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Computational Arrays with Flexible Redundancy 
John Ramirez and Rami Melhem, Member, IEEE 

Abstmct- Different multiple redundancy schemes for fault 
detection and correction in computational arrays are proposed 
and analyzed. The basic idea is to embed a logical array of nodes 
onto a processor/switch array such that d processors, 1 2 d 5 4, 
are dedicated to the computation associated with each node. 
The input to a node is directed to the d processors constituting 
that node, and the output of the node is computed by taking 
a majority vote among the outputs of the d processors. The 
proposed processor/switch array (PSVA) is versatile in the sense 
that it may be configured as a nonredundant system or as a system 
which supports double, triple or quadruple redundancy. It also 
allows for spares to be distributed in the PSVA in a way that 
permits spare sharing among nodes, thus enhancing the overall 
system reliability. 

In addition to choosing the required degree of redundancy, 
the flexibility of the PSVA architecture allows for the embedding 
of redundant arrays onto defective PSVA’s and for run-time 
reconfiguration to avoid faulty processors and switches. Dif- 
ferent embedding and reconfiguration algorithms are presented 
and analyzed using Markov chain techniques, using Probability 
arguments, and via simulation. 

Index Terms- Multiple redundancy, fault tolerant arrays, re- 
configuration, embedding, defect avoidance, fault masking. 

I. INTRODUCTION 
OST research in fault tolerant computational arrays has M concentrated on defect avoidance and fault coverage 

(see for e.g., [2], [3], [5], [ l l ] ,  [18], [191, [211) while only 
few research efforts have been directed toward fault detection 
and correction in such arrays. The roving spare technique [20], 
the weighted checksum coding [4], [8] iind over1apping.H 
processes [14] are examples of approaches that may be used 
to detect (and in some cases correct) transient or permanent 
run-time faults. However, in these approaches, a latency period 
may elapse before faulty processors are detected and identified. 
If the processor array is subject to severe recovery time 
constraints, or if the production of faulty results may be 
disastrous, then the use of modular redundancy is appropriate. 

Active modular redundancy has been used in highly re- 
liable computing systems (see e.g., [6], [71, [131, 1231) to 
detect and dynamically mask faults. Recently, Kiskis and 
Shin [ 101 suggested a technique for embedding triple modular 
redundancy into hypercubes by assigning each task to three 
processors in the hypercube. Their goal is to mask any single 
fault and yet, retain the logical hypercube connection. In the 
context of computational arrays, modular redundancy may be 
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achieved by replicating each node in a logical array d times. 
The input to a node is directed to its d replicas, and the 
output of the node is computed by taking a majority vote 
among the outputs of the d replicas. In Section 2 of this 
paper, we introduce a versatile architecture which is based 
on interleaved arrays of processors and switches, and which 
permits the implementation of different degrees of redundancy. 
For example, two dimensional logical arrays may be embedded 
onto this architecture with d = 1 for no fault tolerance, d = 2 
for fault detection, d = 3 for fault correctiodmasking and 
d = 4 if additional sparing is required. 

The flexibility of the suggested architecture also allows for 
reconfiguration strategies that may be applied at fabrication 
time, compile time or at run time. At fabrication or compile 
time, reconfiguration may be applied to embed a specified 
logical array onto the architecture in a way that avoids defects 
or faults, respectively. At run time, reconfiguration may be 
used to repair the array after faults or to improve the quality 
of the embedding, thus improving the reliability of the system 
[16]. In all cases, the new configuration should be valid in 
the sense that it should allow for each logical node to be 
appropriately connected to its logical neighbors via the existing 
physical communication links. Conditions for the validity 
of configurations are discussed in Section I11 assuming that 
processors and switches may fault, but that a faulty switch 
may be used as a short circuit connection [9], [12]. 

Two strategies are presented for embedding logical arrays 
onto defective processor switchhoter arrays (PSVA’s for short) 
with a given redundancy. In Section IV, a greedy strategy 
is discussed to embed a maximal size logical array onto a 
given defective PSVA. In this strategy, nodes are embedded 
sequentially, and each logical node is mapped according to 
the information available about the mappings of the previous 
nodes. We show that the problem of embedding a maximal 
linear array onto a defective PSVA can be solved optimally in 
linear time. For two-dimensional arrays, finding optimal solu- 
tions seems to require exponential time complexity, and thus, 
we explore linear time algorithms that produce sub-optimal 
solutions. The second embedding strategy is for mapping 
a fixed size array onto a defective PSVA. It starts from 
a fixed embedding and incrementally changes it to avoid 
defectdfaults. This strategy is discussed in Section V. The 
yield of both strategies, which is the probability of successfully 
completing the embedding, is analyzed using Markov chain 
techniques, using probability arguments, and via simulation. 

The above two reconfiguration schemes are driven by a 
centralized controller or a host, and thus are suitable for 
fabrication-time defect tolerance and compile-time fault tol- 
erance. In Section VI, we consider run-time faults in PSVA’s 
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mode1 model mode3 

(a) (b) 
Fig. 1. 
modes of a switch. Square = switchlvoter, circle = processor. 

A processor switchlvoter may. (a) A 3 x 3 PSVA. (b) The pass 

assuming that a logical array is already embedded onto the 
PSVA such that at least d processors constitute each logical 
node. If, at run-time, some elements of the PSVA become 
faulty, then some logical nodes may be left with less than 
d processors while some other nodes may have more than d 
processors. In this case, it may be possible to distributively 
reconfigure the system at run time to guarantee that each node 
is d redundant, thus restoring the system’s functionality. 

In the rest of the paper, it is assumed that communication 
links are fault free. Reconfiguration algorithms that are more 
sophisticated than those presented in this paper are needed to 
reconfigure around faulty links. It is also assumed;as in most 
multiple redundancy systems, that no two faulty processors 
produce the same result and that no two processors fault 
simultaneously at run time. Finally, the analysis and simulation 
studies are based on random fault distributions in which 
switchhoter failures are independent of processor failures. 

11. A VERSATILE ARCHITECTURE FOR REDUNDANT ARRAYS 

In this section, we introduce the Processor SwitchNoter Ar- 
ray architecture (PSVA). It consists of a mesh-connected m a y  
of switcldvoters (referred to as switches), where each switch 
is connected to four processors in the manner indicated in Fig. 
1. Conversely, each processor (except border processors) is 
connected to four switches. Let n,. and n, be the numbers 
of rows of switches and columns of switches, respectively, in 
the PSVA. Then, the number of switches is n,. x n,, and the 
number of processors is (n, + 1) x (n, + 1). If, for simplicity, 
we assume that n,. = n, = ns, then a switch may be denoted 
by switchi,j, 1 5 i , j  5 n, and a processor may be denoted 
by proci,j,O 5 i, j 5 ns. 

A connection between a switch and one of the processors 
associated with it may be active or inactive. A switch may 
have up to four active connections at a time, but a processor 
may have only one. The active set, Ci,j, for switchi,j is 
defined to be the set of processors with active connections to 
that switch. Let ci,j denote the cardinality of Ci,j. Clearly, for 
any i , j  : 0 5 C i j  5 4. 

A. Operation Modes of Switches 

When a switch receives a data item from a neighboring 
switch, it replicates the item c;,j times and passes a copy 
along each active connection to the processors. Data items 
received by a switch from processors in the switch’s active 

set, however, are treated differently depending upon the value 
of c;,j. Specifically, the value of c; j  specifies the mode of the 
switch as follows. 

If c;,j = 0, switchij has no active links to any 
processors. In this case, the switch is said to be in pass 
mode. A switchhoter in pass mode functions only as a 
switch, and it directly connects its inputs and outputs in 
one of the ways depicted in Fig. le). 
If c;,j = 1 the switch is said to be in straight mode 
and data received by the switch from the processor is 
simply forwarded to the destination switch. 
If ci,j = 2 the switch is said to be in checking mode and 
data received from the two processors are compared. If 
they match, a copy is sent to the destination; otherwise 
an error flag is set. 
If c;,j > 2 the switch is said to be in voting mode. In 
this case, the result of a majority vote on the data from 
the processors is forwarded to the destination. The data 
that disagree with the majority are deemed faulty, and 
the processor that sent them is removed from Ci,j. 

B. Switch Design 

Assume that I k  , Ok, k = 1, . . . ,4 ,  are the input and output 
links, respectively, connecting a switch to its four neighboring 
switches (see Fig. 1). To implement the different switch modes, 
input from a given I k  should be sent to the processors in 
Ci,j along the appropriate links. Data sent back to the switch 
are voted on and the result is sent to its proper destination 
output o h .  Given that there are four possible destinations; 
Ol(west) ,  Oa(north), Os(east) and 04(south), the correct 
destination of the data may be determined by using one of 
two methods. Namely, 1) Two bits may be added to the data to 
determine the direction, or 2) Message cycles may be divided 
into 4 sub-cycles, one for each direction. We will first present 
a design for the switchhoters that assumes that the second 
method is used, and then point to the modifications required 
to accommodate the first method. 

Fig. 2 shows a possible design for a bit-serial switchhoter 
when each message cycle is divided into four sub-cycles 
that are globally synchronized. The status of the switch is 
controlled by a status word, SW = sw1,. . . , “6. The two bits 
sw5 and SW6 control the pass modes; 01, 10 and 11, represent 
the three pass modes of Fig. l(b), while 00 means that the 
switch is not in the pass mode. These two bits generate the 
signals 2 k ,  k = 1, . . . ,4 that control a set of 2-1 multiplexers 
and demultiplexers for connecting the appropriate inputs and 
outputs thus bypassing the switchkoter (see the bottom of Fig. 
2). The four other bits in SW specify a particular nonpass 
switch mode. Assuming that the four processors connected 
to the switch are labeled by 1, 2, 3, and 4, then 9wm = 1 
iff processor m is actively connected to the switch. The 
connections to and from processor m are labeled in Fig. 2 
by in, and om, respectively. 

,4, 
in four consecutive sub-cycles and sends the multiplexed data 
to the active processors. Connections to nonactive proces- 
sors are masked through three-state, high impedance, gates 

The multiplexer, mux, in Fig. 2, samples 4, k = 1, . 
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TABLE I 
VOTING BY TABLE LOOKUP 

Inputs outputs 
01 S W I  ' 0 2  sw2 03 sw3 04 sw4 M a j  swi swz sw3 sw4 error 

0 1 0 1 0  1 0 1 0 1 1 1 1 0 
0 1 0 1  0 1 0 1  1 1 0 1 0 1 
0 1 0 1  1 1 1  1 -  0 1 1 1 1 

1 0 0 0  0 1 0 1 -  0 1 1 0 1 
1 1 0 0  1 1 0 1 -  0 - 0  1 1 

0 0 0 0  0 1 - 0 -  0 - 0  0 1 

0 1  0 2  0 3  0 4  in ,  in7 in? in4 

0, '  0: 0: 0,' I :  1 2  1; 1: 

Fig. 2. Schematic diagram of a switchhoter. 

controlled by S W k ,  k = 1, . . . ,4. These four bits are also 
combined with the outputs from the processors (received on 
ok, k = 1,. . . , 4 )  to determine the majority Maj ,  which is 
then demultiplexed to 01, + . . , 0 4  in every four consecutive 
sub-cycles. The voting as well as the exclusion of faulty 
processors from the active set of processors is done via a Read 
Only Memory. For any combination of active processors and 
input data (there are 28 combinations), the ROM stores the 
majority, M a j ,  an e r ro r  bit that is set when no majority can 
be obtained, and a new set of active processors determined 
by four bits, sw;,k = 1 , - . . , 4 ,  that are used to over-write 
S W k  , k = 1, . . . ,4. Specifically, the ROM stores the functions 

majority ( 0 k ; S W k  = l}, if error # 1, { don't care, otherwise, 
M a j  = 

S W k  = (Ok M a j )  and S W g .  

