MAPPING FIR FILTERING ON SYSTOLIC RINGS

Angelos Varvitsiotis Sergios Theodoridis
Dept. of Electrical Engineering Dept. of Computer Engineering
National Technical University of Athens University of Patras
Athens, GR-15773, Greece Patras, GR-16500, Greece
Rami Melhem

Dept. of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

Abstract

During the past decade, systolic arrays have been designed for a wide vari-
ety of scientific applications, which are based on highly parallel linear system
manipulations. Partitioning and mapping of systolic algorithms has been a
key issue for real implementations, in terms of both cost and manageabil-
ity. In this paper, we demonstrate the mapping of triangular systolic array
algorithms onto a one-dimensional ring of processors, so that the resulting
architecture features an asymptotically optimal utilization factor in pipelined
operation. The problems of least squares system identification and FIR fil-
tering using QR Decomposition via Givens rolations are used as a vehicle for
the demonstration of uni- and bi-directional dataflow algorithms on systolic
rings.

Introduction

Systolic arrays have been introduced as a parallel architecture particularly well suited
for VLSI implementation. Their main characteristics are regularity in layout and com-
munication interconnections, simplicity of processors and synchronous operation [1,2].
A growing number of scientific computing problems that require massive parallelism in
applying a restricted set of operations over large sets of data have been shown to fit in
that model of computation [5]. For many such problems the resulting systolic designs,
although powerful, result in arrays whose number of processors is quadratic in the size of
the problem. This can be very expensive if the problem size is large. A number of tech-
niques have therefore been developed to partition and map these algorithms onto fixed
size and /or linear systolic arrays [6-8]. Traditional mapping techniques, however, result
in sub-optimal processor utilization in the target arrays, especially for problems whose
dependence graphs (DGs) are non-rectangular or irregular [3,12]. Recent research efforts
focus on efficient dimensionality reduction and mapping techniques, such as processor
clustering, refined mapping and geometric techniques [15~18}. For example, Bu et al. [16]
unify several mapping techniques under a generic framework that allows designs to be
expressed as a series of formal steps. Clauss et al. [15] present a geometric approach that
minimizes the total execution time, resulting however in irregular target designs that suf-
fer in terms of scalability. A case study for the matrix multiplication algorithm presented
by Benaini and Tchuente [18] provides some geometrical insight regarding the internals
of that specific algorithm. Varadarajan and Ravichandran [17] mention the notion of
piecewise linear transformations as a means of fine-grained efficient mapping. In this
paper we concern ourselves with the mapping of a class of triangular systolic arrays used
for Signal Processing applications onto a ring of processors, such that the target array
features an optimal utilization factor in pipelined operation. We use a technique similar

TH0382-2/91/0000/0087$01.00 © 1991 IEEE

87

88

International Conference on Application Specific Array Processors

to these of the abovementioned references, employing piecewise linear transformation
functions and taking advantage of the insight provided by geometric interpretations. We
use these latter as visualization tools in several steps of the mapping. We are using Least
Squares System identification and FIR filtering algorithms as a vehicle for demonstrating
our method.

The rest of this paper is organized as follows. A short introduction to the context of
the above applications and the respective existing systolic designs is given in the second
section. The third section describes our method for single dataflow arrays. The method
is described in terms of projecting the existing systolic arrays onto a ring structure and
determining a valid schedule so that data dependences of the original array are respected.
The derivation of the projection and of a valid schedule are explained in detail, and
the target data dependences are proved correct. The mapping that we are presenting
features asymptotically optimal utilization in pipelined operation. In the fourth section
we provide the arguments for the mapping of a bidirectional data flow array onto a
double ring of processors. Hardware considerations are taken into account and discussed
so that the resulting array is effectively implementable. Finally, in the fifth section we
provide some concluding remarks.

Background on Signal Processing systolic applications

In this section, we consider the problems of least squares system identification and FIR
filtering, both of major importance in a number of Signal Processing applications such as
Communications, Control, Spectral analysis etc. [14]. The main task is to compute the
LS estimates of an unknown FIR system’s impulse response based on the minimization
of the total squared error between the actual and the desired response signal over a given
time interval. In many cases, the statistics of the pertinent process is slowly varying,
thus adaptive schemes that estimate the unknown impulse vector on a sample by sample
basis are of particular interest.

A very powerful and numerically sound technique for the computation of the LS estimates
is the one based on QR triangularization of the input data matrix {3]. QR decomposition
is achieved via a sequence of Givens rotations and the unknown coefficients are derived
from the resulting triangular matrix via back substitution. An alternative technique
has been suggested in [9], which is appropriate for adaptive operation and based on
Givens rotations as well. In many applications, only the error between the actual and
the desired response signals is of interest. It has been shown in [13] that in this case the
backsubstitution step is not required and the error can be obtained directly in terms of
the Givens rotation variables.

A short introduction to the derivation of the QRD method will be given below. This
is not to be considered a complete description of the QRD method, so the interested
reader is referred to [3,4,6,7] for a more detailed discussion. It is well known that the
LS problem is equivalent to finding a solution to the overdetermined system of linear
equations

Az = b,

where A4 is an m X n matrix with m > n. This solution should satisfy the least squares
criterion, that is, it should minimize

(Az - b)(Az — b)T.
In general, we compute this vector as the solution to the problem

Rz =4d,

Mapping Techniques

where
(6 &]=0m14 u

The matrix Q represents a linear transformation, such that R is an upper triangular,
n X n matrix. Q must satisfy the two following properties:

1QNaye1 = 1,

and
Q'QT=I7

where || - [lgy] is the Euclidian norm of a matrix, and I is the identity matrix. There are
more than one methods to find such matrices, but the one mostly employed in systolic
algorithms [3,4,6,13] is to compute @ as a product of 2 x 2 Givens rotations.

