 4.

A. Operation Modes of Switches

When a switch receives a data item from a neighboring
switch, it replicates the item c;,j times and passes a copy
along each active connection to the processors. Data items
received by a switch from processors in the switch’s active

set, however, are treated differently depending upon the value
of c;,j. Specifically, the value of c; j specifies the mode of the
switch as follows.

If c;,j = 0, switchij has no active links to any
processors. In this case, the switch is said to be in pass
mode. A switchhoter in pass mode functions only as a
switch, and it directly connects its inputs and outputs in
one of the ways depicted in Fig. le).
If c;,j = 1 the switch is said to be in straight mode
and data received by the switch from the processor is
simply forwarded to the destination switch.
If ci,j = 2 the switch is said to be in checking mode and
data received from the two processors are compared. If
they match, a copy is sent to the destination; otherwise
an error flag is set.
If c;,j > 2 the switch is said to be in voting mode. In
this case, the result of a majority vote on the data from
the processors is forwarded to the destination. The data
that disagree with the majority are deemed faulty, and
the processor that sent them is removed from Ci,j.

B. Switch Design

Assume that I k , Ok, k = 1, . . . ,4 , are the input and output
links, respectively, connecting a switch to its four neighboring
switches (see Fig. 1). To implement the different switch modes,
input from a given I k should be sent to the processors in
Ci,j along the appropriate links. Data sent back to the switch
are voted on and the result is sent to its proper destination
output o h . Given that there are four possible destinations;
Ol(west) , Oa(north), Os(east) and 04(south), the correct
destination of the data may be determined by using one of
two methods. Namely, 1) Two bits may be added to the data to
determine the direction, or 2) Message cycles may be divided
into 4 sub-cycles, one for each direction. We will first present
a design for the switchhoters that assumes that the second
method is used, and then point to the modifications required
to accommodate the first method.

Fig. 2 shows a possible design for a bit-serial switchhoter
when each message cycle is divided into four sub-cycles
that are globally synchronized. The status of the switch is
controlled by a status word, SW = sw1,. . . , “6. The two bits
sw5 and SW6 control the pass modes; 01, 10 and 11, represent
the three pass modes of Fig. l(b), while 00 means that the
switch is not in the pass mode. These two bits generate the
signals 2 k , k = 1, . . . ,4 that control a set of 2-1 multiplexers
and demultiplexers for connecting the appropriate inputs and
outputs thus bypassing the switchkoter (see the bottom of Fig.
2). The four other bits in SW specify a particular nonpass
switch mode. Assuming that the four processors connected
to the switch are labeled by 1, 2, 3, and 4, then 9wm = 1
iff processor m is actively connected to the switch. The
connections to and from processor m are labeled in Fig. 2
by in, and om, respectively.

,4,
in four consecutive sub-cycles and sends the multiplexed data
to the active processors. Connections to nonactive proces-
sors are masked through three-state, high impedance, gates

The multiplexer, mux, in Fig. 2, samples 4, k = 1, .

RAMIREZ AND MELHEM: COMPUTATIONAL ARRAYS WITH FLEXIBLE REDUNDANCY 415

TABLE I
VOTING BY TABLE LOOKUP

Inputs outputs
01 S W I ' 0 2 sw2 03 sw3 04 sw4 M a j swi swz sw3 sw4 error

0 1 0 1 0 1 0 1 0 1 1 1 1 0
0 1 0 1 0 1 0 1 1 1 0 1 0 1
0 1 0 1 1 1 1 1 - 0 1 1 1 1

1 0 0 0 0 1 0 1 - 0 1 1 0 1
1 1 0 0 1 1 0 1 - 0 - 0 1 1

0 0 0 0 0 1 - 0 - 0 - 0 0 1

0 1 0 2 0 3 0 4 in , in7 in? in4

0, ' 0: 0: 0,' I : 1 2 1; 1:

Fig. 2. Schematic diagram of a switchhoter.

controlled by S W k , k = 1, . . . ,4. These four bits are also
combined with the outputs from the processors (received on
ok, k = 1,. . . , 4) to determine the majority Maj , which is
then demultiplexed to 01, + . . , 0 4 in every four consecutive
sub-cycles. The voting as well as the exclusion of faulty
processors from the active set of processors is done via a Read
Only Memory. For any combination of active processors and
input data (there are 28 combinations), the ROM stores the
majority, M a j , an e r ro r bit that is set when no majority can
be obtained, and a new set of active processors determined
by four bits, sw;,k = 1 , - . . , 4 , that are used to over-write
S W k , k = 1, . . . ,4. Specifically, the ROM stores the functions

majority (0 k ; S W k = l}, if error # 1, { don't care, otherwise,
M a j =

S W k = (Ok M a j) and S W g .

That is processor k is kept in the active set only if it was active
(S W k = 1) and Ok agrees with the majority. In Table I, we show
a few entries (out of order) of the ROM. The first shown
entry represents four active nonfaulty processors, while the
second entry represents four active processors with processor 3
being faulty. The third and fourth entries represent three active
processors, the fifth entry represents two active processors and

the last entry represents only one active processor. A dash in
the table represents a don't care.

If the communication sub-cycles are not globally synchro-
nized, then messages should be appropriately framed and
buffers should be added at the input links (example, SR on
links Ik, k = 1, . . . ,4, in Fig. 2). Furthermore, if instead of
dividing a communication cycle into four sub-cycles, two bits
are used to determine the direction of a message, then muz
and demux in Fig. 2 should be replaced by a message queue
handler and a simple 1 4 router, respectively.

It should be noted that the dynamic modification of the
SW register is only needed if the active set of processors
connected to a switch is to be modified at run-time. Otherwise,
a simple voting scheme is needed and the size of the ROM
is reduced to 256 x 1. With this, it is possible to implement
the circuit in Fig. 2 using less than 500 transistors. Given
that the number of switchhoten is approximately equal to the
number of processors in the PSVA, it is only beneficial to
implement this multiple redundancy scheme if the complexity
of a processor far exceeds the complexity of the circuit in Fig.
2. Moreover, it is not reasonable to assume that switchhoters
do not fail. So, we will assume that switches will fail with a
probability (1 - p s) , which is a fraction of the probability of
a processor failure, (1 - p). We will assume, however, that
faulty switches, as well as nonfaulty switches, can be reset to
any of the pass modes of Fig. l(b).

In the given design, the mode of a switchhoter is con-
trolled by setting a 6-bit status word. For fabrication-time
and compile-time reconfiguration, it is sufficient to provide
a means for a centralized agenthost to set the status word
of all the switches in the PSVA. For run-time fault tolerance,
however, distributed reconfiguration may require that the status
word of a switch be accessible by the active processors
connected to it. In Section VI, we discuss an algorithm in
which processors need to read and write to the status word
of a switch to which they are connected. Problems resulting
from the simultaneous writing into the status word of a switch
by its active processors may be avoided if the written word is
forced through the voting process.

Finally, we note that PSVA's used for compile-time and run-
time fault tolerance may utilize relatively elaborate switches
since the processors can be complex (the iWarp [171, the Intel
Paragon [11 and the connection machine, CM5, are all arrays of
complex processors). Fabrication-time reconfiguration, on the
other hand, is usually used for array processors that are laid-
out on single wafers. This implies relatively simple processors

416 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. 4, APRIL 1994

and thus requires the switches to be as simple as possible.
The basic switchhoter described in this section (with 256 x 1
ROM) is sufficient in this case since global synchronization
may be realized and centralized control may be assumed.

C. Array Embedding with Selective Redundancy

The embedding of an (n, x n,)-node logical array onto
a PSVA may be specified in terms of a mapping function
map(z , j) = (mapz(i , j) , mapy(i , j)) , that maps each node
(i) j) to and by the sets C,ap(z,j) that specify
the nonfaulty processors that are actively connected to each

to constitute logical node (i,j). In such an
embedding, a logical node, (2, j) , is replicated c , , ~ (~ , ~) times
in the PSVA, and thus, by choosing the appropriate embedding,
a given degree of redundancy may be obtained. For example,
map(z, j) = (22 - l , j) , i = 1, . - . , (n, + j = 1 , q . e ,n,,

the embedding of an (n, + 1)/2 x n, logical array into an
n, x n, PSVA with double redundancy (see Fig. 3(b), where
only active connections are shown). Similarly, triply redundant
arrays are obtained by the mapping (see Fig. 3(c)):

(a)

along with C22-1,j = { p r o c 2 ~ ~ 2 , j ~ ~ , p r 0 c 2 z ~ ~ , j ~ 1 } represent - 1 - - 1 - - 1 - - 1 -

(C) (4

Fig. 3. Embedding two-dimensional arrays onto a 7 x 7 PSVA (a) 7 x 7
array (d = 1). (b) 4 x 7 array (d = 2). (c) 4 x 5 m a y (d = 3). (4) 4 x 4
array (d = 4).

m a p (i , j) = 22- l , j+ - In addition to choosing the required degree of redundancy in
PSVA’s, the flexible pass modes of the switches offer the ca-
pability of constructing redundant arrays even in the presence
of defective processors and switches. This is demonstrated
next.

([VJ)
in ;‘J n, + 1 i = l , . . . , LTj a n d j = 1 , - . . , 2 -%-.-

and c m a p (z , j) = {~rocmap(z,j) 7 ~ocmap(z , j) - (I, I) 7

pToCmap(z,j)+a(j)}, where S (j) = (-1,o) or (0, -1) if
j is even or odd, respectively, and the addition operation is 111. VALID M ~ p p m ~ s OF L ~ I C A L ARRAYS ONTO PSVA’~
extended to tuples such that (u, v) + (w , z) = (u + w , v + z) .
Finally, for quadruple redundancy (Fig. 3(d)), the mapping is

map(2 , j) = (2i - 1 , 2 j - 1) 2) j = 1 , . . .

where p and p , are the reliabilities of a processor and a switch,
respectively, and N = [(n, + l) /2J2, is the total number of
logical nodes mapped to the PSVA. On the other hand, if the
system is not considered to have failed until the detection of a
fault that cannot be corrected, then failure requires that more
than two processors connected to an active switch fail. That
is, the reliability of the system is:

Rz = (p4 + 4(1 - p) p 3 + 6(1 - ~) ~ p ’) ~ p : .

