Routing in Modular Fault Tolerant Multiprocessor Systems

M. Sultan Alam and Rami G. Melhem

Department of Computer Science
The University of Pittsburgh

Abstract

In this paper, we consider a class of modular mul-
tiprocessor architectures in which spares are added to
each module to cover for faulty nodes within that module,
thus forming a Fault Tolerant Basic Block (FTBB). In
contrast to reconfiguration techniques that preserve the
physical adjacency between active nodes in the system, our
goal is to preserve the logical adjacency between active
nodes by means of a routing algorithm which delivers mes-
sages successfully to their destinations. We introduce two
phase routing strategies that route messages first to their
destination FTBB, and then to the destination nodes within
the destination FTBB. This strategy may be applied to a
variety of architectures including binary hypercubes and
3-D tori. In the presence of f faults in these systems, we
show that the worst case length of the message route is
max{c+f ,(K+1)o} + M where G is the shortest path in
the absence of faults, and M and K are the numbers of
primary nodes and spare nodes in an FTBB, respectively.
The average routing overhead is much lower than the
worst case overhead.

1. INTRODUCTION

As the number of processors in a multiprocessor sys-
tem increases, the complexity of the system increases,
leading to a possible high rate of both transient and per-
manent failures. The reliability of such systems can be
improved by incorporating some type of fault tolerance.
For instance, fault tolerance can be achieved by distribut-
ing the load of a faulty processor to other non-faulty pro-
cessors [4,11]. and then using fault tolerant routing to
by-pass faults and deliver messages to their destinations.
Several fault tolerant routing schemes have been proposed
in the literature for general and specific architectures [6-
8,10]. In these schemes, different adaptive routing algo-
rithms have been used to by-pass faulty nodes. Olson ef
al. proposed a routing algorithm for HARTS (Hexagonal
Architecture for Real-Time Systems) which ensures the
delivery of a message as long as there exists a path

This work was partially supported by NSF Grant MIP-8911303.

0731-3071/92 $03.00 © 1992 IEEE

between the message source and its destination [15].
Peleg et al. [16] proposed fault tolerant routing schemes
for several families of graphs, including all graphs of max-
imal degree less than cn ! for some ¢ >0 (n is the number
of nodes in the graph). The distribution of the load of the
faulty node in such schemes is a non-trivial problem and
the performance degradation can be as high as 50 percent
[4].

An alternative approach to fault tolerance is to use
spares. In this approach, the system performance degrada-
tion is minimized by allowing spare nodes to replace faulty
ones. For applications where the topology of the underly-
ing system is important, the adjacency relationship among
the active nodes should be preserved after reconfiguration,
where an active node is defined to be a non-faulty primary
node or a spare node that had replaced a faulty node. That
is, if a spare S replaces a faulty node P, then, after
reconfiguration, S should become a neighbor of all the
neighbors of P. Usually, hardware switches are used to
preserve the adjacency relationship among the active
nodes [1,5,9, 13, 14, 18-20]. Note that in this approach the
routing algorithm does not need to be modified. In some
systems, however, preserving the adjacency relationship
among the active nodes may not be crucial because the
applications may not assume any specific topology. In
such systems, an alternative to preserving the physical
adjacency is to modify the routing algorithm so that mes-
sages can by-pass faulty nodes and be delivered to the des-
tination node.

In this paper, we assume that when a spare node
replaces a primary node, it inherits its address. Thus any
message addressed to the failed node should be delivered
to its replacement spare. The sender of a message
addresses the message to a logical destination, and does
not need to know whether the destination is a primary
node or a spare that had replaced a failed primary node. In
other words, the burden of maintaining the logical inter-
connection among the acrive nodes is assigned to the rout-
ing algorithm. There is no need to preserve the physical
adjacency between active nodes by setting up
reconfiguration switches. Hence, no hardware switches
(usually assumed fail-safe) are needed and recovery from
faults is faster.

We introduce a two-phase routing approach which is
general in the sense that it can be applied to different
architectures and to different spare allocation strategies.
Only local fault knowledge is assumed. That is, each node
only has to know whether its neighbors are faulty or not.
The distributed routing algorithm assumes total node
failures in the sense that a failed node cannot be used to
route messages and thus all links connected to a failed
node are unusable. Conditions are given for the two phase
routing algorithm to work correctly, and it is shown that
these conditions can be satisfied in many well know archi-
tectures by properly connecting the spares to other nodes
in the system.

The rest of this paper is organized as follows: Section
2 describes the two-phase routing approach and establishes
its worst case performance. The approach is then applied
in Section 3 and 4 to binary hypercubes and 3_dimensional
toroidal systems. Although, analytical results show that
the worst case routing overhead is more than 100 percent,
simulation results show that, on the average, the routing
overhead is low.

2. TWO PHASE ROUTING

Most common multiprocessor architectures are con-
structed from identical modules to achieve scalability as
well as ease of maintenance and repair. Redundancy may
be added to these systems by either adding spare modules
or adding spare nodes in each module (or both [17]). We
assume that the latter approach is taken. Specifically, we
assume that each module consists of M primary nodes and
that K spares are added to each module to replace faulty
primary nodes according to some specific coverage policy
that governs which spare may replace which primary node.
In general, we assume that each spare may replace any of
flex primary nodes (flex = flexibility of coverage) and
each primary node may be covered by any of deg spare
nodes (deg = degree of coverage). The M primary nodes
and the K spare nodes, thus, form a fault tolerant basic
block (FTBB) whose size is referred to as (M . K). Two
FTBB’s are called neighbors if there is a link between a
node in the first and a node in the second. An FTBB is
called /ive if it contains at most X faulty nodes (primary
or spares) and the system is called /ive if all its FTBB’s
are live. Note that after a fault, a system remains /ive if
there is an available spare to cover for the fault. Otherwise,
system failure is declared.