That is processor k is kept in the active set only if it was active 
( S W k  = 1) and Ok agrees with the majority. In Table I, we show 
a few entries (out of order) of the ROM. The first shown 
entry represents four active nonfaulty processors, while the 
second entry represents four active processors with processor 3 
being faulty. The third and fourth entries represent three active 
processors, the fifth entry represents two active processors and 

the last entry represents only one active processor. A dash in 
the table represents a don't care. 

If the communication sub-cycles are not globally synchro- 
nized, then messages should be appropriately framed and 
buffers should be added at the input links (example, SR on 
links Ik, k = 1, . . . ,4, in Fig. 2). Furthermore, if instead of 
dividing a communication cycle into four sub-cycles, two bits 
are used to determine the direction of a message, then muz 
and demux in Fig. 2 should be replaced by a message queue 
handler and a simple 1 4  router, respectively. 

It should be noted that the dynamic modification of the 
SW register is only needed if the active set of processors 
connected to a switch is to be modified at run-time. Otherwise, 
a simple voting scheme is needed and the size of the ROM 
is reduced to 256 x 1. With this, it is possible to implement 
the circuit in Fig. 2 using less than 500 transistors. Given 
that the number of switchhoten is approximately equal to the 
number of processors in the PSVA, it is only beneficial to 
implement this multiple redundancy scheme if the complexity 
of a processor far exceeds the complexity of the circuit in Fig. 
2. Moreover, it is not reasonable to assume that switchhoters 
do not fail. So, we will assume that switches will fail with a 
probability (1 - p s ) ,  which is a fraction of the probability of 
a processor failure, (1 - p). We will assume, however, that 
faulty switches, as well as nonfaulty switches, can be reset to 
any of the pass modes of Fig. l(b). 

In the given design, the mode of a switchhoter is con- 
trolled by setting a 6-bit status word. For fabrication-time 
and compile-time reconfiguration, it is sufficient to provide 
a means for a centralized agenthost to set the status word 
of all the switches in the PSVA. For run-time fault tolerance, 
however, distributed reconfiguration may require that the status 
word of a switch be accessible by the active processors 
connected to it. In Section VI, we discuss an algorithm in 
which processors need to read and write to the status word 
of a switch to which they are connected. Problems resulting 
from the simultaneous writing into the status word of a switch 
by its active processors may be avoided if the written word is 
forced through the voting process. 

Finally, we note that PSVA's used for compile-time and run- 
time fault tolerance may utilize relatively elaborate switches 
since the processors can be complex (the iWarp [ 171, the Intel 
Paragon [ 11 and the connection machine, CM5, are all arrays of 
complex processors). Fabrication-time reconfiguration, on the 
other hand, is usually used for array processors that are laid- 
out on single wafers. This implies relatively simple processors 
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and thus requires the switches to be as simple as possible. 
The basic switchhoter described in this section (with 256 x 1 
ROM) is sufficient in this case since global synchronization 
may be realized and centralized control may be assumed. 

C. Array Embedding with Selective Redundancy 

The embedding of an (n, x n,)-node logical array onto 
a PSVA may be specified in terms of a mapping function 
map(z , j )  = (mapz( i , j ) ,  mapy( i , j ) ) ,  that maps each node 
( i ) j )  to and by the sets C,ap(z,j) that specify 
the nonfaulty processors that are actively connected to each 

to constitute logical node (i,j). In such an 
embedding, a logical node, (2, j ) ,  is replicated c , , ~ ( ~ , ~ )  times 
in the PSVA, and thus, by choosing the appropriate embedding, 
a given degree of redundancy may be obtained. For example, 
map(z, j )  = (22 - l , j ) ,  i = 1, . - .  , (n, + j = 1 , q . e  ,n,, 

the embedding of an (n, + 1)/2 x n, logical array into an 
n, x n, PSVA with double redundancy (see Fig. 3(b), where 
only active connections are shown). Similarly, triply redundant 
arrays are obtained by the mapping (see Fig. 3(c)): 

(a) 

along with C22-1,j = { p r o c 2 ~ ~ 2 , j ~ ~ , p r 0 c 2 z ~ ~ , j ~ 1 }  represent - 1 -  - 1 -  - 1 -  - 1 -  

( C )  ( 4  

Fig. 3. Embedding two-dimensional arrays onto a 7 x 7 PSVA (a) 7 x 7 
array (d = 1). (b) 4 x 7 array (d = 2). (c) 4 x 5 m a y  (d = 3). (4) 4 x 4 
array (d = 4). 

m a p ( i , j )  = 22- l , j+  - In addition to choosing the required degree of redundancy in 
PSVA’s, the flexible pass modes of the switches offer the ca- 
pability of constructing redundant arrays even in the presence 
of defective processors and switches. This is demonstrated 
next. 

( [VJ) 
in ;‘J n, + 1 i = l , . . . ,  LTj a n d j  = 1 , - . . , 2  -%-.- 

and c m a p ( z , j )  = {~rocmap(z,j) 7 ~ocmap(z , j )  - (I, I) 7 

pToCmap(z,j)+a(j)}, where S ( j )  = (-1,o) or (0, -1) if 
j is even or odd, respectively, and the addition operation is 111. VALID M ~ p p m ~ s  OF L ~ I C A L  ARRAYS ONTO PSVA’~ 
extended to tuples such that (u, v) + ( w ,  z )  = (u + w ,  v + z ) .  
Finally, for quadruple redundancy (Fig. 3(d)), the mapping is 

map(2 , j )  = (2i - 1 , 2 j  - 1) 2 ) j  = 1 , .  . . 

where p and p ,  are the reliabilities of a processor and a switch, 
respectively, and N = [(n, + l ) /2J2, is the total number of 
logical nodes mapped to the PSVA. On the other hand, if the 
system is not considered to have failed until the detection of a 
fault that cannot be corrected, then failure requires that more 
than two processors connected to an active switch fail. That 
is, the reliability of the system is: 

Rz = (p4 + 4(1 - p ) p 3  + 6(1 - ~ ) ~ p ’ ) ~ p : .  

Given a PSVA and assuming that some processors and 
switches in the array are defective, then it is possible to embed 
a logical array with a given redundancy onto the defective 
PSVA if defective switches can operate correctly when set to 
the pass mode. The embedding problem is formally specified 
as one of finding a function, map, and the corresponding active 
sets, Cmap, such that: 

1) each node (i, j )  in the logical array is mapped to a non- 
defective switch, switchmap(z,j), in a way that allows 
for connections to be established between the north, 
south, east and west ports of each 
and, respectively, the south port of 
the north port of switchmap(z+l,j)r the west port of 
switchma,(,,j+l) and the east port of switchmap(2,j-l); 

is connected to at least d nonde- 
fective processors which are assigned to the active set 
Cmap(z,j). The active sets should satisfy Cmap(z,3) n 

A mapping function which satisfies the first condition with 
single channel communication links is called a valid mapping. 
That is, a valid mapping allows for the mesh connections be- 
tween logical nodes to be established assuming single duplex 
channels between adjacent switches. Necessary and sufficient 
conditions for valid mappings are presented and analyzed in 
[15]. These conditions are derived for general mappings and 
are rather complex. In this paper, we will restrict ourselves 
to two specific classes of mapping functions. Namely, row- 

and Cmap(2,j)  = { P O C ( ~ ~ ~ ( ~ , ~ ) + ~ ) ;  6 = (0,  O), (0, -l), ( -1 ,O) 
and (- 1, -l)}. In any of the above mappings, any switch that 
is not used to map a node is set to pass mode 3. 

The reliability analysis for PSVA arrays is straight forward 
and depends on the definition of system failure. For instance, 
consider the mapping described by (1) and assume that the 
PSVA fails when at least one node loses its fault correction 
capability. That is, when the array may no longer mask any 
single fault. In this case, failure occurs if, for some (2 ,  j ) ,  either 
sWitchmap(z,j) Or more *an One Processor connected to 2) each 
that switch fails. The system’s relicibility is thus: 

C m a p ( z f , j f )  = 0, for any ( i , j )  # (i’,j’)- 
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wise mappings and shift-1 mappings. For these two classes, 
validity conditions are straight forward to verify. 

In a row-wise mapping, any row of logical nodes is mapped 
to the same row of switches. That is mup,( i , j )  = mup,(i,j- 
1) and mup, ( i , j )  > mup,(i,j - l ) ,  for any i and any j > 1. 
We further restrict row-wise mappings such that the first row 
of logical nodes is mapped to the first row of switches, and 
consecutive rows of logical nodes are mapped to alternate 
rows of switches. That is mup, ( i , j )  = 22 - 1. With these 
restrictions, we can prove that the mapping is valid if the 
column position of any node, ( i , j ) ,  is somewhere between 
the column positions of nodes (i - 1 , j  - 1) and (i - 1 , j  + 1). 
Specifically, we can prove the following: 

Proposition I :  A row-wise mapping, map, which satisfies 
mup,( i , j )  = 22 - 1 is valid if, for each i and j ,  

Proof: Consider the case mup,(i, j )  5 map, ( i  - 1, j )  
(the case mup,(i,j) > mup,(i - 1,j) may be proved using 
a similar argument). The horizontal connections are always 
possible in a row-wise mapping. The connection between 
the south port of a switch, switchmap(i-l,j), and the north 
port of switch,,,(i,j) is established through SWitChgi--a,k, 
k = mup,(i,j),...,mup,(i - 1,j) .  It is easy to see that 
all these switches, except possibly .swWitch2i-2,mapy (i,j) 

and switch2i_2,mapy(i-l,j), are not used for any other 
connections. The worst case is when .swilitch2;-2,,,,,(i,j) is 
used to connect switch,,,(i-l,j-l) to switch,,,(i,j-l) and 
switch2i-2,map,(i-l,j) is used to connect switch,,,(i-l,j+l) 
to switch,,,(i,j+l). As seen from Fig. 4(a), each of the two 

0 
In a Shift-1 mapping, an initial fixed valid mapping, fmup 

is given, and the mapping is obtained by possibly shifting 
each node from its position in fmup by at most one switch 
in one of the four normal directions. That is, mup( i , j )  = 
f m u p ( i , j )  + A ( i , j ) ,  where A(i , j )  = ( O , O ) ,  (1,0), (0, I ) ,  
(-1,O) or (0, -1). Note that even if f m u p  is a valid mapping, 
the Shift-1 version of that mapping may not be a valid 
mapping. The following proposition establishes the validity 
of the Shift-1 mapping in the case where the initial mapping 
is fmup(i ,  j )  = (22 - 1 , 2 j  - 1). Specifically, for the mapping 
to be valid, .any two horizontally adjacent nodes that are 
mapped to different rows of switches should be separated by 
at least one column of switches. A similar condition applies to 
vertically adjacent nodes. This result will be used in Section 5. 