Given a PSVA and assuming that some processors and
switches in the array are defective, then it is possible to embed
a logical array with a given redundancy onto the defective
PSVA if defective switches can operate correctly when set to
the pass mode. The embedding problem is formally specified
as one of finding a function, map, and the corresponding active
sets, Cmap, such that:

1) each node (i, j) in the logical array is mapped to a non-
defective switch, switchmap(z,j), in a way that allows
for connections to be established between the north,
south, east and west ports of each
and, respectively, the south port of
the north port of switchmap(z+l,j)r the west port of
switchma,(,,j+l) and the east port of switchmap(2,j-l);

is connected to at least d nonde-
fective processors which are assigned to the active set
Cmap(z,j). The active sets should satisfy Cmap(z,3) n

A mapping function which satisfies the first condition with
single channel communication links is called a valid mapping.
That is, a valid mapping allows for the mesh connections be-
tween logical nodes to be established assuming single duplex
channels between adjacent switches. Necessary and sufficient
conditions for valid mappings are presented and analyzed in
[15]. These conditions are derived for general mappings and
are rather complex. In this paper, we will restrict ourselves
to two specific classes of mapping functions. Namely, row-

and Cmap(2,j) = { P O C (~ ~ ~ (~ , ~) + ~) ; 6 = (0, O), (0, -l), (-1 ,O)
and (- 1, -l)}. In any of the above mappings, any switch that
is not used to map a node is set to pass mode 3.

The reliability analysis for PSVA arrays is straight forward
and depends on the definition of system failure. For instance,
consider the mapping described by (1) and assume that the
PSVA fails when at least one node loses its fault correction
capability. That is, when the array may no longer mask any
single fault. In this case, failure occurs if, for some (2 , j) , either
sWitchmap(z,j) Or more *an One Processor connected to 2) each
that switch fails. The system’s relicibility is thus:

C m a p (z f , j f) = 0, for any (i , j) # (i’,j’)-

RAMIREZ AND MELHEM: COMPUTATIONAL ARRAYS WITH FLEXIBLE REDUNDANCY 417

wise mappings and shift-1 mappings. For these two classes,
validity conditions are straight forward to verify.

In a row-wise mapping, any row of logical nodes is mapped
to the same row of switches. That is mup,(i , j) = mup,(i,j-
1) and mup, (i , j) > mup,(i,j - l) , for any i and any j > 1.
We further restrict row-wise mappings such that the first row
of logical nodes is mapped to the first row of switches, and
consecutive rows of logical nodes are mapped to alternate
rows of switches. That is mup, (i , j) = 22 - 1. With these
restrictions, we can prove that the mapping is valid if the
column position of any node, (i , j) , is somewhere between
the column positions of nodes (i - 1 , j - 1) and (i - 1 , j + 1).
Specifically, we can prove the following:

Proposition I : A row-wise mapping, map, which satisfies
mup,(i , j) = 22 - 1 is valid if, for each i and j ,

Proof: Consider the case mup,(i, j) 5 map, (i - 1, j)
(the case mup,(i,j) > mup,(i - 1,j) may be proved using
a similar argument). The horizontal connections are always
possible in a row-wise mapping. The connection between
the south port of a switch, switchmap(i-l,j), and the north
port of switch,,,(i,j) is established through SWitChgi--a,k,
k = mup,(i,j),...,mup,(i - 1,j) . It is easy to see that
all these switches, except possibly .swWitch2i-2,mapy (i,j)

and switch2i_2,mapy(i-l,j), are not used for any other
connections. The worst case is when .swilitch2;-2,,,,,(i,j) is
used to connect switch,,,(i-l,j-l) to switch,,,(i,j-l) and
switch2i-2,map,(i-l,j) is used to connect switch,,,(i-l,j+l)
to switch,,,(i,j+l). As seen from Fig. 4(a), each of the two

0
In a Shift-1 mapping, an initial fixed valid mapping, fmup

is given, and the mapping is obtained by possibly shifting
each node from its position in fmup by at most one switch
in one of the four normal directions. That is, mup(i , j) =
f m u p (i , j) + A (i , j) , where A(i , j) = (O , O) , (1,0), (0, I) ,
(-1,O) or (0, -1). Note that even if f m u p is a valid mapping,
the Shift-1 version of that mapping may not be a valid
mapping. The following proposition establishes the validity
of the Shift-1 mapping in the case where the initial mapping
is fmup(i , j) = (22 - 1 , 2 j - 1). Specifically, for the mapping
to be valid, .any two horizontally adjacent nodes that are
mapped to different rows of switches should be separated by
at least one column of switches. A similar condition applies to
vertically adjacent nodes. This result will be used in Section 5.

Proposition 2: The mapping, m u p (i , j) = (22-1,2j-1)+
A(i,j) , where A(i , j) = (O,O), (f 1 , O) or (0, f l) , is valid if,
for any i and j, the following two conditions are satisfied:

a) either mup,(i,j) = mup,(i,j - 1) or mup,(i,j) -

b) either mup,(i , j) = mup,(i - 1 , j) or mup,(i , j) -

We prove that the second condition always
allows for a vertical connection between and
switchmap(i-l,j~. Let d, = mup,(i,j) - mup,(i - 1 , j)
and d, = mup,(i,j)- mup,(i - 1,j). For d, = 0, the
vertical connections may be easily made. Moreover, for d, #

switches can support the required connections.

mup,(i,j - 1) > 1

mup,(i - 1 , j) > 1
Pmof:

Fig. 5. A linear PSVA with n, = 10 switches.

0, the given restrictions on the values of A restrict the
values of (d,, d,) to one of the following: (1, f l) , (2, f l) ,
(3 , f l) and (2 , f 2) . In Fig. 4(b), it is shown that for the
cases with d, > 1, the vertical connection may always be
established. Due to symmetry, only the cases with positive
d, are shown. Similarly, we may define d, = mup,(i , j) -
mupy(i , j - l) and d, =mup,(i,j)-mup,(i,j-l) andprove
that the first condition allows for the horizontal connections
between switch,,,(,,j) and switchm,p(i,j-l). Moreover, by
considering possible combinations of (d,, dy) and (d,, d,),
it may be shown that the vertical connections never interfere
with the horizontal connections. 0

In the following two sections, we discuss two policies for
mapping a logical array to a defective PSVA with a given
redundancy.

IV. THE GREEDY MAPPING OF LOGICAL
ARRAYS ONTO DEFECTIVE PSVA’S

The goal of the greedy policies described here is to map a
maximal size array onto a given defective PSVA. We start by
presenting a greedy algorithm for embedding a maximal linear
logical array onto a defective linear PSVA. In this context a
linear PSVA is one that consists of one row of switches and
two rows of processors as shown in Fig. 5. In this case, we
will denote switchl,, by switchj and mup(1,j) by mup(j).

A. Greedy Embeddings for Linear Arrays
Given a linear PSVA with defective switches and processors,

the goal is to embed a maximal size logical array onto the
PSVA such that each node in the array is d-redundant for a
given d, d 5 4. The algorithm visits the switches sequentially
from left to right, and tries to embed a logical node at each
visited switch. It assumes that all the defective processors are
initially marked to indicate that they are unuvuiluble. Also,

418 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 4, APRIL 1994

@
0 0 0 0 6 0

n n n
Y Y

ofio a 0 0 a000

Fig. 6. Greedy embeddings onto the array of Fig. 5 with d = 2 and d = 3.

@ the predicate OK(switch) is used to indicate that switch is
not defective.
Algorithm L-Greedy :
1) logicalnode = 0 ;
2) FOR (k = 1; k 5 n,; k + +)

IF OK(switchk) THEN

switchk;
2.1) Let Hk=set of un-marked processors connected to

2.2) IF lHkl 2 d then
2.2.1) Let logicalnode =logicalnode+l and

2.2.2) Let c k be a subset of HI, that contains
map (logicalnode) = k ;

exactly d processors. Give the processors
proco,k-1 and procl,k-1 a higher priority
for inclusion in Ck ;

2.2.3) Mark the processors in Ck unavailable;
3)n,= logicalnode ;I* the size of the array successfully

embedded in the PSVA *I
For example, in Fig. 6, we show the greedy embedding of an

8-node array and a 4-node array with d = 2 and 3, respectively,
onto the defective PSVA of Fig. 5. Although greedy algorithms
are not usually optimal, it may be shown that the above greedy
strategy is optimal.

Proposition 3: L-Greedy is optimal in the sense that no
other algorithm can embed an array with more than ng nodes
in the PSVA.

Define R(j) as the number of nondefective
processors among pro^^,^,^(^), procl,m,p(jl} that are not
marked after logical node j is mapped onto
Clearly, R(j) = 0, 1 or 2, and if d > 1, then R (j) =
lHm,p(J)\ - lCm,p(j)l. Also, let mapopt be an optimal
mapping which maps node j to switchmaPop,(j), and
Ropt(j) be the number of nondefective processors among

j . Given that map(1) is the first nondefective switch that
is connected to at least d nondefective processors and
that step 2.2.2 of L-Greedy maximizes R (l) , then either

Ropt(l)]. Now, assume that m a p (j - 1) < mupOpt(j - 1) or
[map(j - 1) = mapopt(j - 1) and R(j - 1) 2 Ropt(j - 1)l.
In either case, it is easy to see that L-Greedy ensures that
m w (j) < mapo&) or that [m a p (j) = mapopt(j) and
R(j) 2 Ropt(j)]. This induction shows that if an optimal
algorithm may embed an array with n nodes onto a PSVA,
then map(n) 5 mapopt(n) and thus L-Greedy will also

0
The yield, Y ~ - ~ , - ~ ~ d ~ (d , n , , n ,) is the probability of suc-

cessfully embedding a logical array with n, or more nodes
onto a defective nn,-switch PSVA using L-Greedy. Using a

Proof:

{ ~ ~ O C o , m a p o P t (j) > prOCl,mapOpt (j) 1 that are not used for node

map(1) < mapopt(1) or [mw(l) = mapopt(1) and R(1) 2

successfully embed such an array onto the PSVA.

W

Fig. 7.
Sy,u,u = 0 , 1 , 2 , are shown).