The address of a node, P, may be divided into two
parts, one identifying the FTBB that contains P (denoted
by F,) and the other identifying P within F,. If no nodes
in the system are faulty, then only the primary nodes are
active and thus have addresses. When a primary node
fails, a spare replaces that node by taking over its compu-
tational tasks and inheriting its address. From that point
on, any message addressed to the failed node should be
delivered to the spare that replaced it. This is the responsi-
bility of the routing algorithm.

Any efficient fault tolerant routing algorithm should
use the shortest path between two nodes when no faulty

186

nodes are encountered. Moreover, the routing perfor-
mance degradation should be graceful with the number of
faults and the routing algorithm should guarantee that a
message does not cycle indefinitely in the system (a live-
lock situation). The routing strategy suggested in this sec-
tion leads to distributed algorithms that use only local fault
knowledge. This avoids the need for a global controller
and for storing global fault information in each node. In
this strategy, a message is routed to its destination node, d,
in two phases. First, the message is routed to the FTBB
that contains 4, and then to 4 or the spare node that
replaces d. Once the message reaches the destination
FTBB it does not leave that FTBB. The two phase routing
strategy can be described as follows (Assume that p is the
present routing node):

(1) While F, # F,; send the message to some node in a
neighboring FTBB, F,, which is closer to F 4.

(2) Route the message to node d without leaving Fg.

A key property of the two phase routing is that it does
not require any backtracking between FTBB’s.
Specifically, a message is always moved to an FTBB that
is closer to its destination. This leads to efficient and sim-
ple implementations. The restricted flexibility resulting
from prohibiting backtracking will be compensated for by
enhancing the interconnections in a way that guarantees
the success of the routing in any live system.

B

FTBB F, FIBB F, FTBB F, FTBBF,
Figure 1. Two phase routing with no faults.

/N

ST

/]
211)

)l AT
; N
q y
. v
FTBB F, FTBB F, FTBB F, FIBB F,

Figure 2. Two phase routing with a fault at node g.

The details of each routing stage depend on the archi-
tecture. In fact, given a particular architecture, the choice
of FTBB F, in stage 1 is identical to the choice that a
non-fault tolerant routing algorithm would make for that
architecture. With faulty nodes, however, it may not be
possible to send a message from F, to F, using the same

path that is used in the absence of faults. The message may
have to take a longer path to get to F,. Figures 1 and 2 are
used to explain this. The large circles and the small circles
in these figures denote primary nodes and spare nodes,
respectively, and a crossed out node denotes a faulty node.
In Figure 1, a message is routed from node p to node d
through the nodes g and y. If node ¢, which is on the path
of this message, fails, then in phase 1 of the algorithm, the
message is routed to node ¢’ in FTBB F, (via p") and
then to node y” in FTBB F, (via ¢”) and finally to node
d” in FTBB F; (see Figure 2). The second phase of the
algorithm starts after the message reaches node d”.

Given a distribution of faults in the system, a link
which connects two non-faulty nodes is called a healthy
link. A healthy path between two non-faulty nodes is
either a healthy link between the two nodes or a sequence
of healthy links that connect the two nodes through non-
faulty nodes. The two-phase routing strategy described
above may deliver messages correctly only if certain con-
ditions are met. For instance, phase 1 may fail if there are
two adjacent FTBB's that are not connected by at least one
healthy link. Also, phase 2 may fail if there exists two
nodes in an FTBB, F, that are not connected by a healthy
path within F. In this context, a path within F is one that
does not leave F. Therefore, the following two conditions
are necessary for the two phase routing strategy to be suc-
cessful in a live system:

1) For any two neighboring FTBB’s, F and F’, any set

of K or fewer faults in F and any set of K or fewer
faults in F’, there exists a healthy link between F and
F’.

For any set of K or fewer faults in an FTBB, any two
non-faulty nodes in that FTBB are connected by a
healthy path.

These two conditions ensure that there exists a healthy
path between any two nodes in a live system and that a
two phase routing strategy can route a message along that
path. Thus, these conditions are sufficient for the two
phase strategy to be successful provided that suitable algo-
rithms are designed to implement each of the two phases.
Before discussing specific algorithms, we investigate
further the first condition. For that condition to be satisfied,
there should be K + ¢ nodes in F, say ng, - * Jik+q-1, fOr
some ¢ > 0, such that each r; is a neighbor to some nodes
in F’. Similarly, there should be K+q’ nodes in F’, say
mo, " - * Mg+q'-1, Such that each m; is a neighbor to some
node in F. We assume that ¢ = ¢’ and consider the fol-
lowing cases for g.

The case q = 1: In this case, each n;, 0<i <K should be
connected to all m;, 0< j <K to guarantee a healthy link
from F to F’ if K nodes in F and K nodes in F’ are
faulty.

The case q = K+1: For any K faults in F and K faults in
F’, the existence of a healthy link from F to F’ is
guaranteed if each n;, 0<i <2K is connected to a dif-
ferent m;. That is, up to the relabeling of nodes, each n; is
connected to m; .