Proposition 2: The mapping, m u p ( i , j )  = (22-1,2j-1)+ 
A(i,j) ,  where A(i , j )  = (O,O), ( f 1 , O )  or (0, f l ) ,  is valid if, 
for any i and j, the following two conditions are satisfied: 

a) either mup,(i,j) = mup,(i,j - 1) or mup,(i,j) - 

b) either mup,( i , j )  = mup,(i - 1 , j )  or mup,( i , j )  - 

We prove that the second condition always 
allows for a vertical connection between and 
switchmap(i-l,j~. Let d, = mup,(i,j) - mup,(i - 1 , j )  
and d, = mup,(i,j)- mup,(i - 1,j). For d, = 0, the 
vertical connections may be easily made. Moreover, for d, # 

switches can support the required connections. 

mup,(i,j - 1) > 1 

mup,(i - 1 , j )  > 1 
Pmof: 

Fig. 5. A linear PSVA with n, = 10 switches. 

0, the given restrictions on the values of A restrict the 
values of (d,, d,) to one of the following: (1, f l ) ,  (2, f l ) ,  
( 3 , f l )  and ( 2 , f 2 ) .  In Fig. 4(b), it is shown that for the 
cases with d, > 1, the vertical connection may always be 
established. Due to symmetry, only the cases with positive 
d, are shown. Similarly, we may define d, = mup,(i , j )  - 
mupy(i , j - l )  and d,  =mup,(i,j)-mup,(i,j-l) andprove 
that the first condition allows for the horizontal connections 
between switch,,,(,,j) and switchm,p(i,j-l). Moreover, by 
considering possible combinations of (d,, dy ) and (d,, d,), 
it may be shown that the vertical connections never interfere 
with the horizontal connections. 0 

In the following two sections, we discuss two policies for 
mapping a logical array to a defective PSVA with a given 
redundancy. 

IV. THE GREEDY MAPPING OF LOGICAL 
ARRAYS ONTO DEFECTIVE PSVA’S 

The goal of the greedy policies described here is to map a 
maximal size array onto a given defective PSVA. We start by 
presenting a greedy algorithm for embedding a maximal linear 
logical array onto a defective linear PSVA. In this context a 
linear PSVA is one that consists of one row of switches and 
two rows of processors as shown in Fig. 5. In this case, we 
will denote switchl,, by switchj and mup(1,j) by mup(j).  

A. Greedy Embeddings for Linear Arrays 
Given a linear PSVA with defective switches and processors, 

the goal is to embed a maximal size logical array onto the 
PSVA such that each node in the array is d-redundant for a 
given d, d 5 4. The algorithm visits the switches sequentially 
from left to right, and tries to embed a logical node at each 
visited switch. It assumes that all the defective processors are 
initially marked to indicate that they are unuvuiluble. Also, 
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@ 
0 0 0 0 6 0  

n n n  
Y Y 

ofio a 0  0 a000 

Fig. 6. Greedy embeddings onto the array of Fig. 5 with d = 2 and d = 3. 

@ the predicate OK(switch)  is used to indicate that switch is 
not defective. 
Algorithm L-Greedy : 
1) logicalnode = 0 ; 
2) FOR ( k  = 1; k 5 n,; k + +) 

IF OK(switchk) THEN 

switchk; 
2.1) Let Hk=set of un-marked processors connected to 

2.2) IF lHkl 2 d then 
2.2.1) Let logicalnode =logicalnode+l and 

2.2.2) Let c k  be a subset of HI, that contains 
map (logicalnode ) = k ;  

exactly d processors. Give the processors 
proco,k-1 and procl,k-1 a higher priority 
for inclusion in Ck ; 

2.2.3) Mark the processors in Ck unavailable; 
3)n,= logicalnode ;I* the size of the array successfully 

embedded in the PSVA *I 
For example, in Fig. 6, we show the greedy embedding of an 

8-node array and a 4-node array with d = 2 and 3, respectively, 
onto the defective PSVA of Fig. 5. Although greedy algorithms 
are not usually optimal, it may be shown that the above greedy 
strategy is optimal. 

Proposition 3: L-Greedy is optimal in the sense that no 
other algorithm can embed an array with more than ng nodes 
in the PSVA. 

Define R( j )  as the number of nondefective 
processors among   pro^^,^,^(^), procl,m,p(jl} that are not 
marked after logical node j is mapped onto 
Clearly, R( j )  = 0, 1 or 2, and if d > 1, then R ( j )  = 
lHm,p(J)\ - lCm,p(j)l. Also, let mapopt be an optimal 
mapping which maps node j to switchmaPop,(j), and 
Ropt(j) be the number of nondefective processors among 

j .  Given that map(1)  is the first nondefective switch that 
is connected to at least d nondefective processors and 
that step 2.2.2 of L-Greedy maximizes R ( l ) ,  then either 

Ropt(l)]. Now, assume that m a p ( j  - 1) < mupOpt( j  - 1) or 
[map(j - 1) = mapopt(j - 1) and R(j  - 1) 2 Ropt(j - 1)l. 
In either case, it is easy to see that L-Greedy ensures that 
m w ( j )  < mapo&) or that [ m a p ( j )  = mapopt(j) and 
R(j )  2 Ropt(j)]. This induction shows that if an optimal 
algorithm may embed an array with n nodes onto a PSVA, 
then map(n)  5 mapopt(n) and thus L-Greedy will also 

0 
The yield, Y ~ - ~ , - ~ ~ d ~ ( d , n , , n , )  is the probability of suc- 

cessfully embedding a logical array with n, or more nodes 
onto a defective nn,-switch PSVA using L-Greedy. Using a 

Proof: 

{ ~ ~ O C o , m a p o P t  (j) > prOCl,mapOpt (j) 1 that are not used for node 

map(1) < mapopt(1) or [mw(l)  = mapopt(1) and R(1) 2 

successfully embed such an array onto the PSVA. 

W 

Fig. 7. 
Sy,u,u = 0 , 1 , 2 ,  are shown). 

A Markov chain for L_Greedy (only transitions to and from 

layered Markov chain, this yield may be computed assuming 
a given probability, p ,  that a processor is not defective and 
a given probability, p , ,  that a switch is not defective. To 
illustrate the technique, we analyze the case d = 3 by 
considering a Markov chain which consists of n, + 1 layers, 
y = 0,1, . . - , n a r  each containing three states, sY,o, 3y,l 

and sy,2 (see Fig. 7). A transition in the Markov process 
corresponds to the execution of one iteration of step 2 in 
L-Greedy. The semantics of the states is such that, after k 
transitions, the Markov process is in state sY,% if, after k iter- 
ations of L-Greedy, y nodes are successfully mapped to some 
switches in { switch1 , . . . , switchk} and u processors among 
{proco,k,procl,k} are not marked. Thus, these u processors 
are available to be actively connected to switchk+l. 

According to the above semantics, if the kth transition is 
between two states in a given layer, y, then this indicates that 
iteration k fails to map node y+ 1. On the other hand, if the kth 
transition is from a state in layer y to a state in layer y+ 1, then 
this indicates that iteration k succeeds in mapping node 9 + 1. 
The probabilities of such transitions may be obtained in terms 
of p and p ,  . Specifically, if after k transitions, the process is in 
state sy,%, then the different transition probabilities out of sY,% 
will depend on the status (defective or not) of switchk+l, 

For example, assume that after k transitions the process is 
in sy , l .  That is, only one of proc0,k or p‘fOC1,k is available 
to be actively connected to switchk+l (Fig. 8(a)). Hence, 
mapping node y + l  to switchk+l is only possible if proco,k+l, 
pTOCl,k+l  and switchk+l are not defective (with probability 
p’p,). In this case, a transition to state sy+l,o occurs (Fig. 
8(b)). If one of proco,k+1 or proc~ ,k+~  is defective (with 
probability 2p(l - p ) ) ,  then the process remains in state sY,l 
(Fig. 8(c)). If both p r o c ~ , k + ~  and p T O C l , k + l  are defective (with 
probability (1 - p)’ ) ,  a transition to state sY,o occurs (Fig. 
8(d)). Finally, if switchk+l is defective and both proco,k+l 
and procl,k+l are not defective (with probability (1 - p,)p2), 
a transition to state sy,2 occurs (Fig. 8(e)). Note that the 
above 4 cases represent all possible defect configurations for 
switchk+l, proco,k+l and procl,k+l- 

The transition probabilities out of sY,o and s Y , 2  may be 
calculated in a similar manner. The results are given by the 
following equation in which r ~ ; , ~  is the probability of being 

prOcO,k+1 and Procl,k+l. 
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0 0 0 0 0 0  
++e 
0 0 0 0 0 0  

( b )  S ~ + I . O  (C)Sy.1 ( d )  s y , ~  (e) sy3 

Fig. 8. (a) State before iteration I C ,  (b), (c), (d), (e) states after iteration IC. 

in state s ~ , ~  after the kth transition: 

If we denote the first matrix by A and the second matrix by 
B, then the single transition probabilities in the entire Markov 
process is: 

where 0 is a zero matrix, I is a unit matrix, and uk is a vector 
that contains the 3(n, + 1) probabilities F ; , ~ ,  y = 0 , .  . . , n,, 
u = 0,1 ,2 .  The Markov process starts from SO,O,   SO,^ or  SO,^ 
with probabilities (1 - p)', 2p(l - p) and p 2 ,  respectively. 
Hence, all the components of uo are set to zeroes except 
o!,~, n& and  IT^,^, which are set to (1 - p)', 2p(l - p) and 
p 2 ,  respectively. The state probabilities after n, iterations are 
given by 

p = MnSffO 

Noting that states s ~ , , ~ ,  u = 0,1 ,2 ,  are absorbing states 
because they are reached when L-Greedy successfully embeds 
n, nodes in the PSVA, we may compute the yield as: . 

ns 
YL-G~eedy(3, n,, n,) = Ona,O + .,":,I + ff,";,~ 

In Fig. 9, we show the result of the above analysis for 
ns = 19. Namely, we plot the yield for different values of 
n, and p assuming that (1 - p , )  = 0.1(1 - p). Note that if 
all processors and switches are nondefective, then a 13-node 
logical array may be embedded in the 19-switch linear PSVA. 