A Markov chain for L_Greedy (only transitions to and from

layered Markov chain, this yield may be computed assuming
a given probability, p , that a processor is not defective and
a given probability, p , , that a switch is not defective. To
illustrate the technique, we analyze the case d = 3 by
considering a Markov chain which consists of n, + 1 layers,
y = 0,1, . . - , n a r each containing three states, sY,o, 3y,l

and sy,2 (see Fig. 7). A transition in the Markov process
corresponds to the execution of one iteration of step 2 in
L-Greedy. The semantics of the states is such that, after k
transitions, the Markov process is in state sY,% if, after k iter-
ations of L-Greedy, y nodes are successfully mapped to some
switches in { switch1 , . . . , switchk} and u processors among
{proco,k,procl,k} are not marked. Thus, these u processors
are available to be actively connected to switchk+l.

According to the above semantics, if the kth transition is
between two states in a given layer, y, then this indicates that
iteration k fails to map node y+ 1. On the other hand, if the kth
transition is from a state in layer y to a state in layer y+ 1, then
this indicates that iteration k succeeds in mapping node 9 + 1.
The probabilities of such transitions may be obtained in terms
of p and p , . Specifically, if after k transitions, the process is in
state sy,%, then the different transition probabilities out of sY,%
will depend on the status (defective or not) of switchk+l,

For example, assume that after k transitions the process is
in sy , l . That is, only one of proc0,k or p‘fOC1,k is available
to be actively connected to switchk+l (Fig. 8(a)). Hence,
mapping node y + l to switchk+l is only possible if proco,k+l,
pTOCl,k+l and switchk+l are not defective (with probability
p’p,). In this case, a transition to state sy+l,o occurs (Fig.
8(b)). If one of proco,k+1 or proc~ ,k+~ is defective (with
probability 2p(l - p)) , then the process remains in state sY,l
(Fig. 8(c)). If both p r o c ~ , k + ~ and p T O C l , k + l are defective (with
probability (1 - p)’) , a transition to state sY,o occurs (Fig.
8(d)). Finally, if switchk+l is defective and both proco,k+l
and procl,k+l are not defective (with probability (1 - p,)p2),
a transition to state sy,2 occurs (Fig. 8(e)). Note that the
above 4 cases represent all possible defect configurations for
switchk+l, proco,k+l and procl,k+l-

The transition probabilities out of sY,o and s Y , 2 may be
calculated in a similar manner. The results are given by the
following equation in which r ~ ; , ~ is the probability of being

prOcO,k+1 and Procl,k+l.

RAMIREZ AND MELHEM: COMPUTATIONAL ARRAYS WITH FLEXIBLE REDUNDANCY

~

419

0 0 0 0 0 0
++e
0 0 0 0 0 0

(b) S ~ + I . O (C)Sy.1 (d) s y , ~ (e) sy3

Fig. 8. (a) State before iteration I C , (b), (c), (d), (e) states after iteration IC.

in state s ~ , ~ after the kth transition:

If we denote the first matrix by A and the second matrix by
B, then the single transition probabilities in the entire Markov
process is:

where 0 is a zero matrix, I is a unit matrix, and uk is a vector
that contains the 3(n, + 1) probabilities F ; , ~ , y = 0 , . . . , n,,
u = 0,1 ,2 . The Markov process starts from SO,O, SO,^ or SO,^
with probabilities (1 - p)', 2p(l - p) and p 2 , respectively.
Hence, all the components of uo are set to zeroes except
o!,~, n& and IT^,^, which are set to (1 - p)', 2p(l - p) and
p 2 , respectively. The state probabilities after n, iterations are
given by

p = MnSffO

Noting that states s ~ , , ~ , u = 0,1 ,2 , are absorbing states
because they are reached when L-Greedy successfully embeds
n, nodes in the PSVA, we may compute the yield as: .

ns
YL-G~eedy(3, n,, n,) = Ona,O + .,":,I + ff,";,~

In Fig. 9, we show the result of the above analysis for
ns = 19. Namely, we plot the yield for different values of
n, and p assuming that (1 - p ,) = 0.1(1 - p). Note that if
all processors and switches are nondefective, then a 13-node
logical array may be embedded in the 19-switch linear PSVA.

B. Row- Wise Greedy Embeddings for Two-Dimensional Arrays

Given a defective n, x n, PSVA, the goal is to embed a
maximal n, x ny logical array onto the PSVA. The greedy
algorithm for linear arrays may be extended to a row-wise

1.0 ,

0.4

+

\ \
0.0 ,

0 5 10 13
Fig. 9. The probability of embedding n, nodes ontu a 19-switch PSVA.

greedy algorithm for two dimensional arrays. Specifically, we
assume that row i of the logical array is mapped to row 22 - 1
of switches using the linear greedy algorithm. This fixes the
number of rows in the logical array to nl = L(n, + l)/2],
and the goal becomes to maximize the number of columns ny
in the logical array. However, according to Proposition 1, the
mapping of row i, i > 1, is not independent from the mapping
of row i - 1. Moreover, in order to end up with a regular
logical array, each logical row should contain the same number
of logical nodes. Taking this into consideration, the following
greedy algorithm may be used to map a logical nl x ny array
onto a defective PSVA with the objective of maximizing ny.
The algorithm assumes that all defective processors in the
PSVA are initially marked unavailable.
Algorithm 2-D-Greedy

Use L-Greedy to embed logical row 1 to the first row of
switches. Let ny be the number of nodes resulting from
that embedding.

FOR (i = 2; i 5 1-j ; i + +)
FOR (j = 0 ; j < ny;)

1) FOR (k =max {map , (i , j) + l ,mapy(i - l,j)};
k i min {n,, map,(i - 1 , j + 2)); k + +)

1.1) Let H 2 ; - 1 , k = set of un-marked processors
IF OK (S W i t C h 2 i - 1 , k) THEN

connected to ~ w i t c h ~ i - ~ , k ;

1.2.1) Let j=j+l and map(i,j)=(22-1,k);
1.2.2) Let c 2 i - 1 , k be a subset of H 2 ; - 1 , k that

1.2) IF IH2i -1 ,k l 2 d THEN

contains exactly d processors. Give
p r o c 2 i - 2 , k - l and prOCZi -1 ,k -1 higher
priority for inclusion in c 2 i - 1 , k .

unavailable, and exit the inner most
For loop;

1.2.3) Mark the processors in C 2 i - 1 , k

2) IF node (2 , j + 1) is not mapped in step 1, THEN
set map(1,m) = m a p (l , m + 1) for 1 = l , - . . , i - 1,
m = j + l , ~ ~ ~ , n , - l a n d s e t n y = , n y - l ;

3) IF k = n, and j < ny, THEN ny = 3

420 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 4, APRIL 1994

0.2 :i 0.0
0 5 10 13

Fig. 10. The yield of 2-D-Greedy.

In this algorithm, the condition of Proposition 1 is implicitly
imposed in the bounds of the loop in Step 1. After embedding
ny nodes in each of rows 1, . . . , i - 1, if, in row i, a node (i , j)
cannot be embedded, then the entire j th column is removed
from the embedding of the previous rows (Step 2). Similarly,
if in row i, only j nodes, j < ny, can be embedded, then
columns j + 1,. . . , ny are deleted from the previous rows
(Step 3). With this simple policy, the running time of the
algorithm is O(n:). More complex algorithms that involve
back-tracking may be designed (no longer greedy). In such
algorithms, previously embedded rows would be incrementally
updated to accommodate the embedding of a given row.

In Fig. 10, we show simulation results for Y 2 - D - G r e e d y

(3, ny. 19), the probability of successfully embedding a logical
array of size at least n1 x ny onto a 19 x 19 PSVA. The dotted
curve given for p = 0.9 is the yield resulting from completely
ignoring the condition of Proposition 1. That is, each of the
10 rows is independently embedded using L-Greedy, and
thus the yield is [Y L - G ~ ~ ~ ~ ~ (~ , na, 19)]1°. This represents an
upper bound on any 2-D algorithm that uses back-tracking
to improve the yield of 2-D-Greedy. Given that this upper
bound is far from being tight because it ignores completely
the conditions of Proposition 1, and by comparing the two
curves for p = 0.9, our own conclusion is that algorithms
more complex than 2-D-Greedy may improve the yield only
modestly.

V. EMBEDDING A FIXED SIZE ARRAY
ONTO A DEFECTIVE PSVA

A different strategy for embedding logical arrays onto
defective PSVA's is to use a valid fixed mapping, fmup,
which, when used to embed a logical n, x ny array onto
a nondefective PSVA, leaves some of the processors unused.
Because of these unused processors, the same mapping, fmup,
may be used to embed a logical n, x ny array onto a defective
PSVA.

fm4P3.1 f mop23

Fig. 11. Initial mapping functions with different utilization factors.

We will consider a specific class of row-wise fixed mappings
in which fmap, (i , j) = 2i - 1 and the mapping of each
row exhibits some regularity. The mappings will be super-
scripted in a way that reflects the regularity of row mappings.
Specifically, a superscript u,w means that the first u logical
nodes in the row are mapped to the first u consecutive
switches, then 'u switches are skipped and the following
u nodes are mapped to the following u switches and so
on. For example, the mapping of Fig. 3(c) is denoted by
fmup2i1(i,j) = (22 - 1 , j + [(j - 1)/2J), and that of Fig.
3(d) is denoted by fmupl*'(i , j) = (2i - 1 , Z j - 1). Other
possible fixed mappings are shown in Fig. 11. In this figure,
only one row of switches is shown and active connections for
fmup3y1 and fmup2>3 reflect embeddings with d = 2 and
d = 3, respectively.

Given a nondefective n, x n, PSVA and a fixed mapping,
fmup">", the size, n, x ny, of the logical array that may
be embedded in the PSVA is determined by n,, u and
w. Specifically, n, = [(n, + l) /2J and ny = [(n, +
w)/(u+ w)]u. Moreover, if a d-redundant embedding that uses
fmupUiV utilizes only a fraction of the processors, then this
fraction is called the utilization factor, p (f m ~ p " ? ~ , d) . For
example, if fmupl?l(i , j) is used with triple redundancy, then
the utilization factor is p(fmuplql , 3) = 0.75. Similarly, the
utilization factors p (f m u p 3 > l , 2) = 0.75 and p(fmup2y3, 3) =
0.6.

A utilization factor which is less than unity means that the
embedding may still be accomplished if up to 1 - p (f m u p , d)
of the processors in the PSVA are defective. This is because,
only p (f m u p , d) of the processors are utilized in the em-
bedding. However, defective switches or uneven distribution
of defective processors may not allow for the embedding to
be realized with the given mapping fmup. In these cases,
the shift-1 policy may be useful for obtaining the embedding
through a mapping function mup(i, j) = fmup(i , j)+A(i, j),
where A(i , j) = (0, 0), (0, *l) or (f l , 0).