2

187

The above two cases are special cases of the following
Lemma:

Lemma 1: For 1 <¢q <K+1 and any K faults in F and X
faults in F’, the existence of a healthy link from F to F’ is
guaranteed if each n;, 0<i <K+g-1 is connected to
K+2-q nodes in F’ such that, up to the relabeling of
nodes, each n; is connected 10 M (i4umod(K+g)»
u=0,... K +1-q.

Proof: For any K faults in F , there are ¢ non-faulty nodes
in F connected to F’. Let these nodes be n; , I=1,....g and
assume that i; <i;,;. Node n; is connec‘ed to K+2—q
nodes in F’, and each n; is connected to at least one node
in F’ that is not connected to any previous node n; for
z<!. Hence, there are at least K+1 nodes in F’ that are
connected to the g non-faulty nodes in F . Thus, for any K
faults in F’ there will be a healthy link between a node in
F andanodeinF’.0O

Corollary: For ¢ > K+1, if each n;, 0<i <K+g-1, is
connected to m;, then there is a healthy link from F to F’
for any K faults in F and K faults in F”,

For any given modular architecture in which K spare
nodes are added to each module, the above lemma may be
used to establish the connections between the spare nodes
and the other nodes in the system in a way that allows for
the design of two phase routing algorithms. In Figure 3(a),
an example is given for a mesh architecture with K'=1 and
g=K+1. Dashed lines are used to enclose FTBB’s and the
mesh interconnections are highlighted in bold lines. The
mesh in Figure 3(b) has K =g=1.

X
N7

M
L AL d
(1]

N

AN

D
g
E.
g

PN
N2

N

AN

V4

Figure 3 - Meshes amenable to two phase routing.

Lemma 1 may be applied to other architectures such
as trees, Cube Connected Cycles, hypercubes and tori. We
will focus our attention in this paper on the later two archi-
tectures since they may be constructed such that modules
exhibit a strong neighbor property in the sense of the fol-
lowing definition:

Definition: Two neighboring FTBB’s are strong neigh-
bors if each node in one FTBB is a neighbor of exactly
one node in the other. O

Consider two live FTBB’s, F and F’ of size (M X).
From Lemma 1 and its corollary, if F and F’ are strong
neighbors, then there will be a healthy link between them
if M > K. A routing algorithm can send a message from
any node p in F to some node in F’ if it sends the mes-

sage along a path, m, in F, which starts at p and passes
through at least X other non-faulty nodes (a healthy path
of length X +1). If each node on that path tries to send the
message to F’, then one node will be successful because
there are at most K faults in F’. The following theorem
specifies conditions that guarantee the existence of such a
path starting at any non-faulty node, p, in F. Moreover, it
will provide for a uniform implementation of a two phase
routing algorithm at any node in the system,

Theorem 1: For a modular system constructed from
FIBB’s of size (M,K) such that any two neighboring
FTBB’s are strong neighbors, a two phase routing algo-
rithm may be designed for that system if:

1) M>K,and

2) For any subset, S, of M nodes in an FTBB, there is a
cycle, A, connecting at least K+1 nodes from S such
that any node in S is either on A or is connected to a
node on A.

Moreover, in the presence of f faults, the routing algo-
rithm will route a message in at most
o+M +max{Ko, f} steps, where ¢ is the minimum
number of routing steps in the absence of faults.

Proof: Given two FTBB’s F and F’, let S be the set of
active nodes in F. For any p in S, if p is on A, then the
path & consists of X +1 consecutive nodes from A. If p is
not on A, then it is directly connected to a node, u, on A
and thus the path = consists of p, ¥ and K—1 other con-
secutive nodes in A. Thus, by sending the message along
7, and observing that there are at most K faults in F’, we
can guarantee that one of the K +1 nodes on & will be able
to send the message to F’. This shows that the first phase
of a two phase routing strategy may be implemented.

For the implementation of the second phase, let S be the
set of active nodes in the destination FTBB, F . Starting at
p € S, a message that is addressed to another node in §
may be sent along A (if p is not on A, then it is connected
to a node on A). Each node that receives the message
checks if the message is for it. If not it checks if it is for a
node connected to it. If not, it sends the message to the
next node on A. The message will reach its destination
before visiting any node twice.

To compute the routing overhead, consider two nodes s
and d and assume that, in the absence of faults (and
spares), © is the length of the shortest path from s to d.
Given that neighbor FTBB’s are strong neighbors, all of
these ¢ steps can be across FTBB’s. In the presense of
faults, the FTBB’s will be crossed in the same order but to
move between two FTBB’s it may take up to K+1 steps.
Moreover, in the destination FTBB, the message may need
up to L+1 steps to reach the destination where L is the
number of nodes on A. Hence, in the worst case, the mes-
sage may need (K+1)o+M routing steps from s to d.
Note that to cross from FTBB F to FTBB F’, if the mes-
sage is at a node p in F, then it is sent to the next node on
A only if the neighbor of p in F’ is faulty. Thus the
number of extra steps in the message routes while crossing
FTBB’s cannot exceed the number of faults in the system.

188

Thus the number of routing steps from s to d is at most
o+f+M .0

The proof of Theorem 1 may be used to construct
routing algorithms that are uniform across the nodes in the
system. Define one of the directions on the cycle A to be
positive and the opposite direction to be negative. If P is
on A, then let next*(P) and next=(P) be the nodes that fol-
low P on A in the positive and negative directions, respec-
tively. We will use next(P) to indicate next*(P). if P is
not on A, then let next (P) be a node on A that is connected
to P. With this, the general form of the routing algorithm
atnode P is:

Algorithm Two-phase Route
Phase 1: If the destination, d, is in an FTBB different
from the current FTBB, Fp, then

1) compute the next FTBB, F’ to which the message is
to be sent.