B. Row- Wise Greedy Embeddings for Two-Dimensional Arrays 

Given a defective n, x n, PSVA, the goal is to embed a 
maximal n, x ny logical array onto the PSVA. The greedy 
algorithm for linear arrays may be extended to a row-wise 

1.0 , 

0.4 

+ 

\ \  
0.0 , 

0 5 10 13 
Fig. 9. The probability of embedding n,  nodes ontu a 19-switch PSVA. 

greedy algorithm for two dimensional arrays. Specifically, we 
assume that row i of the logical array is mapped to row 22 - 1 
of switches using the linear greedy algorithm. This fixes the 
number of rows in the logical array to nl = L(n, + l)/2], 
and the goal becomes to maximize the number of columns ny 
in the logical array. However, according to Proposition 1, the 
mapping of row i, i > 1, is not independent from the mapping 
of row i - 1. Moreover, in order to end up with a regular 
logical array, each logical row should contain the same number 
of logical nodes. Taking this into consideration, the following 
greedy algorithm may be used to map a logical nl x ny array 
onto a defective PSVA with the objective of maximizing ny. 
The algorithm assumes that all defective processors in the 
PSVA are initially marked unavailable. 
Algorithm 2-D-Greedy 

Use L-Greedy to embed logical row 1 to the first row of 
switches. Let ny be the number of nodes resulting from 
that embedding. 

FOR (i = 2; i 5 1-j ; i + +) 
FOR (j = 0 ; j  < ny;) 

1) FOR (k =max {map , ( i , j )  + l ,mapy(i  - l,j)}; 
k i min {n,, map,(i - 1 , j  + 2)); k + +) 

1.1) Let H 2 ; - 1 , k  = set of un-marked processors 
IF OK ( S W i t C h 2 i - 1 , k )  THEN 

connected to ~ w i t c h ~ i - ~ , k ;  

1.2.1) Let j=j+l and map(i,j)=(22-1,k); 
1.2.2) Let c 2 i - 1 , k  be a subset of H 2 ; - 1 , k  that 

1.2) IF IH2i -1 ,k l  2 d THEN 

contains exactly d processors. Give 
p r o c 2 i - 2 , k - l  and prOCZi -1 ,k -1  higher 
priority for inclusion in c 2 i - 1 , k .  

unavailable, and exit the inner most 
For loop; 

1.2.3) Mark the processors in C 2 i - 1 , k  

2) IF node ( 2 ,  j + 1) is not mapped in step 1, THEN 
set map(1,m) = m a p ( l , m +  1) for 1 = l , - . . , i -  1, 
m = j + l , ~ ~ ~ , n , - l a n d s e t n y = , n y - l ;  

3) IF k = n, and j < ny, THEN ny = 3 
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Fig. 10. The yield of 2-D-Greedy. 

In this algorithm, the condition of Proposition 1 is implicitly 
imposed in the bounds of the loop in Step 1. After embedding 
ny nodes in each of rows 1, . . . , i - 1, if, in row i, a node ( i ,  j )  
cannot be embedded, then the entire j th  column is removed 
from the embedding of the previous rows (Step 2). Similarly, 
if in row i, only j nodes, j < ny, can be embedded, then 
columns j + 1,. . . , ny are deleted from the previous rows 
(Step 3). With this simple policy, the running time of the 
algorithm is O(n:). More complex algorithms that involve 
back-tracking may be designed (no longer greedy). In such 
algorithms, previously embedded rows would be incrementally 
updated to accommodate the embedding of a given row. 

In Fig. 10, we show simulation results for Y 2 - D - G r e e d y  

(3, ny. 19), the probability of successfully embedding a logical 
array of size at least n1 x ny onto a 19 x 19 PSVA. The dotted 
curve given for p = 0.9 is the yield resulting from completely 
ignoring the condition of Proposition 1. That is, each of the 
10 rows is independently embedded using L-Greedy, and 
thus the yield is [ Y L - G ~ ~ ~ ~ ~ ( ~ ,  na, 19)]1°. This represents an 
upper bound on any 2-D algorithm that uses back-tracking 
to improve the yield of 2-D-Greedy. Given that this upper 
bound is far from being tight because it ignores completely 
the conditions of Proposition 1, and by comparing the two 
curves for p = 0.9, our own conclusion is that algorithms 
more complex than 2-D-Greedy may improve the yield only 
modestly. 

V. EMBEDDING A FIXED SIZE ARRAY 
ONTO A DEFECTIVE PSVA 

A different strategy for embedding logical arrays onto 
defective PSVA's is to use a valid fixed mapping, fmup, 
which, when used to embed a logical n, x ny array onto 
a nondefective PSVA, leaves some of the processors unused. 
Because of these unused processors, the same mapping, fmup, 
may be used to embed a logical n, x ny array onto a defective 
PSVA. 

fm4P3.1 f mop23 

Fig. 11. Initial mapping functions with different utilization factors. 

We will consider a specific class of row-wise fixed mappings 
in which fmap, ( i , j )  = 2i - 1 and the mapping of each 
row exhibits some regularity. The mappings will be super- 
scripted in a way that reflects the regularity of row mappings. 
Specifically, a superscript u,w means that the first u logical 
nodes in the row are mapped to the first u consecutive 
switches, then 'u switches are skipped and the following 
u nodes are mapped to the following u switches and so 
on. For example, the mapping of Fig. 3(c) is denoted by 
fmup2i1(i,j) = (22 - 1 , j  + [ ( j  - 1)/2J), and that of Fig. 
3(d) is denoted by fmupl*'(i , j)  = (2i - 1 , Z j  - 1). Other 
possible fixed mappings are shown in Fig. 11. In this figure, 
only one row of switches is shown and active connections for 
fmup3y1 and fmup2>3  reflect embeddings with d = 2 and 
d = 3, respectively. 

Given a nondefective n, x n, PSVA and a fixed mapping, 
fmup">", the size, n, x ny, of the logical array that may 
be embedded in the PSVA is determined by n,, u and 
w. Specifically, n, = [(n, + l ) /2J  and ny = [(n, + 
w)/(u+ w)]u. Moreover, if a d-redundant embedding that uses 
fmupUiV utilizes only a fraction of the processors, then this 
fraction is called the utilization factor, p ( f m ~ p " ? ~ ,  d ) .  For 
example, if fmupl?l( i , j )  is used with triple redundancy, then 
the utilization factor is p(fmuplql ,  3) = 0.75. Similarly, the 
utilization factors p ( f m u p 3 > l ,  2) = 0.75 and p(fmup2y3, 3) = 
0.6. 

A utilization factor which is less than unity means that the 
embedding may still be accomplished if up to 1 - p ( f m u p ,  d )  
of the processors in the PSVA are defective. This is because, 
only p ( f m u p ,  d)  of the processors are utilized in the em- 
bedding. However, defective switches or uneven distribution 
of defective processors may not allow for the embedding to 
be realized with the given mapping fmup. In these cases, 
the shift-1 policy may be useful for obtaining the embedding 
through a mapping function mup(i, j )  = fmup(i ,  j)+A(i,  j), 
where A(i , j )  = (0, 0), (0, *l) or ( f l ,  0). 

Hence, assuming that a functionfmap may embed an n, x ny 
logical array onto an n, x n, PSVA, with redundancy d 
and utilization p < 1, the following algorithm may be used 
to embed a logical array of the same size onto a defective 
PSVA, using a shift-1 policy. The algorithm assumes that 
initially all the defective nodes are marked (to indicate un- 
availability). The predicate vuZid(i, j ,  A(i, j ) )  returns true if 
mapping logical node (i, j )  to SWitchfm,p(i,j)+A(i,3) allows 
this switch to be properly connected to switch,ap(;,j-l) and 
switch,,,(;-l,j), thus guaranteeing a valid mapping. 
Algorithm Shift-llfmap: 
FOR i l , . . . , n ,  do 

F O R j  = l , * . . , n y  do 
FOR L(i,j) in {(O,O),  (-1, O ) ,  (0, -11, (LO), (071)) do 

1) Hfmap(i,j)+A(;,j) = set of un-marked processors 
connected to switchf,,,(;,j)+a(;,j); 
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2) IF oK(switchfmap(i,j)+a(i,j)) AND 
Hfmap(i.j)+A(i,j)I 2 d, AND 
valid(i,j, A(i ,  j ) ) ,  
THEN 2.1) m u p ( i , j )  = f m u p ( i , j )  + A(i , j )  

2.2) Mark d piocessors from Hmap(i , j )  and include 
them in Cmap(i,j). Give priority to procmap(i, j) ,  

procmap(i,j)+(l,l) for inclusion in Cmap(i,j).  
procmap( i , j ) + ( O ,  1 )  7 proemap(i, j)+( 1 ,0) then 

2.3) Exit the inner-most FOR loop. 
The above algorithm is considered to have failed if it fails 

to map any logical node ( i , j ) .  Different algorithms may be 
derived from the above general one for different fmup and d. 
We will analyze only the specific case where f m u p l ~ l  is used 
with d = 3. The conditions for the validity of the mapping in 
this case are given in Proposition 2. Other cases of different 
finup and d may be analyzed in a similar manner. 

The mapping function fmupl! '  allows the embedding of 
an nl x nl logical array, where nl = [(n, + 1)/2J, onto 
a nondefective ns x n, PSVA with d = 3. The probability 
that Shift-l/fmuplil embeds successfully the same logical 
array onto an n, x n, defective PSVA depends on the defect 
distribution in the PSVA as well as on the values that are tried 
for A ( i , j )  and the order in which these values are tried. In 
Section 5.2 an algorithm is presented which tries all five values 
of A(i , j ) .  In the next section, however, the values of A( i , j )  
are restricted to ( O , O ) ,  (0, -1) and (0 , l ) .  

A. Row-Wise Embedding Using Shij-l/ fmup',' 

In the row-wise version of Shift-llfmup, each logical node 
is allowed to be shifted from its position in fmup1>l  only 
in the horizontal direction. That is the values of A(i , j )  = 
( f l ,  0) are not tried in algorithm Shift-llfmup. It is straight 
forward to check that the resulting mapping function, map = 
f m u p l > l  4- A, always satisfies the conditions of Proposition 1 .  
Hence, by decomposing the n, x n, PSVA onto nl linear 
PSVA's, the embedding of an nl x nl logical array onto 
the two dimension PSVA may be achieved by independently 
embedding each logical row onto the corresponding linear 
PSVA. The probability of completing the two-dimensional 
embedding is thus given by 

Yrw-,hzft(3, ni, n,) = [Yishzft(3, w ,  nS)lnr (2) 

where, YL-,hzft, is the probability of completing the embed- 
ding of one logical row onto a linear PSVA using the following 
algorithm (as in L-Greedy, the row indices are omitted). 
Algorithm L-Shift-l/fmupl>l: 

FOR j = 1 , .  . . , nl do 
FOR A( j )  = - 1 , O ,  1 do 

1) H23-1+A(3) = set of un-marked processors connected 

2.1) m a p ( j )  = 2 j  - 1 + A(j) 
2.2) Mark 3 processors from Hmap( j )  and include 

them in Cmap(j). Give priority to p r o c ~ , , , ~ ( j ) - l  
and procl ,map( j ) - l  for inclusion in Cmap( j ) .  