Hence, assuming that a functionfmap may embed an n, x ny
logical array onto an n, x n, PSVA, with redundancy d
and utilization p < 1, the following algorithm may be used
to embed a logical array of the same size onto a defective
PSVA, using a shift-1 policy. The algorithm assumes that
initially all the defective nodes are marked (to indicate un-
availability). The predicate vuZid(i, j , A(i, j)) returns true if
mapping logical node (i, j) to SWitchfm,p(i,j)+A(i,3) allows
this switch to be properly connected to switch,ap(;,j-l) and
switch,,,(;-l,j), thus guaranteeing a valid mapping.
Algorithm Shift-llfmap:
FOR i l , . . . , n , do

F O R j = l , * . . , n y do
FOR L(i,j) in {(O,O), (-1, O) , (0, -11, (LO), (071)) do

1) Hfmap(i,j)+A(;,j) = set of un-marked processors
connected to switchf,,,(;,j)+a(;,j);

RAMIREZ AND MELHEM: COMPUTATIONAL ARRAYS WITH FLEXIBLE REDUNDANCY 421

2) IF oK(switchfmap(i,j)+a(i,j)) AND
Hfmap(i.j)+A(i,j)I 2 d, AND
valid(i,j, A(i , j)) ,
THEN 2.1) m u p (i , j) = f m u p (i , j) + A(i , j)

2.2) Mark d piocessors from Hmap(i , j) and include
them in Cmap(i,j). Give priority to procmap(i, j) ,

procmap(i,j)+(l,l) for inclusion in Cmap(i,j).
procmap(i , j) + (O , 1) 7 proemap(i, j)+(1 ,0) then

2.3) Exit the inner-most FOR loop.
The above algorithm is considered to have failed if it fails

to map any logical node (i , j) . Different algorithms may be
derived from the above general one for different fmup and d.
We will analyze only the specific case where f m u p l ~ l is used
with d = 3. The conditions for the validity of the mapping in
this case are given in Proposition 2. Other cases of different
finup and d may be analyzed in a similar manner.

The mapping function fmupl! ' allows the embedding of
an nl x nl logical array, where nl = [(n, + 1)/2J, onto
a nondefective ns x n, PSVA with d = 3. The probability
that Shift-l/fmuplil embeds successfully the same logical
array onto an n, x n, defective PSVA depends on the defect
distribution in the PSVA as well as on the values that are tried
for A (i , j) and the order in which these values are tried. In
Section 5.2 an algorithm is presented which tries all five values
of A(i , j) . In the next section, however, the values of A(i , j)
are restricted to (O , O) , (0, -1) and (0 , l) .

A. Row-Wise Embedding Using Shij-l/ fmup','

In the row-wise version of Shift-llfmup, each logical node
is allowed to be shifted from its position in fmup1>l only
in the horizontal direction. That is the values of A(i , j) =
(f l , 0) are not tried in algorithm Shift-llfmup. It is straight
forward to check that the resulting mapping function, map =
f m u p l > l 4- A, always satisfies the conditions of Proposition 1 .
Hence, by decomposing the n, x n, PSVA onto nl linear
PSVA's, the embedding of an nl x nl logical array onto
the two dimension PSVA may be achieved by independently
embedding each logical row onto the corresponding linear
PSVA. The probability of completing the two-dimensional
embedding is thus given by

Yrw-,hzft(3, ni, n,) = [Yishzft(3, w , nS)lnr (2)

where, YL-,hzft, is the probability of completing the embed-
ding of one logical row onto a linear PSVA using the following
algorithm (as in L-Greedy, the row indices are omitted).
Algorithm L-Shift-l/fmupl>l:

FOR j = 1 , . . . , nl do
FOR A(j) = - 1 , O , 1 do

1) H23-1+A(3) = set of un-marked processors connected

2.1) m a p (j) = 2 j - 1 + A(j)
2.2) Mark 3 processors from Hmap(j) and include

them in Cmap(j). Give priority to p r o c ~ , , , ~ (j) - l
and procl ,map(j) - l for inclusion in Cmap(j) .

2.3) Exit the inner-most FOR loop.

Fig. 12.

I I

TO')
Processors and switches affecting the embedding of node j.

By trying to embed a logical node, j , with A(j) = -1 first,
then with A(j) = 0 and 1, the algorithm actually compresses
the mapping toward the left, thus increasing the probability
of completing the embedding. Specifically, if node j can be
embedded with either A(j) = -1 or A(j) = 0, then the
embedding with A(j) = -1 leaves more processors available
for the embedding of node j + 1 and thus increases the chance
of successfully embedding that node. Similar arguments apply
to trying A(j) = 0 before A(j) = 1.

In order to analyze the probability of success of the above
algorithm, we observe that in iteration j , the success of
mapping logical node j depends on the availability (not
defective and not marked) of SWZtCh2j_l+A, for A = - 1 , O , 1,
and of pr0cq,2j-l, for q = 0 , l and 1 = 0,. . . , 3 (see Fig. 12). If
the embedding of node j is successful, then the availability of
processors pr0cq,2j-l, q, 1 = 0, 1, after iteration j , will affect
iteration j + 1. To express the availability of these processors
after iteration j we define the variable R(j) as follows.

*If A(j) = 0 or -1, then R(j) is the number of processors
among pr0c0 ,2 j -1 and pr0c1,2j-1 that are available (not
marked) after iteration j .

*If A(j) = 1, then -R(j) is the number of processors
among proc0,2j and p r o c l ~ j that are needed to complete
the embedding of node j .

In other words, if R(j) is nonnegative, it indicates whether
0, 1 or 2 of proco,2j-1 and proc1,2j-l are available to be
used, if needed, in the embedding of logical node j + 1.
If R (j) is negative, then this indicates that both proc0,2j-1
and proc1,zj-1 are marked and that IR(j)l processors among
p r o c o ~ j and proc1,2j are needed to complete the embedding
of node j . That is, node j needs to borrow IR(j)l processors
from node j + 1.

The progress of the embedding algorithm may be modeled
by a Markov process in which the jth transition represents
the execution of iteration j of the algorithm. In other words,
the state of the process after j transitions reflects the progress
of the algorithm after the j th iteration. The Markov process
consists of six states with the following semantics (see Fig.
13).

sf: indicates that the algorithm has failed in embedding
node j . This is an absorbing state because the failure
to embed one node means the failure of the algorithm.

SO: indicates that R (j) = 0 OR (R(j) > 0 and switchzj
is defective).

s,, u = 1,2: indicates that R(j) = u and that switchaj
is not defective.

s,, u = -1, -2: indicates that R (j) = u.

422 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. 4. APRIL 1994

u
Fig. 13. The Markov chain for L-Shift-l/fmap''l.

Note that the state information after transition j indicates
whether or not proco,2j-l, proc1,2j-l and switchzj are
available to be used in embedding node j + 1 in the next
iteration. It also indicates whether p r o c o ~ j and proc1,zj have
been used in embedding node j , and thus whether or not they
are available to be used for embedding node j+l. Two remarks
are in order. First, state SO specifies that neither ~ T O C O , Z ~ - ~ nor
pr0c1,2j-1 can be used for embedding node j + 1. This is true
if switchzj is defective even if R(j) # 0, since in this case,
node j + 1 cannot be mapped to switchzj and, thus, cannot use
proc0,2j-l orproc1,zj-1. The second remark is that transitions
into state s-1 (or s-2) assume that at least one (or both) of
proc0,zj and proc1,zj are nondefective.

Let T (j) be the set containing the two switches switchzj-1
and switch2j, and the four processors connected to
switchzj- 1 , and assume that after embedding some node,
j - 1, the Markov process is in state szl. The probability
of successfully embedding node j and the state after that
embedding depends on: 1) the state s, and 2) the probability
of different defect configurations in the elements of T (j) .
Specifically, the transition probabilities out of some state, s,,
may be computed by enumerating all possible configurations
of defects in the elements of T(j) . There are two switches and
four processors in T (j) , thus giving 64 defect configurations,
each occurring with a given probability expressed in terms of
p and p,. Each configuration will cause a transition to one
of the six states in the Markov process and the sum of the
probabilities of the configurations leading to a specific state
s, is the transition probability from s, to s,.

The above assertion that state transitions depend only on
elements in T (j) needs further justification since transitions
into s-1 (or s-2) assume that at least one (or both) of proc0,zj
or p r o c l , ~ j is nondefective. Examining the states of these
processors during the embedding of node j complicates the
Markov analysis since there will not be a clean separation
between the elements examined in each iteration. Our solution
to this problem is to delay the examination of proc0,zj and

Fig. 14. States after iteration j for three different defect configurations
in T (j) assuming that, before iteration j,proc1,Z3-3 is available and
p r O C 0 , 2 ~ - 3 is marked (state SI). (a) SI. (b) SO. (c) S - - 1 .

pr0cl,2j until the embedding of node j + 1. At that time,
proc0,zj and proc1,2j are examined as elements of T (j + 1)
and any incompatibility with the current state will cause a
transition to sf. Note that such incompatibility is only possible
if the current state is s-1 or s-2. The second example that we
discuss below will clarify this point.

For example, in Fig. 14(a), (b), and (c), we assume that
after iteration j - 1, the process is in state s1 (p r 0 ~ 1 , 2 j - 3

is available-see labels in Fig. 12), and we show three
defect configurations for T (j) . These configurations occur
with probabilities p3(l - p) p t , p3(l - p) p t and p2(1 -
~) ~ p : , respectively. In configuration (a), node j is mapped
to witch^^-^, thus leaving proc1,~j-1 available (state s l) .
In configuration (b), node j is mapped to swztchpj-1, thus
leaving no processors available (state S O) . In configuration (c),
node j is mapped to switchaj, and one of proc0,2i or proc1,2i

is needed to complete the embedding (state s-1). Note that the
transition probabilities do not depend on the particular index,
j , of the node being mapped.

A second example is given in Fig. 15, where it is assumed
that after iteration j - 1, the process is in state s-1 (one of
proc0,zj or proc1,2j is used). We show in Fig. 15(a), (b),
and (c) three defect configurations for T (j) that occur with
probabilities (1 - p)', p2(1 - ~) ~ p , and p4ps , respectively.
The configuration of Fig. 15(a) leads to sf since being in state
s-1 requires that one of proc0,zj or proc1,zj is available. The
configuration of Fig. 15(b) leads to s-2 while that of Fig.
15(c) leads to S O .