2) If the neighbor, P’, of P in F’ is active, then send
the message to P’, else send the message to next (P).

Phase 2:1f d isin Fp, then

1) if d = P keep the message,

2) elseif P is directly connected to d, then send the
message tod,

3) elseif the message was received from a node not on
A, then chose a direction dir and send the message to
next4r (P),

4) else send the message to next4r(P), where dir is
direction from which the message was received.

We can identify two methods for routing messages
along the nodes on A with only local information about
active nodes. One method is to compute A distributively
for every message through a backtracking algorithm simi-
lar to the one described in [6]. In such a method, a stack
of nodes visited so far should be kept in the message to
prevent looping. This implies that the message needs to be
updated at each node that it visits resulting in slower mes-
sage delivery. In some cases it may be possible to care-
fully design the distributive algorithm in a way that
prevents looping without updating the message [2]. An
alternative method is to compute A after each fault and
store it by keeping in each node, p, the values of next*(p)
and next=(p). In general, the computation of A may
require that each node knows about the active nodes in its
own FTBB. In some cases, however, as will be shown in
the next sections, p may determine the next node on A by
having only local information about its own neighbors.

The bound given by Theorem 1 on the number of
routing steps for two phase routing does not reduce to 6 in
the absence of faults. This is because in the second phase
of routing, a conservative approach is taken to guarantce
that messages will not cycle indefinitely. The number of
routing steps may be reduced to 6+ f if the routing in
stage 2 of the algorithm does not follow A, but rather route
the message directly to the destination using some infor-
mation about the active nodes in the destination FTBB.
For small size FTBB’s like the ones described in Sections

3 and 4, only local information is enough to design stage 2
efficiently such that the routing algorithm takes o steps in
the absence of faults.

3. APPLICATION TO BINARY HYPERCUBES

Hypercubes are very modular systems. An n-
dimensional binary hypercube can be viewed as 2*—m
modules each containing 2™ nodes, for any 0<m<n. Each
node is given an m bit address such that the addresses of
neighboring nodes differ in exactly one bit. Communica-
tion between nodes is done via message passing; If the
destination address is d,d,_; - - - d; then the present rout-
ing node, p,p,-1 - - p1, executes the following routing
algorithm (x; is the exclusive or of ¢; and p;) [13, 14]:

IF (x;=0, for all 1<j<n) then send the message to the
local processor

ELSE route the message along dimension j, where j is
the largest integer such that x;=1

We will discuss two schemes for adding spares to
modules in hypercubes. In the first scheme, denoted BH-I,
a spare is added to each module to replace any of the
M =2" primary nodes, thus forming an FTBB. Although
this scheme is simple and results in an efficient routing
algorithm, it has very little flexibility for fault coverage.
Specifically, more than one failure in an FTBB results in
system failure. In order to improve the reliability, a second
scheme, BH-II, is introduced. In this scheme, more than
one spare is added to each module but the interconnection
complexity is kept low by limiting the number of nodes
that may be replaced by each spare (limiting flex). Both
schemes are amenable to efficient fault tolerant routing
algorithms that adapt to faults gracefully and reduce to the
usual hypercube routing in the absence of faults.

3.1. BH-I: A single fault tolerant architecture

In this scheme, there is one spare node in each FTBB
and this spare is connected to the 2™ primary nodes in the
FTBB. Moreover, the 27~ spare nodes are interconnected
as a binary hypercube structure of dimension n—m , which
is called the spare cube. For clarity, we use the term pri-
mary cube to refer to the binary hypercube formed by the
2" primary nodes. Each node in the primary cube has a n
bit address and all the primary nodes in an FTBB have
n-m identical most significant address bits. These n—m
bits are used to identify the FTBB. For example in Figure
4, n=4, m=2 and an FTBB consists of a column of four
primary nodes and a spare node.

Clearly, BH-I leads to single fault tolerant systems
since the failure of any two nodes in the same FTBB leads
to system failure. The 2 active nodes in an FTBB may
be connected by a cycle, A, which, in the absence of faults
in the FTBB, results from the Gray code embedding of a
ring in the 2™ -node subcube [12]. If the FTBB contains a
fault, then this fault may be by-passed in A using the spare
node. Thus the conditions of Theorem 1 are satisfied. The
hypercube bit-wise routing algorithm is converted into a
two-phase algorithm in order to route messages around

Figure 4. The augmented hypercube, BH-I.

faulty nodes. Specifically, a message addressed to some
node d, - - - d, is routed to FTBB d,, - - - d,_,, first, and
then is routed within that FTBB to the destination node. If
the primary node d,, - - - d is not faulty, then it is the desti-
nation node. Otherwise, the spare node in FITBB
dn - dn-m is the destination node because it is the only
spare that can cover for the fault. The proposed routing
algorithm that achieves this goal is completely distributed
and only requires that the neighbors of a failing node know
about the failure.

The routing algorithm is described at a node
p=pn» -+ p1 which computes the next dimension j to be
crossed and tries to send the message to C;(p), the neigh-
bor of p across dimension j. If that node is faulty, then
the message is sent to next (p), the next node on A.