2.3) Exit the inner-most FOR loop. 

Fig. 12. 

I I 

TO') 
Processors and switches affecting the embedding of node j. 

By trying to embed a logical node, j ,  with A(j) = -1 first, 
then with A(j)  = 0 and 1, the algorithm actually compresses 
the mapping toward the left, thus increasing the probability 
of completing the embedding. Specifically, if node j can be 
embedded with either A(j) = -1 or A(j) = 0, then the 
embedding with A(j)  = -1 leaves more processors available 
for the embedding of node j + 1 and thus increases the chance 
of successfully embedding that node. Similar arguments apply 
to trying A( j )  = 0 before A(j) = 1. 

In order to analyze the probability of success of the above 
algorithm, we observe that in iteration j ,  the success of 
mapping logical node j depends on the availability (not 
defective and not marked) of SWZtCh2j_l+A, for A = - 1 , O ,  1, 
and of pr0cq,2j-l,  for q = 0 , l  and 1 = 0,. . . , 3  (see Fig. 12). If 
the embedding of node j is successful, then the availability of 
processors pr0cq,2j-l,  q, 1 = 0, 1, after iteration j ,  will affect 
iteration j + 1. To express the availability of these processors 
after iteration j we define the variable R( j )  as follows. 

*If A( j )  = 0 or -1, then R( j )  is the number of processors 
among pr0c0 ,2 j -1  and pr0c1,2j-1 that are available (not 
marked) after iteration j .  

*If A( j )  = 1, then -R( j )  is the number of processors 
among proc0,2j and p r o c l ~ j  that are needed to complete 
the embedding of node j .  

In other words, if R( j )  is nonnegative, it indicates whether 
0, 1 or 2 of proco,2j-1 and proc1,2j-l are available to be 
used, if needed, in the embedding of logical node j + 1. 
If R ( j )  is negative, then this indicates that both proc0,2j-1 
and proc1,zj-1 are marked and that IR(j)l processors among 
p r o c o ~ j  and proc1,2j are needed to complete the embedding 
of node j .  That is, node j needs to borrow IR(j)l processors 
from node j + 1. 

The progress of the embedding algorithm may be modeled 
by a Markov process in which the jth transition represents 
the execution of iteration j of the algorithm. In other words, 
the state of the process after j transitions reflects the progress 
of the algorithm after the j th iteration. The Markov process 
consists of six states with the following semantics (see Fig. 
13). 

sf: indicates that the algorithm has failed in embedding 
node j .  This is an absorbing state because the failure 
to embed one node means the failure of the algorithm. 

SO: indicates that R ( j )  = 0 OR (R( j )  > 0 and switchzj 
is defective). 

s,, u = 1,2: indicates that R( j )  = u and that switchaj 
is not defective. 

s,, u = -1, -2: indicates that R ( j )  = u. 
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u 
Fig. 13. The Markov chain for L-Shift-l/fmap''l. 

Note that the state information after transition j indicates 
whether or not proco,2j-l, proc1,2j-l and switchzj are 
available to be used in embedding node j + 1 in the next 
iteration. It also indicates whether p r o c o ~ j  and proc1,zj have 
been used in embedding node j ,  and thus whether or not they 
are available to be used for embedding node j+l. Two remarks 
are in order. First, state SO specifies that neither ~ T O C O , Z ~ - ~  nor 
pr0c1,2j-1 can be used for embedding node j + 1. This is true 
if switchzj is defective even if R( j )  # 0, since in this case, 
node j + 1 cannot be mapped to switchzj and, thus, cannot use 
proc0,2j-l orproc1,zj-1. The second remark is that transitions 
into state s-1 (or s-2) assume that at least one (or both) of 
proc0,zj and proc1,zj are nondefective. 

Let T ( j )  be the set containing the two switches switchzj-1 
and switch2j, and the four processors connected to 
switchzj- 1 ,  and assume that after embedding some node, 
j - 1, the Markov process is in state szl. The probability 
of successfully embedding node j and the state after that 
embedding depends on: 1) the state s, and 2) the probability 
of different defect configurations in the elements of T ( j ) .  
Specifically, the transition probabilities out of some state, s,, 
may be computed by enumerating all possible configurations 
of defects in the elements of T( j ) .  There are two switches and 
four processors in T ( j ) ,  thus giving 64 defect configurations, 
each occurring with a given probability expressed in terms of 
p and p,. Each configuration will cause a transition to one 
of the six states in the Markov process and the sum of the 
probabilities of the configurations leading to a specific state 
s, is the transition probability from s, to s,. 

The above assertion that state transitions depend only on 
elements in T ( j )  needs further justification since transitions 
into s-1 (or s-2) assume that at least one (or both) of proc0,zj 
or p r o c l , ~ j  is nondefective. Examining the states of these 
processors during the embedding of node j complicates the 
Markov analysis since there will not be a clean separation 
between the elements examined in each iteration. Our solution 
to this problem is to delay the examination of proc0,zj and 

Fig. 14. States after iteration j for three different defect configurations 
in T ( j )  assuming that, before iteration j,proc1,Z3-3 is available and 
p r O C 0 , 2 ~ - 3  is marked (state SI). (a) SI. (b) SO. (c) S - - 1 .  

pr0cl,2j until the embedding of node j + 1. At that time, 
proc0,zj and proc1,2j are examined as elements of T ( j  + 1) 
and any incompatibility with the current state will cause a 
transition to sf. Note that such incompatibility is only possible 
if the current state is s-1 or s-2. The second example that we 
discuss below will clarify this point. 

For example, in Fig. 14(a), (b), and (c), we assume that 
after iteration j - 1, the process is in state s1 ( p r 0 ~ 1 , 2 j - 3  

is available-see labels in Fig. 12), and we show three 
defect configurations for T ( j )  . These configurations occur 
with probabilities p3(l - p ) p t ,  p3(l - p ) p t  and p2(1 - 
~ ) ~ p : ,  respectively. In configuration (a), node j is mapped 
to  witch^^-^, thus leaving proc1,~j-1 available (state s l ) .  
In configuration (b), node j is mapped to swztchpj-1, thus 
leaving no processors available (state S O ) .  In configuration (c), 
node j is mapped to switchaj, and one of proc0,2i or proc1,2i 

is needed to complete the embedding (state s-1). Note that the 
transition probabilities do not depend on the particular index, 
j ,  of the node being mapped. 

A second example is given in Fig. 15, where it is assumed 
that after iteration j - 1, the process is in state s-1 (one of 
proc0,zj or proc1,2j is used). We show in Fig. 15(a), (b), 
and (c) three defect configurations for T ( j )  that occur with 
probabilities (1 - p)', p2(1 - ~ ) ~ p ,  and p4ps ,  respectively. 
The configuration of Fig. 15(a) leads to sf since being in state 
s-1 requires that one of proc0,zj or proc1,zj is available. The 
configuration of Fig. 15(b) leads to s-2 while that of Fig. 
15(c) leads to S O .  

Let oh be the probability of being in state s, after the 
j th transition. Following the above mentioned enumeration 
procedure, we may find the state transition matrix A for the 
Markov process. To simplify the expression and derivation of 
A, we decompose it into: 
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Fig. 16. 
of faulty switches on Y r w _ s h l f i - l .  

The yields for row-wise Shift-1 and 2-D-Greedy. (a) The yield for different algorithms (ps = 0). (b) The effect 

Fig. 15. 
is s-1. (a) sf. (b) s-2. (c) SO. 

States after iteration j assuming that, before iteration j ,  the state 

where each of the four matrices corresponds to a particular 
pattern of failure of switchzj-1 and switchaj. The matrix 

corresponding to the two switches being nondefective is 
specified by the equation found at the bottom of the previous 
page where x4 = p4, x3 = p3(l - p ) ,  x2 = p2(1 - p)', 
x1 = p( l  - p ) 3  and xo = (1 - P ) ~ .  The expressions for the 
other matrices are similar. 

The Markov process is initiated at state SO.  This is because 
proco,-l and procl,-l are not available for embedding logical 
node 1 (they do not exist), and proco,~ and p r o c l , ~  are not used 
in the embedding of node 0 (node 0 does not exist). If n, is 
odd, then the last node, nl, cannot be shifted to the right. That 
is, the embedding is successful only if, after 7Ll iterations, the 
Markov process is in state SO, s1 or s2. Hence, the probability 
of successful embedding is: 

Y ~ - ~ h i f t ( 3 , n i , n ~ )  = (1 1 1 0  0 O)A"'(l 0 0 0 0 O ) T ,  
if n, is odd. 

A slightly more complex expression may be obtained for 
even values of n. From this and (2), the success probability 

of the row-wise shift-l/fmapl>l may be computed. This 
probability is plotted in Fig. 16(a). In this Fig. the curve la- 
beled Yfmap(3, 10,19) is the probability that fmap'l' embeds 
successfully a 10 x 10 array onto a 19 x 19 defective PSVA 
without any reconfiguration. It is given by . 

Yfmap(3,10,19) = (P4P,  + Q3(1 - P ) P s ) N  

Where N = n; = 100. This curve is used to demonstrate the 
yield enhancement due to reconfiguration. In Fig. 16(b), we 
show the effect of switch faults on Yrw-shift-1(3, 10,19). As 
expected, the yield decreases for higher probability of switch 
faults. 

In order to compare the 2-D-Greedy and the row-wise 
Shift-1 algorithms, we also plot Y ~ - L J - G ~ ~ ~ ~ ~ ( ~ ,  10,19) in Fig. 
16(a). This is the probability of successfully embedding a 
logical array of size at least 10 x 10 onto the 19 x 19 PSVA 
using 2-D-Greedy. Although the two yields are approximately 
equal, the yield of 2-D-Greedy is slightly lower for small 
values of p. The performance of 2-D-Greedy relative to Shift-1 
improves as p increases. However, comparing 2-D-Greedy and 
Shift-1 for a fixed size logical array is misleading. In fact, even 
for the values of p for which Y2-D-Greedy(3,10,19) is smaller 
than Yrw_shift(3, 10,19), 2-D-Greedy has the advantage of 
being able, with some probability, to embed arrays larger than 
10 x 10. For instance, as seen from Fig. 16(a), for p = 0.95, 
2-D-Greedy may embed a 11 x 10 array in a 19 x 19 PSVA 
with probability 0.58. That is Y2-LJ-Gree&,(3, 11,19) = 0.58 
while Yrw-shift(3, 11,19) = 0. 

Next, we discuss two different variations of the Shift-1 
embedding algorithm. 

B. A More Flexible Shif-l/ f map'i' Embedding 
In the previous section, we considered mapping functions in 

which each node may be shifted from its position in fmapl7' 
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(c) (d) 

Fig. 17. 
(c) A = (0,O) is tried first, (b), (d) A = (0, -1) is tried first. 