Let oh be the probability of being in state s, after the
j th transition. Following the above mentioned enumeration
procedure, we may find the state transition matrix A for the
Markov process. To simplify the expression and derivation of
A, we decompose it into:

423 RAMIREZ AND MELHEM: COMPUTATIONAL ARRAYS WITH FLEXIBLE REDUNDANCY

.oo .OS .1 .15 .2
(1-P)

";; 0.0 0.1

0.0 0.2 0.3 0.6 0.8 1.0

(a) (b)

Fig. 16.
of faulty switches on Y r w _ s h l f i - l .

The yields for row-wise Shift-1 and 2-D-Greedy. (a) The yield for different algorithms (ps = 0). (b) The effect

Fig. 15.
is s-1. (a) sf. (b) s-2. (c) SO.

States after iteration j assuming that, before iteration j , the state

where each of the four matrices corresponds to a particular
pattern of failure of switchzj-1 and switchaj. The matrix

corresponding to the two switches being nondefective is
specified by the equation found at the bottom of the previous
page where x4 = p4, x3 = p3(l - p) , x2 = p2(1 - p)',
x1 = p(l - p) 3 and xo = (1 - P) ~ . The expressions for the
other matrices are similar.

The Markov process is initiated at state SO. This is because
proco,-l and procl,-l are not available for embedding logical
node 1 (they do not exist), and proco,~ and p r o c l , ~ are not used
in the embedding of node 0 (node 0 does not exist). If n, is
odd, then the last node, nl, cannot be shifted to the right. That
is, the embedding is successful only if, after 7Ll iterations, the
Markov process is in state SO, s1 or s2. Hence, the probability
of successful embedding is:

Y ~ - ~ h i f t (3 , n i , n ~) = (1 1 1 0 0 O)A"'(l 0 0 0 0 O) T ,
if n, is odd.

A slightly more complex expression may be obtained for
even values of n. From this and (2), the success probability

of the row-wise shift-l/fmapl>l may be computed. This
probability is plotted in Fig. 16(a). In this Fig. the curve la-
beled Yfmap(3, 10,19) is the probability that fmap'l' embeds
successfully a 10 x 10 array onto a 19 x 19 defective PSVA
without any reconfiguration. It is given by .

Yfmap(3,10,19) = (P4P, + Q3(1 - P) P s) N

Where N = n; = 100. This curve is used to demonstrate the
yield enhancement due to reconfiguration. In Fig. 16(b), we
show the effect of switch faults on Yrw-shift-1(3, 10,19). As
expected, the yield decreases for higher probability of switch
faults.

In order to compare the 2-D-Greedy and the row-wise
Shift-1 algorithms, we also plot Y ~ - L J - G ~ ~ ~ ~ ~ (~ , 10,19) in Fig.
16(a). This is the probability of successfully embedding a
logical array of size at least 10 x 10 onto the 19 x 19 PSVA
using 2-D-Greedy. Although the two yields are approximately
equal, the yield of 2-D-Greedy is slightly lower for small
values of p. The performance of 2-D-Greedy relative to Shift-1
improves as p increases. However, comparing 2-D-Greedy and
Shift-1 for a fixed size logical array is misleading. In fact, even
for the values of p for which Y2-D-Greedy(3,10,19) is smaller
than Yrw_shift(3, 10,19), 2-D-Greedy has the advantage of
being able, with some probability, to embed arrays larger than
10 x 10. For instance, as seen from Fig. 16(a), for p = 0.95,
2-D-Greedy may embed a 11 x 10 array in a 19 x 19 PSVA
with probability 0.58. That is Y2-LJ-Gree&,(3, 11,19) = 0.58
while Yrw-shift(3, 11,19) = 0.

Next, we discuss two different variations of the Shift-1
embedding algorithm.

B. A More Flexible Shif-l/ f map'i' Embedding
In the previous section, we considered mapping functions in

which each node may be shifted from its position in fmapl7'

424 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. 4, APFUL 1994

(c) (d)

Fig. 17.
(c) A = (0,O) is tried first, (b), (d) A = (0, -1) is tried first.

Embedding 2 x 2 logical arrays onto defective 3 x 3 PSVA’s (a),

only in the horizontal direction. With this restriction, however,
the probability of successful embedding is maximized if, while
embedding logical node (i , j) , we try A(i , j) = (0, -1) then
(0,O) then (0, l) . In this section, we consider Shift-l/fmaplil
algorithms in which all five values of A(i , j) are tried. Using
the same argument used for the row-wise case, it may be
shownthattryingthevaluesof A i n {(O,O),(-l,O),(O,-1)}
before those in ((0, l) , (1,O)) always maximizes the prob-
ability of successfully completing the embedding. However,
there is no optimum order for trying the values of A from
((0, O) , (-1, O), (0, -l)}. In some cases, compression, that is
trying A = (-1,O) or (0,-1) before (O ,O) , may increase
the probability of successfully completing the embedding. In
some other cases, however, this may decrease that probability.
We clarify this by the two examples in Fig. 17. For the PSVA
of Fig. 17(a), the embedding is completed with A = (0,O)
being tried before (-1,O). If A = (-1,O) is tried first in
this example, then, as shown in Fig. 17(b), node (1 , l) will
be shifted to the left thus consuming proc1,l and causing the
embedding of node (2 , l) to fail. A similar argument applies
to Figures 17(c) and (d). In this case, however, the left shift of
node (1, l) prevents the upward shift of node [2, 2) because
this shift would violate the conditions of Proposition 2.

With the possibility of shifting in any of the four normal
directions, the predicate valid in Algorithm Shift-l/fmaplil
should return true only if the conditions of Proposition 2 are
satisfied. Given the values of A(i - 1 , j) and A (i , j - l) , the
predicate valid is specified by

valid(i, j , A(i, j)) =
fa lse ,
fa l se ,
fa l se ,
fa l se ,
true, otherwise.

if A(i , j) = (dz1,O) and A (i , j - 1) = (0, l),
if A(i , j) = (0, &l) and A(i - 1 , j) = (1,0),
if A(i , j) = (-1,O) and A(i - 1 , j) = (O,&l),
if A(i , j) = (0, -1) and A (i , j - 1) = (f 1 , 0) ,

(3)
In other words, (2, j) may not be shifted vertically if (i , j - 1)
is shifted to the right and may not be shifted horizontally if
(i - 1,j) is shifted downward. Moreover, (i,j) may be shifted
upward only if (i - 1 , j) is not shifted horizontally and may
be shifted leftward only if (i , j - 1) is not shifted vertically.

1

In order to analyze the probability of success of
Shift-l/fmapl?l, we Observe that the probability of
successfully embedding a logical node depends on the
conditions resulting from embedding the previous nodes.
As in the case of L-Shift-1, the conditions after embedding
logical node (i , j) may be expressed in terms of the
number of processors among {procze-1,z3--lr ~ T O C Z ~ - - ~ , Z ~ - Z ,

proc2,-2,22-1} that are not marked after iteration i , j . Unlike
the linear case, however, a distinction should be made between
un-marked processors that may be used when mapping logical
node (i,j + 1) and those that may be used when mapping
logical node (i + 1,j). Two variables, Rh(i,j) and &(i,j)
are used for that purpose.

*Rh(i,j): is the number of processors among proc~~--1,2~--1
and proc2e--2,2J-1 that are available after the embedding
of node (z,j) to be used when embedding node (i , j + 1).
A negative value of Rh(i,j) indicates that the embedding
of node (i , j) required a shift to the right and the use of
I&(i,j)l processors from { ~ ~ o c z ~ - - ~ , z ~ , Proc2a-2 ,23} .

*R,(i,j): is the number of processors among procz2-1,z3-1
and proczz--1,23--2 that are available after the embedding of
node (i, j) to be used when embedding node (i + 1, j) . A
negative value of R, (i , j) indicates that the embedding of
node (i , j) required a downward shift and the use IRh(i,j)l
processors from P T O C ~ ~ , ~ ~ - 1, p ~ o c 2 ~ , 2 ~ -2.

The value of the tuple (Rh(i, j) , & (i , j)) may be used to
indicate the state of the embedding after iteration (z, j) . Each
of Rh and R, may be equal to one of the five values -2, -1,
0, 1 and 2. Thus, there are 25 possible values for (Rh, R,).
The following proposition restricts the possible values of

The only possible case in which both
Rh(i,j) and &(i,j) are non zero, is the case Rh = R, = 1.

Proof: For Rh(i,j) to be equal to 2, -1 or -2 we should
have A(i , j) = (0, - l) , (0, +1) or (0, +l) , respectively. That
is the mapping of (i,j) should be shifted horizontally, which,
by Proposition 2 (or equation (3)), prevents node (i+l , j) from
being shifted upward. Thus, the embedding of node (i + 1, j)
may not use any of proczz--1,23-1 or proc2z--1,23--2. Also,
if (i , j) is shifted horizontally, then the embedding of node
(i , j) does not use any of pr0c2~,2~--1 or pTOcZa,23-~. Hence,
R , (i , j) = 0. By a similar argument we may show that if

0
The following proposition puts more restrictions on the

possible values of (Rh, &) if, in algorithm Shif-1, an attempt
is made to map each node (i,j) to its position in fmup’”
before attempting any shift.

Proposition 5: Assume that algorithm Shiftl/ f maplil is
applied to a PSVA with nondefective switches. If A = (0,O)
is tried before A = (-l,O), then &(z,j) 5 1. Similarly, if
A = (0,O) is tried before A = (0, -l), then Rh(i,j) 5 1.
Moreover, in either of the above two cases, R,(z,j) =
Rh(i,j) = 1 only if A(i , j) = (0,O).

(Rhr Rv)-
Proposition 4:

&(i,j) = 2, -1 or -2, then Rh(i,j) = 0.

Proof: We start the proof by two observations.
01) Rv(Z,.j) = 2 only if (i , j) is shifted upward (A(z,j) =

(-1 ,O)) and bothproc22-1,22-1 andprocZz-1,23-2 are
nondefective.

RAMIREZ AND MELHEM: COMPUTATIONAL ARRAYS WITH FLEXIBLE REDUNDANCY

~

425

02) If node (i , j) is shifted horizontally, then &,(i, j) = 0
because, in this case, according equations (3), node
(i + 1 , j) may not be shifted upward, and thus may
not use any of-p~oc2~-1,2~-1 or p~oc2~--1,2~-2.