Algorithm ROUTE_BH-I

1) If d = p, keep the message ;

2) Find the largest j such thatd; xor p; =1;

3 Ifj >m, /[*Phasel*/
If C;(p) is active, then send the message to C;(p)
else send the message to next (p)

4) else /* Phase 2 */
If p is a spare node, then send the message to d.
elseif C;(p) is active, then send the message to C;(p)
else send the message to the spare node connected to p

Given that K=1, only two nodes need to be tried in
Phase 1 before a message is sent to the next FTBB. Phase
2 of Route_BH_1I is different from the general algorithm,
Two-phase Route, because it does not send messages
along A. Rather, it uses the usual hypercube routing
within each FTBB and only deviates from that routing if
the next node on the route is faulty. In this case the desti-
nation is the spare node or a node connected to the spare
node. With this, the routing overhead is eliminated when
the system does not contain any faulty nodes.

3.2. BH-II: A double fault tolerant architecture

In this scheme, modules are 3-dimensional subcubes
and four spare nodes are added to each module to form an
FTBB. The spare allocation strategy is such that each
spare may replace any of four primary nodes and each pri-
mary node is covered by two spares (deg =2 and
flex =4). In Figure 5(a), we show an FTBB in this archi-
tecture where the four spares are connected as a 2-
dimensional cube and communication links are added

189

between each spare and the four primary nodes that it can
replace. Specifically, spare S1 can replace any of the
nodes 000, 001, 101 or 100. Spare S2 can replace any of
100, 101, 111 or 110. Spare S3 can replace any of 110,
111, 011 or 010, and spare S4 can replace any of 010, 011,
001 or 000. Note that the number of spares is equal to that
of the BH-I scheme with m=1. However, allowing each
spare to be shared among four nodes rather than two nodes
improves the reliability of the system [2]. This is pri-
marily due to the capability of tolerating any two faults,
while some two faults configurations in BH-I with m=1
cannot be tolerated.

(a) An (8,4) FTBB.

(b) The cycle I’
Figure 5.

Dimensions 1, 2 and 3 are chosen to span each
module, and thus the 8 primary nodes in each FTBB have
n-3 identical high order bits. These are used to identify
the FTBB. Similar to scheme BH-I, the spare nodes are
interconnected as a hypercube (of dimension n-1). The
architecture of a system composed of two such FTBB’s is
shown in Figure 6. To show that the FTBB of Figure 5
satisfies the conditions of Theorem 1, we consider the
cycle T = 000, 001, S1, 101, 100, S2, 110, 111, S3, 011,
010, S4, 000 (see Figure 5(b)). This cycle spans the 12
nodes in the FTBB and may be used as the basis for
defining a cycle A that spans any 8 active nodes in the
FTBB.

Figure 6. A 4-dimensional augmented hypercube

Let T.n(P) and I'.n}(P) be the nodes following and
preceding P in I" and let T".n/(P) be the node following
F.ni-Y(P)in T for j > 1. Recall that a non-active node is
a faulty node or a spare node that is not used to replace
any primary node. Recall also that the spare allocation pol-
icy allows a faulty primary node to be replaced only by
one of the two spares connected to it. This restriction
prevents any four consecutive nodes on I' to be non-active.

190

In fact, it allows three consecutive nodes, p;, s, p2,onT to
be non-active only if p; and p» are primary nodes and s is
a spare node. With this observation, given any 4 non-
active nodes in an FTBB, A may be defined as follows:

AN
W

%
"“‘"

@

Figure 7 - A for different configurations of active nodes.

case 1: If no two non-active nodes are consecutive in I,
then A is the 8 node cycle defined by specifying for each
active node, p , the node next (p) as follows:

Ta(p) ifT.n(p)is active
next(p) = {I“.n 2p) otherwise

An example of this case is given in Figure 7(b) where the
nodes S1, 100, 111 and S4 are non-active (designated by x
in the figure). If the four spares are not active, then the
cycle A is the gray code embedding of a ring in a 3-
dimensional cube as shown in Figure 7(a). This cycle is
denoted by A, .

case 2: If three non-active nodes, p, s, p, are consecu-
tive on T, then p, and p, are primary nodes and s is a
spare. A is, thus, the 8 node cycle specified at each active
node, p, as follows: next (p) =

I'n(p) ifC.n(p)is active
I.a¥(p) ifT.n(p)is not activeand T.n*(p) is active
T.n%(p) otherwise

An example of this case is given in Figure 7(c) where the
nodes 001, S1, 101 and 110 are not active.

case 3: Only two of the four non-active nodes are consecu-
tive on I, while each of the other two is preceded and fol-
lowed by active nodes. The later two nodes can be
bypassed in I as in case 1. If the two consecutive nodes
are primary nodes, say p; and p», then they are preceded
and followed in I by spare nodes. Namely I'.n~!(p,) and
I.n(pz). These two spares may be directly connected,
thus bypassing p; and p,. Finally, if the two non-active
consecutive nodes include a spare, s, then these two nodes
should be among three consecutive nodes p;, s and p, on
TI. In this case, it is possible to bypass all of the three
nodes by connecting directly I'.n~'(p,) and I'.n (p,). For
example if 001 and S1 or S1 and 101 are not active, then
the three nodes 001, S1 and 101 can be bypassed by mak-
ing next (000) = 100 in A (see Figure 7(d)). Note that this

is a case where an active node is excluded from A, but is
connected to a node on A.

case 4: If two of the non-active nodes are consecutive and
the other two are also consecutive. Each two consecutive
nodes may be dealt with by a bypass as in case 3 (see Fig-
ure 7(d)). This is always possible except for one case
described next.

case 5: If in a sequence pi, S1, P2, P 3, 2, P4, of consecu-
tive nodes on I, the primary nodes p; and p 4 and the spare
nodes s, and s, are not active. In this case it is not possible
to bypass all of the six nodes. It is possible, however, to
bypass the four non active nodes using links not originally
on I. Specifically, it is possible to go from .n~1(p}) to
T.n(p4) via p3 then po. An example is given in Figure 7(¢)
where the nodes 001, S1, S2 and 110 are not active. Note
that because of the spare allocation policy, only two of S1,
101,100 and S2 may be non-active.