Embedding 2 x 2 logical arrays onto defective 3 x 3 PSVA’s (a), 

only in the horizontal direction. With this restriction, however, 
the probability of successful embedding is maximized if, while 
embedding logical node ( i , j ) ,  we try A(i , j )  = (0, -1) then 
(0,O) then (0, l ) .  In this section, we consider Shift-l/fmaplil 
algorithms in which all five values of A(i , j )  are tried. Using 
the same argument used for the row-wise case, it may be 
shownthattryingthevaluesof A i n  {(O,O),(-l,O),(O,-1)} 
before those in ((0, l ) ,  (1,O)) always maximizes the prob- 
ability of successfully completing the embedding. However, 
there is no optimum order for trying the values of A from 
((0, O ) ,  (-1, O), (0, -l)}. In some cases, compression, that is 
trying A = (-1,O) or (0,-1) before (O ,O) ,  may increase 
the probability of successfully completing the embedding. In 
some other cases, however, this may decrease that probability. 
We clarify this by the two examples in Fig. 17. For the PSVA 
of Fig. 17(a), the embedding is completed with A = (0,O) 
being tried before (-1,O). If A = (-1,O) is tried first in 
this example, then, as shown in Fig. 17(b), node (1 , l )  will 
be shifted to the left thus consuming proc1,l and causing the 
embedding of node (2 , l )  to fail. A similar argument applies 
to Figures 17(c) and (d). In this case, however, the left shift of 
node (1, l )  prevents the upward shift of node [2, 2) because 
this shift would violate the conditions of Proposition 2. 

With the possibility of shifting in any of the four normal 
directions, the predicate valid in Algorithm Shift-l/fmaplil 
should return true only if the conditions of Proposition 2 are 
satisfied. Given the values of A(i - 1 , j )  and A ( i , j  - l ) ,  the 
predicate valid is specified by 

valid(i, j ,  A(i, j ) )  = 
fa lse ,  
fa l se ,  
fa l se ,  
fa l se ,  
true,  otherwise. 

if A(i , j )  = (dz1,O) and A ( i , j  - 1) = (0, l), 
if A(i , j )  = (0, &l) and A(i - 1 , j )  = (1,0), 
if A(i , j )  = (-1,O) and A(i - 1 , j )  = (O,&l), 
if A(i , j )  = (0, -1) and A ( i , j  - 1) = ( f 1 , 0 ) ,  

(3) 
In other words, (2, j )  may not be shifted vertically if ( i , j  - 1) 
is shifted to the right and may not be shifted horizontally if 
(i - 1,j) is shifted downward. Moreover, (i,j) may be shifted 
upward only if (i - 1 , j )  is not shifted horizontally and may 
be shifted leftward only if ( i , j  - 1) is not shifted vertically. 

1 

In order to analyze the probability of success of 
Shift-l/fmapl?l, we Observe that the probability of 
successfully embedding a logical node depends on the 
conditions resulting from embedding the previous nodes. 
As in the case of L-Shift-1, the conditions after embedding 
logical node ( i , j )  may be expressed in terms of the 
number of processors among {procze-1,z3--lr ~ T O C Z ~ - - ~ , Z ~ - Z ,  

proc2,-2,22-1} that are not marked after iteration i , j .  Unlike 
the linear case, however, a distinction should be made between 
un-marked processors that may be used when mapping logical 
node (i,j  + 1) and those that may be used when mapping 
logical node (i + 1,j). Two variables, Rh(i,j) and &(i,j) 
are used for that purpose. 

*Rh(i,j): is the number of processors among proc~~--1,2~--1 
and proc2e--2,2J-1 that are available after the embedding 
of node (z,j) to be used when embedding node ( i ,  j + 1). 
A negative value of Rh(i,j) indicates that the embedding 
of node ( i , j )  required a shift to the right and the use of 
I&(i,j)l processors from { ~ ~ o c z ~ - - ~ , z ~ ,  Proc2a-2 ,23} .  

*R,(i,j): is the number of processors among procz2-1,z3-1 
and proczz--1,23--2 that are available after the embedding of 
node (i, j )  to be used when embedding node (i + 1, j ) .  A 
negative value of R, ( i , j )  indicates that the embedding of 
node ( i , j )  required a downward shift and the use IRh(i,j)l 
processors from P T O C ~ ~ , ~ ~  - 1, p ~ o c 2 ~ , 2 ~  -2. 

The value of the tuple (Rh(i, j ) ,  & ( i , j ) )  may be used to 
indicate the state of the embedding after iteration (z, j ) .  Each 
of Rh and R, may be equal to one of the five values -2, -1, 
0, 1 and 2. Thus, there are 25 possible values for (Rh, R,). 
The following proposition restricts the possible values of 

The only possible case in which both 
Rh(i,j) and &(i,j) are non zero, is the case Rh = R, = 1. 

Proof: For Rh(i,j) to be equal to 2, -1 or -2 we should 
have A(i , j )  = (0, - l ) ,  (0, +1) or (0, +l) ,  respectively. That 
is the mapping of (i,j) should be shifted horizontally, which, 
by Proposition 2 (or equation (3)), prevents node ( i+l ,  j )  from 
being shifted upward. Thus, the embedding of node (i + 1, j )  
may not use any of proczz--1,23-1 or proc2z--1,23--2. Also, 
if ( i , j )  is shifted horizontally, then the embedding of node 
( i , j )  does not use any of pr0c2~,2~--1 or pTOcZa,23-~. Hence, 
R , ( i , j )  = 0. By a similar argument we may show that if 

0 
The following proposition puts more restrictions on the 

possible values of (Rh, &) if, in algorithm Shif-1, an attempt 
is made to map each node (i,j) to its position in fmup’” 
before attempting any shift. 

Proposition 5: Assume that algorithm Shiftl/ f maplil is 
applied to a PSVA with nondefective switches. If A = (0,O) 
is tried before A = (-l,O), then &(z,j)  5 1. Similarly, if 
A = (0,O) is tried before A = (0,  -l), then Rh(i,j) 5 1. 
Moreover, in either of the above two cases, R,(z,j) = 
Rh(i,j) = 1 only if A(i , j )  = (0,O). 

(Rhr Rv)- 
Proposition 4: 

&(i,j) = 2, -1 or -2, then Rh(i,j) = 0. 

Proof: We start the proof by two observations. 
01) Rv(Z,.j) = 2 only if ( i , j )  is shifted upward (A(z,j)  = 

( -1 ,O))  and bothproc22-1,22-1 andprocZz-1,23-2 are 
nondefective. 
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02) If node ( i , j )  is shifted horizontally, then &,(i, j)  = 0 
because, in this case, according equations (3), node 
(i + 1 , j )  may not be shifted upward, and thus may 
not use any of-p~oc2~-1,2~-1 or p~oc2~--1,2~-2. 

We use these observations to prove, by induction on i, that if 
A = (0,O) is tried before A = (-l,O), then R,,(Z,j) 5 1 and 
h ( i , j )  = 1 only if A ( i , j )  = (0,O). The second part of the 
proposition may be proved in a similar way. 

Clearly, node (1, j )  cannot be shifted upward, and thus 
R u ( l , j )  # 2 and R,,(l,j) = 1 only if A(1 , j )  = (0,O). 
Next, if the induction hypothesis is true for i - 1, then 
&(i - 1,j) 5 1 and thus, at most one of p~oc2~-3,2~-1 and 
PTOC2z-3,2~-2 may be used when embedding node ( i , j ) .  We 
consider three cases. The first case is when the embedding 
of node ( z , j )  is accomplished with A( i , j )  = ( 0 , f l ) .  In 
this case, the result follows directly from observation 02. 
The second case is when the embedding of node ( i , j )  is 
accomplished with A( i , j )  =(O, 0). In this case, by observation 
01,  &,(z,j) # 2 and the result follows directly. Finally, the 
third case is when the embedding is accomplished with A(i, j )  
= (-l,O), which is true only if the embedding fails with 
A ( i , j )  = (0,O). In this case, noting that R,(i  - 1 , j )  5 1, 
both p ~ o c 2 ~ - ~ , 2 ~ - 1  and p ~ o c 2 ~ - 2 , ~ ~ - 2  should be nondefective 
in order to have a total of three nondefective processors 
connected to ~witch2~-2,2~-1. This, together with the fact 
that Rh(2 . j  - 1) is not negative (otherwise node ( i , j  - 1) 
is shifted to the right and (i,j) cannot be shifted upward) 
imply that both p~oc2~-1,2~-1 and p~oc2~-1,2~-2 are defective 
because, otherwise, there will be more than two available, 
nondefective, processors connected to switch2i - 1 , 2 j  - 1 
and the embedding with A( i , j )  = (0,O) would have been 
successful. Hence, if A( i , j )  = (-l,O), then Ru(i , j )  = 0, 

0 
Corollaly 1: If A = (0,O) is tried before (-1,O) and 

(0 ,  -1) in algorithm Shift-llmupl?l, then it is always possible 
to mark the processors such that if either Ru(i , j )  or Rh(i, j)  
is equal to one, then the other is also equal to one. 

Pruofi From Proposition 5, if either R,,(i,j) or Rh(i, j)  
is equal to one, then A( i , j )  = 0, and the four processors 
connected to ~ w i t c h 2 ~ - ~ , 2 ~ - 1  are nondefective. According to 
the priorities in step 2.2 of Shiftllfmup'J, p~oc2~--1,2~--1 
will not be marked and will be available to be used when 
either ( i , j  + 1) or (i + 1 , j )  are embedded. Thus R,,(i,j) = 

We will analyze two versions of the general 
Shift-l/fmupl>l embedding algorithm. In the first version, 
G1-Shift-llfmupl~l, the values of A are tried in the 
order (O,O) ,  (0,-1), (-l,O), (0 , l )  and (1 ,O) .  That is 
the no-shift position is tried first. In the second version, 
G 2 - S h i f t - l l f m ~ p ~ ~ ~ ,  the values of A are tried in the order 
(0, -l),  ( O , O ) ,  (-l,O), (0 , l )  and (1,O). That is the left shift 
position is tried first. The analysis is simplified by assuming 
nondefective switches (pS = 1). As clear from the analysis 
of L-Shift-1, the same type of analysis may be applied to 
the case p ,  # 1. 

When G1-Shift/fmup1?' is applied to PSVA's with 
nondefective switches, Propositions 4 and 5 and Corollary 
I ,  imply that only six values are possible for the tuples 

which proves the induction step. 

Rh(i, j)  = 1. 0 

(Rh(i,j),  % ( i , j ) ) .  Namely, (0, O), (1, I ) ,  (0, -I), (0, -2), 
(-1,O) and (-2,O). Using these tuples, we define the follow- 
ing states that include information about the consequences of 
embedding logical node (i, j ) :  
so,l(i,j) : indicates that (Rh(i,j),  Ru(i , j ) )  =(O, 0), 
sp(2,j) : indicates that (Rb(i , j ) ,Ru(z , j ) )  = (1,l) 

(possible only if A(i, j )  = (0, 0)), 
s3(irj) ands4(i,j) : indicate that (&(i,j),Ru(Z,j)) = (-1,O) 

and (-2,0), respectively, (possible only if 
A(i , j )  = (0,1)>. 