We use these observations to prove, by induction on i, that if
A = (0,O) is tried before A = (-l,O), then R,,(Z,j) 5 1 and
h (i , j) = 1 only if A (i , j) = (0,O). The second part of the
proposition may be proved in a similar way.

Clearly, node (1, j) cannot be shifted upward, and thus
R u (l , j) # 2 and R,,(l,j) = 1 only if A(1 , j) = (0,O).
Next, if the induction hypothesis is true for i - 1, then
&(i - 1,j) 5 1 and thus, at most one of p~oc2~-3,2~-1 and
PTOC2z-3,2~-2 may be used when embedding node (i , j) . We
consider three cases. The first case is when the embedding
of node (z , j) is accomplished with A(i , j) = (0 , f l) . In
this case, the result follows directly from observation 02.
The second case is when the embedding of node (i , j) is
accomplished with A(i , j) =(O, 0). In this case, by observation
01, &,(z,j) # 2 and the result follows directly. Finally, the
third case is when the embedding is accomplished with A(i, j)
= (-l,O), which is true only if the embedding fails with
A (i , j) = (0,O). In this case, noting that R,(i - 1 , j) 5 1,
both p ~ o c 2 ~ - ~ , 2 ~ - 1 and p ~ o c 2 ~ - 2 , ~ ~ - 2 should be nondefective
in order to have a total of three nondefective processors
connected to ~witch2~-2,2~-1. This, together with the fact
that Rh(2 . j - 1) is not negative (otherwise node (i , j - 1)
is shifted to the right and (i,j) cannot be shifted upward)
imply that both p~oc2~-1,2~-1 and p~oc2~-1,2~-2 are defective
because, otherwise, there will be more than two available,
nondefective, processors connected to switch2i - 1 , 2 j - 1
and the embedding with A(i , j) = (0,O) would have been
successful. Hence, if A(i , j) = (-l,O), then Ru(i , j) = 0,

0
Corollaly 1: If A = (0,O) is tried before (-1,O) and

(0 , -1) in algorithm Shift-llmupl?l, then it is always possible
to mark the processors such that if either Ru(i , j) or Rh(i, j)
is equal to one, then the other is also equal to one.

Pruofi From Proposition 5, if either R,,(i,j) or Rh(i, j)
is equal to one, then A(i , j) = 0, and the four processors
connected to ~ w i t c h 2 ~ - ~ , 2 ~ - 1 are nondefective. According to
the priorities in step 2.2 of Shiftllfmup'J, p~oc2~--1,2~--1
will not be marked and will be available to be used when
either (i , j + 1) or (i + 1 , j) are embedded. Thus R,,(i,j) =

We will analyze two versions of the general
Shift-l/fmupl>l embedding algorithm. In the first version,
G1-Shift-llfmupl~l, the values of A are tried in the
order (O,O) , (0,-1), (-l,O), (0 , l) and (1 ,O) . That is
the no-shift position is tried first. In the second version,
G 2 - S h i f t - l l f m ~ p ~ ~ ~ , the values of A are tried in the order
(0, -l), (O , O) , (-l,O), (0 , l) and (1,O). That is the left shift
position is tried first. The analysis is simplified by assuming
nondefective switches (pS = 1). As clear from the analysis
of L-Shift-1, the same type of analysis may be applied to
the case p , # 1.

When G1-Shift/fmup1?' is applied to PSVA's with
nondefective switches, Propositions 4 and 5 and Corollary
I , imply that only six values are possible for the tuples

which proves the induction step.

Rh(i, j) = 1. 0

(Rh(i,j), % (i , j)) . Namely, (0, O), (1, I) , (0, -I), (0, -2),
(-1,O) and (-2,O). Using these tuples, we define the follow-
ing states that include information about the consequences of
embedding logical node (i, j) :
so,l(i,j) : indicates that (Rh(i,j), Ru(i , j)) =(O, 0),
sp(2,j) : indicates that (Rb(i , j) ,Ru(z , j)) = (1,l)

(possible only if A(i, j) = (0, 0)),
s3(irj) ands4(i,j) : indicate that (&(i,j),Ru(Z,j)) = (-1,O)

and (-2,0), respectively, (possible only if
A(i , j) = (0,1)>.

A(i , j) = (L O)) ?

s5(i , j) andsg(2,j): indicate that (& (i , j) , & (i , j)) = (0, -1)
and (0, -2), respectively, (possible only if

indicates that the algorithm failed to embed
logical node (i, j) .

s 7 (i , j) :

If we denote by T (i , j) the set containing the four pro-
cessors connected to ~witch2+1,2~-1, then the probability of
successfully embedding logical node (i , j) will depend on: 1)
the probabilities of defect distributions among the processors
in T(i , j) , and 2) the state that resulted from embedding nodes
(i - l , j) , (i , j - 1) and (i - 1,j + 1). These two factors will
also determine the state after the embedding of node (i , j) .
Note that the state after the embedding of node (i - 1, j + 1)
is needed because node (i - 1,j + 1) is embedded in Shift-1
after node (i - 1,j). Thus, if Rh(i - 1 , j) = &(i - 1 , j) = 1,
then node (i, j) may be shifted upward and use the processor
left by node (i - 1,j) only if node (i - 1,j + 1) has not been
shifted left and has already used that processor. However, if
node (i-l,j+l) isshiftedtotheleft,then,&(i-l,j+l) = 0
and, from Proposition 5, Rh(i - 1, j + 1) = 0. Hence, state
so,l(i - 1 , j + 1) is the only state that is possible with either
A(i - 1,j + 1) # (0, -1) or A(i - 1,j + 1) = (0, -1). In
order to record whether or not a left shift had taken place, we
divide state s ~ ~ (i , j) into two states, namely;

so(i , j) indicates that (Rh(i,j),R,(i,j)) = (0,O) and

s l (i , j) indicates that (Rh(i,j),R,,(i,j)) = (0,O) and

In Fig. 18, we show a few examples of states after the
embedding of node (i, j) . The examples are given for specific
defect configurations for the four processors in T(i , j) . In
each of these examples, the current state, su(z, j) , depends
also on the states resulting from embedding nodes (i , j - l) ,
(i - 1,j) and (i - 1,j + 1). For instance, so(i , j) in Fig. 18(a)
is reached only if the state after embedding node (i,j - 1) is
not s3(i , j - 1) or s4(i , j - 1) and the state after embedding
node (i - 1 , j) is not sg(i - 1 , j) or S g (i - 1,j). With
the shown default configuration for T(i , j) , sq(i,j - 1) or
S g (i - 1,j) would have resulted in sf(z,j). Either s3(i,j - 1)
or s5(i - 1 , j) would have resulted in s 3 (i , j) or s 5 (i , j) ,
respectively. Finally, both s 3 (i , j - 1) and s5(i - 1,j) would
have resulted in either 3 4 (i , j) or s s (i , j) depending on the
order in which right or down shifts are tried.

In Fig. 18(b), so(i , j) is reached assuming s u (i , j - l) ,
u # 3 or 4, s2(i - 1,j) and su(i - 1,j + 1). u # 1. That is
assuming that node (i, j - 1) is not shifted right, node (i - 1, j)
has an extra processor and that extra processor has not been

A(i , j> # (0,-1)

A (i , j) = (0,-1).

426 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 4, APRIL 1994

used by node (i - 1 , j + 1). In Fig. 18(c), s l (i , j) is reached
assuming s z (i , j - 1) and s,(z - l,j), u # 5 or 6. The states
s 2 (Z , j) , s3(i ,j) and s 5 (i , j) shown in Fig. 18(d), (e), and (0,
respectively, are reached assuming s,(z,j - 1). '(I # 3 or 4
and s,(i - l,j), u # 5 or 6.

A Markov process similar to the one used to analyze
L-Shift-1 may not be directly applied to compute the prob-
ability of successfully completing the embedding. This is
because the result of iteration i , j not only depends on the
previous iteration, i , j - 1, but also on iterations i - 1 , j
and i - 1, j + 1. That is the process needs to remember the
results of the previous 7~ iterations. An alternative technique
is to assume that P,(i,j) is the probability of being in
state s u (i , j) after the embedding of node (i , j) . It is then
possible to write a set of recursive equations relating P(i , j)
with P(i - l , j) , P(i - 1 , j + 1) and P(i , j - 1), where
P (i , j) is a vector containing the eight probabilities P,(i,j)
in the order u = 0, . . . ,7. By solving the resulting system
of equations, we can calculate the probability that all the
nodes are mapped successfully. The probability equations are
derived by enumerating all possible configurations of defects
in the elements of T(i , j) . For example, if T,, u = 1 , . . ,4,
are defined as in Section V-A, then, from our comment on
Fig. 18(d), the probability of being in state s z (i , j) after the
embedding of logical node (i,j) is given by:

P2(i,j) = T4p5,6(i - l,j)P3,4(i,j - 1)

where for simplicity of notation we used P,,, = P, + P,. and
P,,, = (1 - P,,u). That is, the embedding of node (i , j) is
completed with A(i,j) = (0,O) and Rh(i , j) = R , (i , j) = 1
if and only if the four processors in T(i , j) are nondefective
(with probability 7r4), node (i - 1 , j) is not shifted downward
(with probability 1 - P 5 , 6 (i - 1,j)) and node (i , j - 1) is not
shifted rightward (with probability 1 -P3,4(i, j - 1)). Similarly,
the probabilities of being in the seven other states are:

-

PfJ(i,j) = 47F3P5,6(i - l7j)F3,4(2,j - 1)
+T4P5(i - l , j)p3 ,4(i , j - 1)
+ TqP5,6(i - 1, j)p3(i , j - 1)

+ TZPZ(i - l,j)F&(i,j - l)FI(i - 1 , j + 1)
pl(i,j) = T Z P 5 , 6 (i - l , j)PZ(i , j - I))

Now, by setting P(0, j) = P(i,O) = (l O O O O O O O) T
for any i and j , we may iteratively compute P(z,j) , z,j =
1, . . . , nl. Assuming that ns is odd, then no node at the right
boundary should be shifted rightward, and no node at the
bottom boundary should be shifted downward. That is,

YGlshift(3, nZ, ns)
= [IIyyrI;:yP7(i,j)]

* [n$T1F5,6,7(nl,j)]
7d-1- * [q = 1 P3,4,7(i ,nz) l * P0,1,2(nz,~z).