The computation of A may be entirely distributed.
Specifically, each node, p needs only to compute and store
next(p). Given the sequence I', which is independent of
the active node configuration, node p may compute
next(p) by only knowing the status of its own neighbors.
For cases 1-2 above, p needs to know only which of its
neighbors is not active. However, to handle all five cases,
p needs also to know if an active neighbor is I'-isolated,
which is defined as follows:

Definition: for any active node ¢, a node e is called inac-
cessible from g if e is not a neighbor of ¢ or if e is not
active. The node ¢ is called I-isolated if the nodes
T.ni(q), j=1,2,3,4 are inaccessible from ¢g. O

With this definition and from the discussion of the five
possible cases for the distribution of the four non-active
nodes in the FIBB, the computation of next(p) at any
active node p is given by:

1. If T.n(p) is active and is not T-isolated, then
next(p)=T.n(p),

2. elseif T.n2(p) is active then, next (p) =IT.n%(p),

3. elseif T.n3(p) is active then, next (p) =T.n3(p),

4, elseif T.n%(p) is active then, next (p) =T.n(p),
5.else next (p)=T.n71(p).

The requirement, in step 1, that I.n(p) is not I'-
isolated is needed to implement case 3 and ensure that if
I'.n%(p) and I'.n3(p) are not active, then I'.n(p) is also
excluded from A. Step 5, then ensures that the function
next is defined for any active node that is excluded from
A. This same step also ensures that case 5 is handled
properly.

With the above specification of A, two phase routing
may be applied with the first phase being identical to that
of Route_BH-I. The second phase of Route_BH-1, how-
ever, was specific to scheme BH-1. For scheme BH-II, the
second phase of the general algorithm Two-Phase Route
may be applied. This phase starts at the first node visited
by the message in the destination FTBB or at the source
node, if the source and destination are in the same FTBB.
This node is called the entry node . If the entry node is on

A, then the direction of routing on A may be chosen to
guarantees that, in the absence of faults, the message will
follow the shortest path to the destination, d. Specifically,
the second phase of the routing algorithm at a node, P,
may be described as follows:

Phase 2:1f d isin Fp, then

1) if d = P keep the message,

2) elseif P is directly connected to d, then route to d,
3) elseif P is the entry node and P is on A, then route
to next*(P) or next~(P) depending on which one is
closertod,

4) elseif P is the entry node , then route to next (P),

5) else route to next" (P), where dir is direction from
which the message was received.

Note that in the absence of faults, A = A, (see Figure
7(a)). Sending the message to the node on A, closer to d
ensures that the message will follow the shortest route to
d. For example, assume that a message is to be sent from
001 to 111 (see Figure 5(a)). If 001 sends the message to
101, then 101 will send the message to 111 because it is
directly connected to it (step 2 of Phase 2). In other
words, in the absence of faults the two phase routing
reduces to the usual cube routing.

3.3. Experimental Analysis

The upper bound on the number of routing steps given
in Theorem 1 assumes a very pessimistic distribution of
faults in the system. For example, in the two-FTBB sys-
tem of Figure 6, the maximum number of steps, 4(c+1)+8
is obtained if the source and the destination nodes are not
in the same FTBB, and the eight faults in the system are
such that no two nodes across dimension j are faulty. The
probability that the system reaches the above configuration
is very small and thus the average number of routing steps
is much less than this worst case bound.

A simulation software tool was designed in order to
determine the routing performance. For a given dimen-
sion, n, and node reliability r=e, where A is the fault
rate, the simulation software generates a set of faults FS
such that the system is alive , i.e. all the nodes in a FS can
be replaced by available spare nodes. The software gen-
erates a total of 1000 different FS’s. For each FS, 1000
messages with random sources and destinations are gen-
erated. These messages are then routed from their sources
to their respective destinations using the two-phase routing
algorithm, and the total number of steps, s, is determined.
Also, the minimum number of steps, ¢s’, that is required to
route these messages in a fault-free system using the usual
bitwise cube routing is calculated. The overall routing
overhead is determined as the average of (¢ts—ts")/ts”. The
routing performance of the algorithms in BH-1 and BH-II
are shown in Figure 8 for n=7. Obviously, the overheads
are very small compared to the theoretical overheads of
approximately 100 and 400 percents given by Theorem 1
for BH-I and BH-II, respectively. The routing overhead
increases with the number of faults in the system, which is
expected.