A(i , j )  = ( L O ) ) ?  

s5( i , j )  andsg(2,j): indicate that ( & ( i , j ) , & ( i , j ) )  = (0, -1) 
and (0, -2), respectively, (possible only if 

indicates that the algorithm failed to embed 
logical node (i, j ) .  

s 7 ( i , j )  : 

If we denote by T ( i , j )  the set containing the four pro- 
cessors connected to ~witch2+1,2~-1, then the probability of 
successfully embedding logical node ( i , j )  will depend on: 1) 
the probabilities of defect distributions among the processors 
in T( i , j ) ,  and 2) the state that resulted from embedding nodes 
(i - l , j ) ,  ( i , j  - 1) and (i - 1,j + 1). These two factors will 
also determine the state after the embedding of node ( i , j ) .  
Note that the state after the embedding of node (i - 1, j + 1) 
is needed because node (i - 1,j  + 1) is embedded in Shift-1 
after node (i - 1,j). Thus, if Rh(i - 1 , j )  = &(i - 1 , j )  = 1, 
then node (i, j )  may be shifted upward and use the processor 
left by node (i - 1,j) only if node (i - 1,j  + 1) has not been 
shifted left and has already used that processor. However, if 
node (i-l,j+l) isshiftedtotheleft,then,&(i-l,j+l) = 0 
and, from Proposition 5, Rh(i - 1, j  + 1) = 0. Hence, state 
so,l(i - 1 , j  + 1) is the only state that is possible with either 
A(i - 1,j + 1) # (0, -1) or A(i - 1,j + 1) = (0, -1). In 
order to record whether or not a left shift had taken place, we 
divide state s ~ ~ ( i , j )  into two states, namely; 

so( i , j )  indicates that (Rh(i,j),R,(i,j)) = (0,O) and 

s l ( i , j )  indicates that (Rh(i,j),R,,(i,j)) = (0,O) and 

In Fig. 18, we show a few examples of states after the 
embedding of node (i, j ) .  The examples are given for specific 
defect configurations for the four processors in T( i , j ) .  In 
each of these examples, the current state, su(z, j ) ,  depends 
also on the states resulting from embedding nodes ( i , j  - l ) ,  
(i - 1,j) and (i - 1,j + 1). For instance, so( i , j )  in Fig. 18(a) 
is reached only if the state after embedding node (i,j  - 1) is 
not s3( i , j  - 1) or s4(i , j  - 1) and the state after embedding 
node (i - 1 , j )  is not sg(i - 1 , j )  or S g ( i  - 1,j). With 
the shown default configuration for T(i , j ) ,  sq(i,j - 1) or 
S g ( i  - 1,j) would have resulted in sf(z,j). Either s3(i,j - 1) 
or s5(i - 1 , j )  would have resulted in s 3 ( i , j )  or s 5 ( i , j ) ,  
respectively. Finally, both s 3 ( i , j  - 1) and s5(i  - 1,j) would 
have resulted in either 3 4 ( i , j )  or s s ( i , j )  depending on the 
order in which right or down shifts are tried. 

In Fig. 18(b), so( i , j )  is reached assuming s u ( i , j  - l ) ,  
u # 3 or 4, s2(i - 1,j) and su(i  - 1,j  + 1). u # 1. That is 
assuming that node (i, j - 1) is not shifted right, node (i - 1, j) 
has an extra processor and that extra processor has not been 

A(i , j>  # (0,-1) 

A ( i , j )  = (0,-1). 
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used by node (i - 1 , j  + 1). In Fig. 18(c), s l ( i , j )  is reached 
assuming s z ( i , j  - 1) and s,(z - l,j), u # 5 or 6. The states 
s 2 ( Z , j ) ,  s3(i ,j)  and s 5 ( i , j )  shown in Fig. 18(d), (e), and (0, 
respectively, are reached assuming s,(z,j - 1). '(I # 3 or 4 
and s,(i - l,j), u # 5 or 6. 

A Markov process similar to the one used to analyze 
L-Shift-1 may not be directly applied to compute the prob- 
ability of successfully completing the embedding. This is 
because the result of iteration i , j  not only depends on the 
previous iteration, i , j  - 1, but also on iterations i - 1 , j  
and i - 1, j + 1. That is the process needs to remember the 
results of the previous 7~ iterations. An alternative technique 
is to assume that P,(i,j) is the probability of being in 
state s u ( i , j )  after the embedding of node ( i , j ) .  It is then 
possible to write a set of recursive equations relating P(i ,  j )  
with P(i - l , j) ,  P(i - 1 , j  + 1) and P(i , j  - 1), where 
P ( i , j )  is a vector containing the eight probabilities P,(i,j) 
in the order u = 0, . . . ,7. By solving the resulting system 
of equations, we can calculate the probability that all the 
nodes are mapped successfully. The probability equations are 
derived by enumerating all possible configurations of defects 
in the elements of T( i ,  j ) .  For example, if T,, u = 1 , .  . ,4, 
are defined as in Section V-A, then, from our comment on 
Fig. 18(d), the probability of being in state s z ( i , j )  after the 
embedding of logical node (i,j) is given by: 

P2(i,j) = T4p5,6(i - l,j)P3,4(i,j - 1) 

where for simplicity of notation we used P,,, = P, + P,. and 
P,,, = (1 - P,,u). That is, the embedding of node ( i , j )  is 
completed with A(i,j)  = (0,O) and Rh(i , j )  = R , ( i , j )  = 1 
if and only if the four processors in T( i , j )  are nondefective 
(with probability 7r4), node (i - 1 , j )  is not shifted downward 
(with probability 1 - P 5 , 6 ( i  - 1,j)) and node ( i , j  - 1) is not 
shifted rightward (with probability 1 -P3,4(i, j -  1)). Similarly, 
the probabilities of being in the seven other states are: 

- 

PfJ(i,j) = 47F3P5,6(i - l7j)F3,4(2,j - 1) 
+T4P5(i - l , j )p3 ,4( i , j  - 1) 
+ TqP5,6(i - 1, j )p3( i , j  - 1) 

+ TZPZ(i - l,j)F&(i,j - l)FI(i - 1 , j  + 1) 
pl(i,j) = T Z P 5 , 6 ( i  - l , j )PZ( i , j  - I)) 

Now, by setting P(0, j )  = P(i,O) = ( l O O O O O O O ) T  
for any i and j ,  we may iteratively compute P(z,j) ,  z,j = 
1, . . . , nl. Assuming that ns is odd, then no node at the right 
boundary should be shifted rightward, and no node at the 
bottom boundary should be shifted downward. That is, 

YGlshift(3,  nZ, ns) 
= [IIyyrI;:yP7(i,j)] 

* [n$T1F5,6,7(nl,j)] 
7d-1- * [ q = 1  P3,4,7( i ,nz) l  * P0,1,2(nz,~z). 

A slightly more complex expression may be derived for the 
case of even n,. 

The probability Y ~ 1 - ~ h i f ~ ( 3 , 1 0 , 1 9 )  is plotted in Fig. 19 for 
the embedding of an 10 x 10 logical array onto a 19 x 19- 
switch PSVA. By comparing the results for G1-Shift and 
row-wise Shift-I, we note that the yield of the latter is greater 
than the yield of the former. Given that G1-Shift allows 
shifting in all four directions while rw - Shift allows only 
horizontal shifts, it is clear that the compression toward the 
left (trying A = (0, -1) first) is the reason for the superiority 
of rw-Shi f t. It is possible to combine the advantages of both 
algorithms, that is to allow shifting in all directions and at the 
same time compress toward the left. This is achieved by trying 
the values of A(i ,  j )  in algorithm Shift-llfmapl-I in the order 
(0, -1). (O,O),  ( - l , O ) ,  ( 0 , l )  and (1,O). This algorithm is 
called G2-Shift-1lfmap1~l. 

From Propositions 4 and 5, the permissible values 
of (Rh (i, j )  , R, (i , j ) )  after embedding node (i, j )  using 
G2-Shift-1 are: ( O , O ) ,  ( l , O ) ,  (2,0), ( l , l) ,  (0,-1), (0, -2), 
(-1,O) and (-2,O). As in GlShift-I, two states need to be 
defined for (Rh, R,) = (0 ,O) .  Adding a failure state, the total 
number of states needed to analyze G2Shift-l/ f mapl>l adds 
up to 10 states. We have derived the equations relating the 
probabilities for these states and have computed the yield, 
Y~~~hift-1(3,nt,n,). The results for the embedding of a 
10 x 10 logical array onto a 19 x 19 PSVA is shown in Fig. 
19. As expected, G2-Shift-1 outperforms row-wise Shift-1. 
The yield improvement is, however, very modest. 
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PSVA. 

The yield for embedding 10 x 10 array onto a 19 x 19 defective 

VI. RUN TIME RECONFIGURATION OF PSVA 

Run-time faults may be dealt with in PSVA's by providing 
additional redundancy at each node. Specifically, if d redun- 
dancy is desired for proper operation (d = 2 for fault detection 
and 3 for fault masking), then each logical node is mapped to 
the PSVA with p redundancy for 'p  > d. With this, p - d 
processors per logical node are available to be used as spares. 
For example, if triple redundancy is desired, then the mapping 
defined by (1) may be used to map a logical array onto a 
nondefective PSVA such that four processors constitute each 
logical node; three processors to be used in a TMR mode and 
the fourth to be used as a spare to replace any of the other 
three. This idea of using sparing along with TMR has been 
used in the design of FTMP [7], where a pool of spares is 
made available to replace any faulty unit in a triply redundant 
module. In PSVA's, however, the use of spares is restricted in 
the sense that a spare can only replace one of three specific 
processors. 

In order to be more specific, define a d-deficient logical 
node to be a node with more than p - d faults in the processors 
constituting it. Such a node has less than d nonfaulty proces- 
sors left and thus cannot operate properly in a d-redundant 
mode. Because faults may not occur uniformly at run-time, 
some node may become d-deficient while some other node 
may have less than p - d faults in the processors constituting 
it. In other words, the system may fail not because of lack 
of spares, but because the hardware interconnections restrict 
the set of processors that may be replaced by each spare. This 
restriction greatly reduces the survivability of the system. 

In order to improve the survivability, a run-time recon- 
figuration algorithm may be invoked when a node becomes 
d-deficient. The goal of the reconfiguration is to restore 
the required redundancy at each node. Ideally, a run-time 
reconfiguration algorithm should be a simple algorithm which 
may be executed distributively and which only requires the 
remapping of deficient nodes (constant time complexity). 
A good candidate for such reconfiguration is a run-time 

adaptation of the Shift-1 algorithm of Section V; when a 
logical node, ( i , j ) ,  which is mapped to swztch,,,(z,~), 
becomes deficient, then remap this node to one of the four 
switches switch,,,(i,j)+A, where A = (0 ,  &l) or (fl, 0). 