A slightly more complex expression may be derived for the
case of even n,.

The probability Y ~ 1 - ~ h i f ~ (3 , 1 0 , 1 9) is plotted in Fig. 19 for
the embedding of an 10 x 10 logical array onto a 19 x 19-
switch PSVA. By comparing the results for G1-Shift and
row-wise Shift-I, we note that the yield of the latter is greater
than the yield of the former. Given that G1-Shift allows
shifting in all four directions while rw - Shift allows only
horizontal shifts, it is clear that the compression toward the
left (trying A = (0, -1) first) is the reason for the superiority
of rw-Shi f t. It is possible to combine the advantages of both
algorithms, that is to allow shifting in all directions and at the
same time compress toward the left. This is achieved by trying
the values of A(i , j) in algorithm Shift-llfmapl-I in the order
(0, -1). (O,O), (- l , O) , (0 , l) and (1,O). This algorithm is
called G2-Shift-1lfmap1~l.

From Propositions 4 and 5, the permissible values
of (Rh (i, j) , R, (i , j)) after embedding node (i, j) using
G2-Shift-1 are: (O , O) , (l , O) , (2,0), (l , l) , (0,-1), (0, -2),
(-1,O) and (-2,O). As in GlShift-I, two states need to be
defined for (Rh, R,) = (0 ,O) . Adding a failure state, the total
number of states needed to analyze G2Shift-l/ f mapl>l adds
up to 10 states. We have derived the equations relating the
probabilities for these states and have computed the yield,
Y~~~hift-1(3,nt,n,). The results for the embedding of a
10 x 10 logical array onto a 19 x 19 PSVA is shown in Fig.
19. As expected, G2-Shift-1 outperforms row-wise Shift-1.
The yield improvement is, however, very modest.

RAMIREZ AND MELHEM: COMPUTATIONAL ARRAYS WITH FLEXIBLE REDUNDANCY 427

0.9 l-oR
Om*/ 0.7

0.3

0.2

O-l. 0.0
.oo .05 .1 .15 .2

(1-P 1
Fig. 19.
PSVA.

The yield for embedding 10 x 10 array onto a 19 x 19 defective

VI. RUN TIME RECONFIGURATION OF PSVA

Run-time faults may be dealt with in PSVA's by providing
additional redundancy at each node. Specifically, if d redun-
dancy is desired for proper operation (d = 2 for fault detection
and 3 for fault masking), then each logical node is mapped to
the PSVA with p redundancy for 'p > d. With this, p - d
processors per logical node are available to be used as spares.
For example, if triple redundancy is desired, then the mapping
defined by (1) may be used to map a logical array onto a
nondefective PSVA such that four processors constitute each
logical node; three processors to be used in a TMR mode and
the fourth to be used as a spare to replace any of the other
three. This idea of using sparing along with TMR has been
used in the design of FTMP [7], where a pool of spares is
made available to replace any faulty unit in a triply redundant
module. In PSVA's, however, the use of spares is restricted in
the sense that a spare can only replace one of three specific
processors.

In order to be more specific, define a d-deficient logical
node to be a node with more than p - d faults in the processors
constituting it. Such a node has less than d nonfaulty proces-
sors left and thus cannot operate properly in a d-redundant
mode. Because faults may not occur uniformly at run-time,
some node may become d-deficient while some other node
may have less than p - d faults in the processors constituting
it. In other words, the system may fail not because of lack
of spares, but because the hardware interconnections restrict
the set of processors that may be replaced by each spare. This
restriction greatly reduces the survivability of the system.

In order to improve the survivability, a run-time recon-
figuration algorithm may be invoked when a node becomes
d-deficient. The goal of the reconfiguration is to restore
the required redundancy at each node. Ideally, a run-time
reconfiguration algorithm should be a simple algorithm which
may be executed distributively and which only requires the
remapping of deficient nodes (constant time complexity).
A good candidate for such reconfiguration is a run-time

adaptation of the Shift-1 algorithm of Section V; when a
logical node, (i , j) , which is mapped to swztch,,,(z,~),
becomes deficient, then remap this node to one of the four
switches switch,,,(i,j)+A, where A = (0 , &l) or (fl, 0).

A shift of node (i , j) in one of the four directions is
successful only if the neighboring logical node along that
direction, say (i ' , j ') , has an extra spare that it may give up and
that may be used by (2 , j) . If this is not the case, however, then
it may still be possible to shift (i , j) if (i',j') is successfully
shifted along the same direction, thus relinquishing one or
more processors to (z,j). This process may be continued
recursively until we either can shift a node successfully, or we
reach a node which may not be shifted. For example, assume
that an nl x nl logical array is initially embedded in an n, x n,
PSVA using fmap'?' and that triple redundancy is required.
Hence, when a node (i , j) becomes 3-deficient the following
algorithm may be used to try to shift node (i, j) by one switch
to the left:
Algorithm leftshift (i,j)
IF both proc2i-~,~j-z and proczi-l,zj--2 are faulty
OR j = 1 THEN retum not-successful

ELSEIF the four processors constituting node
(i , j - 1) are not faulty, THEN

shift (i , j) to switchZi-1,2j-Z and retum a set
which contains the nonfaulty processors
among proc2+z,zj- 1 and proczi- 1 ,zj - 1.

These are the processors relinquished when (i, j)
is shifted to the left.

ELSE call left-shift(i,j - 1);
IF the call is successful and the set of
processors relinquished due to left-shift(i, j - 1)
allows (i , j) to be embedded in switchzi-1,zj-z,
then retum a set which contains the nonfaulty
processors among proczi--2,zj--1 and
proczi- 1 , z j - 1.
ELSE retum nut-successful.

If leftshift is not successful, then a similar up-shift is tried,
then a right-shift and finally a downshift. The resulting recon-
figuration algorithm is called (nl - 1)-compress because the
recursive shifting of nondeficient nodes along some direction
is equivalent to compressing the embedding in that direction.
At run time, this compression may require the remapping of
up to n~ - 1 nodes.

The above reconfiguration is triggered by a node that
becomes 3-deficient. Such a node is capable of participating
in the reconfiguration since it still has two nonfaulty proces-
sors. These processors can detect the deficiency status by
periodically examining the status word of the switch to which
they are actively connected. The other nodes that are involved
in the reconfiguration are invoked by message passing and
execute in a distributive manner. Processors may determine
the active connections of neighboring processors by examining
the status word of a shared switch. They may also change such
connections by writing onto that status word.

The run-time complexity of (nl - 1)-compress is O(nl).
This may be reduced if the nesting level of the recursive
calls to left-shift, up-shift, right-shift and down-shift is limited
to m levels, for some m < n1. The resulting algorithm is

428 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. 4. APRIL 1994

0 20 40 80
of faults

Fig. 20. Probability of surviving nm time fault in a 19 x 19 PSVA.

called m-compress. Clearly, 0-compress attempts only to shift
the deficient node and thus is fast. Its probability of success,
however, is expected to be low compared to that of (121 - 1)-
compress .

In order to study the effect of m on the success of the
reconfiguration algorithm, we simulated the application of m-
compress for the reconfiguration of an 10 x 10 logical array
which is embedded in an 19 x 19 PSVA using fm.aplll with
d = 3. Clearly, only 300 of the 400 processors in the PSVA
are used in the embedding and the remaining 100 processors
may be used as spares. In Fig. 20, we show the probability
that m-compress successfully reconfigures the array to tolerate
IC randomly chosen faulty processors. As seen from the figure,
compression with low values of m gives good results. In fact,
for m = 2, any increase in the value of m results in a minute
improvement in system survivability.

VII. CONCLUSION

We have presented a versatile architecture for implementing
multiple redundancy in computational arrays, and we have
studied different embedding and reconfiguration algorithms
that may be applied to this architecture. All the algorithms
may be applied either to tolerate initial defects or to recover
from run time faults. In the paper, however, we distinguished
between defect tolerance algorithms and run time algorithms
according to the amount of global restructuring that is required.
This distinction is natural because the algorithms that require
global restructuring outperform those that are restricted to local
restructuring, but are less suitable for run time reconfiguration.

Given the flexibility of the PSVA architecture, we empha-
sized the strategies underlying the reconfiguration algorithms
and the techniques used to analyze them. These strategies
and techniques may be applied to different instances of the
restructuring problem. For example, we analyzed the em-
bedding and reconfiguration algorithms assuming that triple
redundancy is required for proper operation. Also, the Shift-1
algorithms were analyzed assuming that fmapl? ' is the initial
fixed mapping. The same type of analysis may be applied

if different degrees of redundancy are required and different
initial mappings are used.

Although it is assumed that switchhoting elements may
fail, those elements are not used in a redundant mode, and
thus should be self-checking elements. This also implies that
errors in switchhoters cannot be masked. Multiple redundancy
schemes for processor arrays may be realized without the
use of switchhoter elements. For this, direct connections
should be provided among the d processors constituting a
logical node to allow the results of each processor to be
transmitted to the other d - 1 processors. The voting is thus
performed independently and distributively by each processor
[101. Among the previously proposed processor arrays, two
architectures may be used to realize such a distributed multiple
redundancy approach. Namely, the iWarp [17] and the CHIP
[22] . In the foimer, direct connections may be realized by
time multiplexing individual links and in the latter, direct
connections may be established by reconfiguring a mesh
of communication tracks. Mapping a logical node into d
processors in the physical array will no longer be constrained
by the requirement that the d processors be physically adjacent,
but rather by the allowable degree of multiplexing (in iWarp)
and by the flexibilityhack-width of the interconnection system
(in CHIP-like architectures). Although studying and analyzing
multiple redundancy mappings in iWarp and CHIP are beyond
the scope of this paper, the ideas, algorithms and analysis
techniques used for multiple redundancy mappings in PSVA's
are useful starting points for such studies.

The study of multiple redundancy in PSVA's is the first
step toward studying the applicability of processor meshes as
general purpose, fault tolerant, multiprocessors. These systems
are appealing because of the ability to selectively set the degree
of redundancy according to the required reliability and the
possibility of dynamically reconfiguring the system after faults
to efficiently utilize the available redundancy.