191

Routing overhead
10%
8% -
6% P
4% 7

2% /

M

0%
0.0 0.02 0.04 0.06 0.08 0.1

Figure 8. Average routing overhead

4. APPLICATION TO 3-D TOROIDAL SYSTEMS

Consider a ¢ xcP*xcP** 3-dimensional torus.
The address of a node in the torus is denoted by [c,c2,¢3],
where ¢, 1<c;<c/>*, is the coordinate of a node along
dimension j. The positive direction along dimension j
from a node with j* coordinate c; is towards the node
with j* coordinate (cj+1)mod c/"*. A node P =
[c1.¢2.¢3) has two neighbors across dimension j along the
positive and negative directions. They are denoted by
Nj*(P) and N;(P), respectively. A line of nodes L, is
defined to be the set of c/"* nodes along dimension ¢,
such that the address of each node in this set has coordi-
nates ¢; and c, along dimensions j and k respectively,
where j#k#q. The superscripts ¢; and c; are ordered such
that j <k . This is done in order to avoid the specification of
jandk inLy™

Routing in a 3-D torus is simple. When a message
destined to d arrives at an intermediate routing node P,
that node calculates the shortest distance, ;. that the mes-
sage needs to travel along each dimension j. If §; > 0,
then the message should travel through dimension j along
the positive direction and if §; <0, then the message
should travel through the negative direction.

If the present routing node is the destination of a mes-
sage, then it keeps the message. Otherwise, based on the
values of 8;, &, and &3, it routes the message to another
node according to the following algorithm in which dir;
denotes the sign of §; [19]:

1) if d = P then keep the message,
2) elseif (3; # 0) then route the message to N ‘f"} P)
3) elseif (8, # 0) then route the message to N g"’ (P)
4) else route the message to N5 (P);
This algorithm routes a message through lower dimensions
first and follows the shortest path to a destination.

One way to add redundant nodes to the torus architec-
ture is to start with a ¢ "% xc 8% x(c J#* +K') torus, where
K 21, and use only ¢ [*** xc 2% x¢ 2% nodes as active pri-
mary nodes and allocate the remaining nodes as spares. In
this particular case, an FTBB is considered to be the set of
nodes (including spares) in L5":, where 1 < ¢ < ¢["* and
1<cy<cf**x. The K spare nodes in the FTBB can

replace any primary node within that FTBB. For example,
in the torus of Figure 9 (where the wrap-around connec-
tions along dimension 1 and 3 are not shown), the nodes
along a horizontal line belong to an FTBB with M = c 2%
= 5 primary nodes and K = 1 spare node.

2+
¢

~
primary nodes

Figure 9. A 5x4x5 Torus augmented with 20 spare nodes.

If pieF, and pie F,, then the distance,
dist(Fp ,Fp), between the two FIBB’s F, and F, is
181418, If dist(F, Fp) <dist(F,,Fp), then F, is
considered to be closer to Fp_than to F, .

spare nodes

In order to satisfy the conditions of Theorem 1 in the
3-D toroidal system, we should have K < c¥2*. More-
over, we assume that non-active nodes are shorted across
dimension 3. That is, for any faulty node or unused spare
node, the input and output links across dimension 3 are
directly connected. Therefore, the active nodes in an
FTBB are always connected as a ring across dimension 3,
which is the cycle A used in the implementation of the
two-phase routing algorithm. If a node P fails and a spare
node S replaces P, then P is shorted and § is brought into
the system and inherits P s address.

A two-phase routing algorithm can be designed to
route a message around the faulty nodes and deliver it to
the destination. In the first phase, a node first tries to route
the message to a neighboring FTBB F along dimension 1
or 2 provided that F is closer to the destination FTBB. If
the message cannot be sent to such an FTBB, then the
message is sent to a node in the FTBB of the current node.
The message does not leave that FTBB until it can be sent
to an FTBB that is closer to the destination FTBB. As in
the routing for BH-IL, the entry node in the destination
FTBB determines the direction of routing in the second
phase. The message is routed along that direction until it
reaches the destination node. The entry node choses the
routing direction as follows: If the entry node is a spare
node, then the message is routed along the positive direc-
tion of dimension 3 otherwise the message is routed along
diry. The choice in the case of a primary entry node
ensures that the shortest path is followed in the absence of
faults. In the case of a spare entry node, however, a fixed
direction is always chosen (the positive) since the address
of an active spare node is not ordered with respect to the
other nodes in A.

192

In a fault free system, the distance between the source
node of a message and its destination node is given by
Ay + Ay + A3, where A; = §; calculated at the source node.
In the presence of faults, it is straight forward to show that
algorithm ROUTE_T routes a message to its destination
through a cycle free path in at most
(K+1)(A; + Ap) + (c**~1). Although this worst case
message path seems to be almost K+1 times that of the
shortest path, it can be shown that the probability that a
message is routed through the worst case path is low and
that the average routing overhead is much less than the
worst case overhead [3].

5. CONCLUSION

A fault tolerant routing approach is proposed for
modular multiprocessor systems that utilize spare nodes to
achieve fault tolerance. Routing is performed in two
phases; In the first phase, the message is routed to the des-
tination FTBB and in the second phase the message is
routed to the destination node within the destination
FTBB. This approach uses only local fault information
and ensures that in a /ive system messages are delivered to
their destinations and never circulate in loops indefinitely.
The simplicity and efficiency of the two phase routing are
mainly due to the restrictions implicitly imposed on the
fault distribution in the system. Specifically, the modular
architecture allows spares to only replace faults within
their own modules.