A shift of node ( i , j )  in one of the four directions is 
successful only if the neighboring logical node along that 
direction, say ( i ' , j ' ) ,  has an extra spare that it may give up and 
that may be used by (2 ,  j ) .  If this is not the case, however, then 
it may still be possible to shift ( i , j )  if (i',j') is successfully 
shifted along the same direction, thus relinquishing one or 
more processors to (z,j). This process may be continued 
recursively until we either can shift a node successfully, or we 
reach a node which may not be shifted. For example, assume 
that an nl x nl logical array is initially embedded in an n, x n, 
PSVA using fmap'?' and that triple redundancy is required. 
Hence, when a node ( i , j )  becomes 3-deficient the following 
algorithm may be used to try to shift node (i, j )  by one switch 
to the left: 
Algorithm leftshift (i,j) 
IF both proc2i-~,~j-z and proczi-l,zj--2 are faulty 
OR j = 1 THEN retum not-successful 

ELSEIF the four processors constituting node 
( i , j  - 1) are not faulty, THEN 

shift ( i , j )  to switchZi-1,2j-Z and retum a set 
which contains the nonfaulty processors 
among proc2+z,zj- 1 and proczi- 1 ,zj - 1. 

These are the processors relinquished when (i, j )  
is shifted to the left. 

ELSE call left-shift(i,j - 1); 
IF the call is successful and the set of 
processors relinquished due to left-shift(i, j - 1) 
allows ( i , j )  to be embedded in switchzi-1,zj-z, 
then retum a set which contains the nonfaulty 
processors among proczi--2,zj--1 and 
proczi- 1 , z j -  1.  
ELSE retum nut-successful. 

If leftshift is not successful, then a similar up-shift is tried, 
then a right-shift and finally a downshift. The resulting recon- 
figuration algorithm is called (nl - 1)-compress because the 
recursive shifting of nondeficient nodes along some direction 
is equivalent to compressing the embedding in that direction. 
At run time, this compression may require the remapping of 
up to n~ - 1 nodes. 

The above reconfiguration is triggered by a node that 
becomes 3-deficient. Such a node is capable of participating 
in the reconfiguration since it still has two nonfaulty proces- 
sors. These processors can detect the deficiency status by 
periodically examining the status word of the switch to which 
they are actively connected. The other nodes that are involved 
in the reconfiguration are invoked by message passing and 
execute in a distributive manner. Processors may determine 
the active connections of neighboring processors by examining 
the status word of a shared switch. They may also change such 
connections by writing onto that status word. 

The run-time complexity of (nl - 1)-compress is O(nl). 
This may be reduced if the nesting level of the recursive 
calls to left-shift, up-shift, right-shift and down-shift is limited 
to m levels, for some m < n1. The resulting algorithm is 
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Fig. 20. Probability of surviving nm time fault in a 19 x 19 PSVA. 

called m-compress. Clearly, 0-compress attempts only to shift 
the deficient node and thus is fast. Its probability of success, 
however, is expected to be low compared to that of (121 - 1)- 
compress . 

In order to study the effect of m on the success of the 
reconfiguration algorithm, we simulated the application of m- 
compress for the reconfiguration of an 10 x 10 logical array 
which is embedded in an 19 x 19 PSVA using fm.aplll with 
d = 3. Clearly, only 300 of the 400 processors in the PSVA 
are used in the embedding and the remaining 100 processors 
may be used as spares. In Fig. 20, we show the probability 
that m-compress successfully reconfigures the array to tolerate 
IC randomly chosen faulty processors. As seen from the figure, 
compression with low values of m gives good results. In fact, 
for m = 2, any increase in the value of m results in a minute 
improvement in system survivability. 

VII. CONCLUSION 

We have presented a versatile architecture for implementing 
multiple redundancy in computational arrays, and we have 
studied different embedding and reconfiguration algorithms 
that may be applied to this architecture. All the algorithms 
may be applied either to tolerate initial defects or to recover 
from run time faults. In the paper, however, we distinguished 
between defect tolerance algorithms and run time algorithms 
according to the amount of global restructuring that is required. 
This distinction is natural because the algorithms that require 
global restructuring outperform those that are restricted to local 
restructuring, but are less suitable for run time reconfiguration. 

Given the flexibility of the PSVA architecture, we empha- 
sized the strategies underlying the reconfiguration algorithms 
and the techniques used to analyze them. These strategies 
and techniques may be applied to different instances of the 
restructuring problem. For example, we analyzed the em- 
bedding and reconfiguration algorithms assuming that triple 
redundancy is required for proper operation. Also, the Shift-1 
algorithms were analyzed assuming that fmapl? '  is the initial 
fixed mapping. The same type of analysis may be applied 

if different degrees of redundancy are required and different 
initial mappings are used. 

Although it is assumed that switchhoting elements may 
fail, those elements are not used in a redundant mode, and 
thus should be self-checking elements. This also implies that 
errors in switchhoters cannot be masked. Multiple redundancy 
schemes for processor arrays may be realized without the 
use of switchhoter elements. For this, direct connections 
should be provided among the d processors constituting a 
logical node to allow the results of each processor to be 
transmitted to the other d - 1 processors. The voting is thus 
performed independently and distributively by each processor 
[ 101. Among the previously proposed processor arrays, two 
architectures may be used to realize such a distributed multiple 
redundancy approach. Namely, the iWarp [17] and the CHIP 
[22] .  In the foimer, direct connections may be realized by 
time multiplexing individual links and in the latter, direct 
connections may be established by reconfiguring a mesh 
of communication tracks. Mapping a logical node into d 
processors in the physical array will no longer be constrained 
by the requirement that the d processors be physically adjacent, 
but rather by the allowable degree of multiplexing (in iWarp) 
and by the flexibilityhack-width of the interconnection system 
(in CHIP-like architectures). Although studying and analyzing 
multiple redundancy mappings in iWarp and CHIP are beyond 
the scope of this paper, the ideas, algorithms and analysis 
techniques used for multiple redundancy mappings in PSVA's 
are useful starting points for such studies. 

The study of multiple redundancy in PSVA's is the first 
step toward studying the applicability of processor meshes as 
general purpose, fault tolerant, multiprocessors. These systems 
are appealing because of the ability to selectively set the degree 
of redundancy according to the required reliability and the 
possibility of dynamically reconfiguring the system after faults 
to efficiently utilize the available redundancy. 

APPENDIX 
GLOSSARY OF NOTATION 

the switch located in row i ,  column j of a 
PSVA, starting with row and column 1,l. 
the processor located in row i, column j of a 
PSVA, starting with row and column 0,O. 
the active set -the set of processors with 
active connections to switch;,j. 
the cardinality of active set Ci,j. 

the single bit majority function used within the 
switchhoters of a PSVA. 
a function which specifies a mapping from a 
logical node ( i , j )  to a physical PSVA switch. 
The function maps from a row-column pair in the 
logical array to a row-column pair in the physical 
PSVA. 
the physical row that logical node ( i , j )  
is mapped into. 
the physical column that logical node (z , j )  is 
mapped into. 
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the probability that a processor is nonfaulty. 
the probability that a switch is nonfaulty. 

a mapping from logical nodes to physical 
switches which allows single switch position 
deviance from a given fixed mapping. 
the fixed mapping from logical nodes to phys- 
ical switches utilized in the Shift-1 mapping. 
the offset from the fixed mapping utilized in 
Shift-1. The values for A( i , j )  may be (0,O) 
for no shift, (1,O) for a shift down, (0,l) 
for a shift right, (-1,O) for a shift up, or 
(0,-1) for a shift left. 
the difference of the row values in the map- 
pings of nodes (ij) and (i-1,j). 
the difference of the column values in the map- 
pings of nodes (ij) and (i-1,j). 
the difference of the row values in the map- 
pings of nodes (z , j )  and ( i , j  - 1). 
the difference of the column values in the map- 
pings of nodes ( i , j )  and ( i , j  - 1). 

a boolean function which returns true if 
component x is nonfaulty. 
the set of unmarked (or available) processors 
connected to switchk in a linear PSVA. 
The set is indicated by two subscripts (for row 
and column) in two-dimensional PSVA’s. 
the number of nondefective processors remain- 
ing on the right side of switch,,,(j) after 
logical node j has been mapped onto it. These 
processors may be used in the mapping of log- 
ical node j + 1 if necessary. R( j )  may have 
the values 0, 1, or 2. 
a mapping of logical nodes onto a linear PSVA 
which maximizes the number of mapped log- 
ical nodes. 

Y s ( d ,  n,, n,) the yield obtained when algorithm S is used to 
map n, logical nodes into a linear PSVA of n, 
switches maintaining redundancy d per node. 
a state in the layered Markov chain used to 
analyze the Greedy algorithm. Subscript y in- 
dicates the number of nodes successfully map- 
ped, and subscript u indicates the number of 
processors available for mapping the next 
node. 
the probability that the Greedy mapping is 
in state sY,” after IC switches have been exam- 
ined (after the kth transition). 
a vector of all the probabilities o;,”. Subscript 
y ranges from 0 to n, and subscript u ranges 
from 0 to 2. Thus, the vector contains the 

Q Y t U  

k 
C Y  ,” 

ok 

Section V 
f map”.” 

val id( i ,  j ,  A ( i , j ) )  

3(n, + 1) different probabilities of being in the 
various mapping states after the lcth transition. 

,71 

a mapping of logical nodes into a PSVA 
such that u consecutive switches are 
used, followed by 21 consecutive switches 
being unused, and repeating the pattern 
for each row. 
the utilization factor of mapping 
f mup”~” with redundancy d. This value 
indicates the percentage of processors 
in the PSVA which are used by the 
mapping. 
a boolean function which returns true if 
shifting the mapping of logical node 
( i , j )  by A(i, j)  still allows correct con- 
nections between the node and its west 
and north neighbors. 
the states used in the Markov chain used 
to analyze the row-wise Shift-1 algor- 
ithm. sf is the failure state. s-2 and s-1 
indicate that 2 and 1 processors, respec- 
tively, must be borrowed. SO in- 
dicates no borrowing is needed. SI and 
s2 indicate that 1 and 2 processors, 
respectively, are available. 
the probability that exactly i processors 
out of four are nonfaulty on a switch. 
the number of processors on 
switch,,,(;,j) available, if necessary, 
for the mapping of logical node (2, j 
+1) after the mapping of logical node 
(ij). A negative value (-1 or -2) indi- 
cates that node (ij) was shifted to the 
right and borrowed 1 or 2 processors 
from its neighboring switch. 
analogous to R h ( i , j )  but for vertical 
neighbors. 
states based upon the different combi- 
nations of values attainable by Rh and 
R, in the GlShift-1 algorithm after the 
mapping of logical node (ij). 
probabilities corresponding to the states 
S O ( i , j ) ,  * 7 s 7 ( i , j ) .  
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