APPENDIX
GLOSSARY OF NOTATION

the switch located in row i , column j of a
PSVA, starting with row and column 1,l.
the processor located in row i, column j of a
PSVA, starting with row and column 0,O.
the active set -the set of processors with
active connections to switch;,j.
the cardinality of active set Ci,j.

the single bit majority function used within the
switchhoters of a PSVA.
a function which specifies a mapping from a
logical node (i , j) to a physical PSVA switch.
The function maps from a row-column pair in the
logical array to a row-column pair in the physical
PSVA.
the physical row that logical node (i , j)
is mapped into.
the physical column that logical node (z , j) is
mapped into.

RAMIREZ AND MELHEM: COMPUTATIONAL ARRAYS WITH FLEXIBLE REDUNDANCY 429

the probability that a processor is nonfaulty.
the probability that a switch is nonfaulty.

a mapping from logical nodes to physical
switches which allows single switch position
deviance from a given fixed mapping.
the fixed mapping from logical nodes to phys-
ical switches utilized in the Shift-1 mapping.
the offset from the fixed mapping utilized in
Shift-1. The values for A(i , j) may be (0,O)
for no shift, (1,O) for a shift down, (0,l)
for a shift right, (-1,O) for a shift up, or
(0,-1) for a shift left.
the difference of the row values in the map-
pings of nodes (ij) and (i-1,j).
the difference of the column values in the map-
pings of nodes (ij) and (i-1,j).
the difference of the row values in the map-
pings of nodes (z , j) and (i , j - 1).
the difference of the column values in the map-
pings of nodes (i , j) and (i , j - 1).

a boolean function which returns true if
component x is nonfaulty.
the set of unmarked (or available) processors
connected to switchk in a linear PSVA.
The set is indicated by two subscripts (for row
and column) in two-dimensional PSVA’s.
the number of nondefective processors remain-
ing on the right side of switch,,,(j) after
logical node j has been mapped onto it. These
processors may be used in the mapping of log-
ical node j + 1 if necessary. R(j) may have
the values 0, 1, or 2.
a mapping of logical nodes onto a linear PSVA
which maximizes the number of mapped log-
ical nodes.

Y s (d , n,, n,) the yield obtained when algorithm S is used to
map n, logical nodes into a linear PSVA of n,
switches maintaining redundancy d per node.
a state in the layered Markov chain used to
analyze the Greedy algorithm. Subscript y in-
dicates the number of nodes successfully map-
ped, and subscript u indicates the number of
processors available for mapping the next
node.
the probability that the Greedy mapping is
in state sY,” after IC switches have been exam-
ined (after the kth transition).
a vector of all the probabilities o;,”. Subscript
y ranges from 0 to n, and subscript u ranges
from 0 to 2. Thus, the vector contains the

Q Y t U

k
C Y ,”

ok

Section V
f map”.”

val id(i , j , A (i , j))

3(n, + 1) different probabilities of being in the
various mapping states after the lcth transition.

,71

a mapping of logical nodes into a PSVA
such that u consecutive switches are
used, followed by 21 consecutive switches
being unused, and repeating the pattern
for each row.
the utilization factor of mapping
f mup”~” with redundancy d. This value
indicates the percentage of processors
in the PSVA which are used by the
mapping.
a boolean function which returns true if
shifting the mapping of logical node
(i , j) by A(i, j) still allows correct con-
nections between the node and its west
and north neighbors.
the states used in the Markov chain used
to analyze the row-wise Shift-1 algor-
ithm. sf is the failure state. s-2 and s-1
indicate that 2 and 1 processors, respec-
tively, must be borrowed. SO in-
dicates no borrowing is needed. SI and
s2 indicate that 1 and 2 processors,
respectively, are available.
the probability that exactly i processors
out of four are nonfaulty on a switch.
the number of processors on
switch,,,(;,j) available, if necessary,
for the mapping of logical node (2, j
+1) after the mapping of logical node
(ij). A negative value (-1 or -2) indi-
cates that node (ij) was shifted to the
right and borrowed 1 or 2 processors
from its neighboring switch.
analogous to R h (i , j) but for vertical
neighbors.
states based upon the different combi-
nations of values attainable by Rh and
R, in the GlShift-1 algorithm after the
mapping of logical node (ij).
probabilities corresponding to the states
S O (i , j) , * 7 s 7 (i , j) .

REFERENCES

“Paragon XP/S product overview.” Inrel Corporation, 1991.
J. Abraham, P. Banerjee, C. Chen, W. Fuchs, S.Y. Kuo, and A. Reddy,
“Fault tolerance techniques for systolic arrays,” IEEE Comput., vol. 20.
no. 7, pp. 65-74, July 1987.
M. Alam and R. Melhem, “An efficient spare allocation scheme and its
application to fault tolerant binary hypercubes,” IEEE Trans. Parallel
and Disfn’b. Sysf., vol. 2, no. I, pp. 117-126, Jan. 1991.
C. Anfinson and F. Luk, “A linear algebraic model of algorithm-based
fault tolerance,” IEEE Trans. Compur., vol. 37, no. 12, pp. 1599-1604,
Dec. 1988.
M. Chean and J. Fortes, “The full-use-of-suitable-spares (FUSS) ap-
proach to hardware reconfiguration for fault-tolerant processor arrays,”
IEEE Trans. Compuf., vol. 39, no. 4, Apr. 1990.
R. Harper, J. Lala and J. Deyst, “Fault tolerant parallel processor
architecture overview,” in Proc. of FTCS 18, 1988, pp. 252-257.
A. Hopkins. “FTMP-A Highly Reliable Fault Tolerant Multiprcessor
for Aircraft,” Pmc. of IEEE, vol. 66, no. 10, pp. 1221-1239 1978.

430 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 4, APRIL 1994

[8] K. Huang and J. Abraham, “Algorithm-based fault-tolerance for matrix
operations,” IEEE Trans. Comput., vol. C-36, no. 6, pp. 518-528, June
1984.

[9] J. Kim and S. Reddy, “On the design of fault tolerant tow dimensional
systolic arrays for yield enhancement,” IEEE Trans. Comput., vol. 38,

[23] N. Theuretzbacher, “VOTRICS: Voting triple modular computer sys-
tems,” in Proc. of FTCS 16, 1986, pp. 144-150.

no. 4, pp. 515-525, Apr 1989.
[lo] D Kiskis and K. Shin, “Embedding triple-modular redundancy into

a hypercube architecture,” in Pmc. of the Third Con5 on Hypercube
Concurrent Comput. and Apphcat., 1988, pp. 337-245.

[I I] I. Koren, “A reconfigurable and fault-tolerant VLSI multiprocessor
array,” In Proc. 8th Symp. Comput. Architecture, 1981, pp. 425442.

[I21 S. Y Kung, S. N. Jean, and C.W. Chang, “Fault-tolerant array processors
using single track switches,” IEEE Trans. Comput., vol. 38, no. 4, pp.
501-514, Apr. 1989.

[I31 C. Kwan and S. Toida, “Optimal fault-tolerant realizations of some
classes of hierarchical tree systems,” in Proc. of FTCS 11, 1981, pp.
176-178.

[14] E. Manolakos, D. Dakhil, and M. Vai, “Concurrent error diagnosis in
mesh array architectures based on overlapping H-processes,” in Proc.
Int. Workshop on Defect and Fault Tolerance on VLSI Syst., 1991, pp.

[15] R. Melhem and J. Ramirez, “Meshes with multiple redundancy,” in

fault-tolerant computir
tectures.

139-152.

Algorithms and Parallel VLSI Architectures 11, P. Quinton and Y. Robert,
Eds. New York: Elsevier, 1991.

[161 R. Melhem, “Bi-level reconfigurations of fault tolerant arrays,” IEEE
Trans. Comput., vol. 41, no. 2, pp. 231-239, Feb. 1992.

[17] 0. Menzilcioglu, H. T. Kung, and S. Wong, “Comprehensive evaluation
of a two-dimensional configurable array,” in Proc. Fault Tolerant
Computing Symp., 1989, pp. 93-100.

[I81 R. Negrini, M. Sami, and R. Stefanelli, “Fault tolerance techniques for
array structures used in supercomputing,” IEEE Comput., vol. 19. no.
2, pp. 78-87, Feb. 1986.

[19] A. Rosenberg, “The Diogenes approach to testable fault-tolerant array
processors,” IEEE Trans. Comput., vol. C-32, no. 10, pp. 902-910, Oct.
1983.

[20] L. Shombert and D. Siewiorek, “Using redundancy for concurrent
testing and repairing systolic arrays,” in Seventeenth Int. Symp. on
Fault-Tolerant Computing, 1987, pp. 244-249.

[21] A. Singh and H. Youn, “An efficient restructuring approach for wafer
scale processor arrays,” in Proc. Int. Workshop on Defect and Fault in
VLSI Syst., 1988, pp. 395-407.

[22] L. Snyder, “Introduction to the configurable, highly parallel computer,”
Comput., vol. 15, no. 1, pp. 47-56, Jan. 1982.

John C. Ramirez was born in Pittsburgh, PA on
July 8, 1964. He is currently a Lecturer in Computer
Science at the University of Pittsburgh and is also
working to complete his Ph.D degree in computer
science at Pitt. He received the B.S. degree in
biochemistry and mathematics from Duquesne Uni-
versity in 1986 and the M.S. degree in computer
science from the University of Pittsburgh in 1989.

In 1991, he was the recipient of the Orrin E.
and Margaret M. Taulbee Award for Excellence in
Compurer Science. His research interests include

ig and parallel and distributed algorithms and archi-

Rami G. Melhem (S’82-M’84) was born in Cairo,
Egypt, in 1954. He received a B.E. in electrical en-
gineering from Cairo University, Egypt, in 1976, an
M.A. degree in mathematics and an M.S. degree in
computer science from the University of Pittsburgh
in 1981, and a Ph.D. degree in computer science
from the University of Pittsburgh in December
1983.

Since 1989, he has been an Associate Professor
of Computer Science at the University of Pittsburgh.
Previously, he was an Assistant Professor at Purdue

University and at the University of Pittsburgh. He has published numerous
papers in the areas of systolic architectures, parallel computing, fault tolerant
processor arrays and optical computing.

He served in program committees for several conferences and he is on the
editorial board of the IEEE TRANSACTIONS ON COMPUTERS. He also edited a
special issue of the Journal of Parallel and Distributed Computing on “Optical
Computing and Interconnection Systems.” Dr. Melhem is a member of the
IEEE Computer Society, the Association for Computing Machinery, and the
International Society for Optical Engineering.