Two fault tolerant schemes that use the two-phase
routing strategy in binary hypercube architectures are pro-
posed. The first scheme applies a straight forward
reconfiguration technique and a fairly simple routing algo-
rithm. It suffers, however, from rapid reliability degrada-
tion when the number of faults increases. This rapid degra-
dation is avoided in the second scheme by allowing any of
two spare nodes to replace a primary node. The routing
algorithms are particularly attractive because, in the
absence of faults, they degenerate to the ordinary bit-wise
algorithm used in non fault-tolerant hypercubes. The sys-
tematic routing strategy presented in this paper is simpler
and more general than the routing strategy suggested in [2]
for modular hypercubes.

Two phase routing is also applied to three dimensional
toroidal systems that are augmented with spares. The
hypercube and the torus architectures are only two exam-
ple that demonstrate the applicability of the technique to
modular fault tolerant architectures. In addition to its
adaptability to different architectures and its use of only
local fault knowledge, the proposed routing approach is
relatively easy to develop and results in a low average
routing overhead.

References

1. M. Alam and R. Melhem, *‘Channel Multiplexing in Modu-
lar Fault Tolerant Multiprocessors,’’ Proc. of the Interna-
tional Conference on Parallel Processing, 1991.

2. M. S. Alam and R. G. Melhem, ‘‘An Efficient Modular
Spare Allocation Scheme and its Application to Fault

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

193

Tolerant Binary Hypercubes,”’ IEEE Trans. on Parallel and
Distributed Systems, vol. 2, no. 1, pp. 117-125, Jan 1991.

M. S. Alam, ‘‘Fault Tolerance in Modular Multiprocessor
Systems,”’ PH.D Thesis, department of Computer Science,
The University of Pittsburgh., 1991.

C. Aykanat and F. Ozguner, **A Concurrent Error Detecting
Conjugate Gradient Algorithm on a Hypercube Multiproces-
sor,”” Proc. 17th Int. Symp. on Fault Tolerant Computing,
pp. 204-209, Pittsburgh, July 1987.

P. Banarjee, S. Y. Kuo, and W. K. Fuchs, ‘‘Reconfigurable
Cube-Connected Cycles Architectures,”” Proc. 16th Int.
Symp. Fault Tolerant Computing, pp. 286-291, June 1986.

D. Blough and N. Bagherzadeh, ‘‘Near-optimal Message
Routing and Broadcasting in Faulty Hypercubes,”’ Int. J. of
Parallel Programming, vol. 19, pp. 405-423, 1991..

M. Chen and K. Shin, ‘“‘Depth-First Search Approach for
Fault Tolerant Routing in Hypercube Multicomputers,’’
IEEE Trans. on Parallel and Distributed Systems, vol. 1, no.
2, pp. 152-159, Apr 1990.

E. Chow, H. Madan, and J. Peterson, ‘‘An Adaptive Mes-
sage Routing Network for the Hypercube Computer,”” Proc.
15th Symp. on Computer Arch., pp. 90-99, 1988.

S. Dutt and J. Hayes, ‘‘An Automorphic Approach to the
Design of Fault Tolerant Multiprocessors,’’ Proc. 19th Int.
Symp. Fault Tolerant Computing, pp. 496-503, June 1989.

J. M. Gordon and Q. F. Stout, ‘‘Hypercube Message Rout-
ing in the Presence of Faults,”” 3rd Conf. on Hypercube
Concurrent Computers and Applications, pp. 318-327, 1988.

J. Hastad, T. Leighton, and M. Newman, ‘‘Reconfiguring a
Hypercube in the Presence of Faults,”” Proc. of the Symp. on
Theory of Computation, pp. 274-284, May 1987.

S. L. Johnsson, ‘‘Communication Efficient Basic Linear
Algebra Computations on Hypercube Architectures,”” J. of
Parallel and Dist. Comp., vol. 4, pp. 133-172, 1987.

S. Y. Kung, S. N. Jean, and C. W. Chang, ‘‘Fault-Tolerant
Array Processors Using Single-Track Switches,”” IEEE
Trans. of Computers, pp. 501-514, April 1989.

R. Negrini, R. Stefanelli, and M. G. Sami, ‘‘Time Redun-
dancy in WSI Arrays of Processing Elements,”’ Proc. of the
Int. Conf. of Supercomputing Sys., pp. 429-438, 1985.

A. Olson and K. G. Shin, ‘‘Message Routing in HARTS
with Faulty Components,”” The 19th Int. Symp. on Fault
Tolerant Computing Systems, pp. 331-338, 1989.

D. Peleg and B. Simons, ‘‘On Fault Tolerant Routing in
General Networks,”’ Proc. Principles of Database Conf., pp.
98-107, 1986.

D. A. Rennels, ‘‘On Implementing Fault-Tolerance in
Binary Hypercubes,”” Proc. IEEE Fault Tolerant Comput-
ing, pp. 344-349, 1985.

A. Singh, *‘Interstitial Redundancy: An Area Efficient Fault

Tolerant Scheme for Large Area VLSI Processor Arrays,’”
IEEE Trans. on Computers, vol. 37, no. 11, pp. 1398-1410.

M. Wang, M. Cutler, and S. Su, ‘‘Reconfiguration of
VLSI/WSI Mesh Arrays with Two-Level Redundancy,”
IEEE Trans. on Computers, pp. 547-554, April 1989.

R. Yanney and J. Hayes, *‘Distributed Recovery in Fault
Tolerant Multiprocessor Networks,”” IEEE Trans. on Com-
puters, vol. C-35, no. 10, pp. 871-879.