Figure la: The triangular systolic array for QR decomposition

A 2 x 2 Givens rotation is defined as follows: consider two vectors z and y, where

T = (21,%2,...,2k)
Y= (Y192, ., Uk)

89

90 International Conference on Application Specific Array Processors

Figure 1b: The operations performed at each PE of the QR array

Angle computation PE 1L t=fa} +r2
%in 2. it=0
. c.8 c=s8=0
&in » dse
c=rft, s=ajpft, r=t
Lout Yout = C* Gin
Rotation PE
iy
(%) C,5
i A md 1. aout = —8T +cay,, T =cr+ sa,
Gout
Delay Element

N

Then, we can compute two vectors =’ and y’, such that

2’ = (z,2%,...,2%)
¥ = (075’;»"”?/;:)’

2] _fe s] [=
V]S -5 ¢ v]’
e O o
= T = T
Vai+ vt

thus eliminating y;. Assuming that vectors = and y are rows of A, we can eliminate the
first element of all but the first rows of A with this method; then, we can proceed by
eliminating the second element of all but the first two rows and so on, ending with a
triangular matrix R.

The way a systolic array like the one shown in Figure 1 operates, is that it holds a current
version of the matrix R (initially, the null matrix). Then, new rows of the data matrix
A enter the top row PEs and are eliminated, by being successively rotated with all rows

where

and

Mapping Techniques

of the matrix R stored in the array, thus leaving an updated version of R inside the
array. According to McWhirter {13], if z is not required, and only the error is of interest,
the same array can be used for the computation of this error. This is accomplished by
operations performed in the diagonal elements, as shown in Figure 1b. If, on the other
hand, z is required, the algorithms described in [11] can be used. As a better alternative,
we have shown in [9] that the same array layout can be used to compute the solution
to all all intermediate triangular systems R()z = d(®) for all data frames i. The data
flow of this array is shown in Figure 2, where the operations performed by each PE are
explained in [9]. The main difference between this and other existing QR systolic arrays
is that it uses bidirectional data flow, and thus each PE has to queue results for later
computations.

In what follows, we will show how to project a triangular array on a ring of processors. We
will also examine the case of the forementioned adaptive filtering array, whose multiple
dataflow renders partitioning a non-trivial task using existing partitioning methods.

Figure 2: The dual data flow array for solution of intermediate
triangular systems

matrix elements ‘b’ vector

(15)

(2.5)

(3.5)

On-the-fly solutions

(45)

91

92

International Conference on Application Specific Array Processors

Mapping the QR systolic array onto a ring

Let us first consider the QRD triangular array which features regular, unidirectional data
flow. By “regular”, we mean that the time/data dependency vectors at each processor are
constant throughout the array and do not change with time. This assumption is realistic
for other systolic matrix algorithmsas well, e.g., Gaussian elimination [15]. Another
characteristic of such arrays is the non-uniformity of computations at various PEs. For
example, PEs on the diagonal perform angle computation and interior PEs perform
plane rotations. After projection, different computations might be mapped onto the
same processor. Hence, it would be useful to think of the original triangular array as
consisting of identical “omnipotent” processors, able to perform all kinds of computations
needed. The actual function is selected by means of a small opcode field in the incoming
data. If the number of different kinds of computations in the array is P, then [log,(P)]
bits are needed to select the necessary operation. In the original array, we can think
of these bits as being hardwired to the desired function at each processor, whereas in
the target array, the opcode will be part of the incoming data. In what follows, the
actual mapping is accomplished in two steps. The first step is a projection from the
two-dimensional original array onto the one-dimensional ring. The second step involves
the derivation of a valid schedule for the target ring.

Projection: Projection is performed on the 2D systolic array and not on the initial 3D
DG. The philosophy behind this choice is that the 2D array is a direct implementation of
the Signal Flow Graph (SFG) derived by the most efficient [16] projection and schedule.
Taking also into account the fact that further dimensionality reduction of existing arrays
is not an uncommon practice [16], improving on this array seems the most promising
method to follow. We project along a vector perpendicular to the schedule vector [10],
that is, if the computation performed by PE (i,) in the original array is mapped to the
processor x(i, j) of the ring, then 7(7, j) = i+j—1 (see Figure 3). The reason for choosing
this vector is that all computations performed at the same time instant on the original
array are mapped onto the same processor of the ring, thus simplifying data dependences:
each processor still needs to communicate only to its closest neighbors. However, if we
project along all the 2n — 1 cross-diagonals that are parallel to the projection vector onto
2n — 1 processors, the load at each processor will not be uniform. For that reason, a
more elaborate projection method is needed.

If the dimension of the original array is n, it will contain ﬂ"z—'Hl PEs. The maximum
number of PEs mapped onto the same processor occurs in the cross-diagonal with the
elements (1,n),(2,n~1),.... This number is [= [3]. Then, due to symmetry, for each
projection line that maps k PEs onto one processor, there exists another projection line
that maps m PEs onto the same processor and either k+m =lork+m =1+ 1.
Moreover, the cross-diagonal excluded, there are exactly n — 1 such pairs, with each
projection line of each pair on either sides of the cross-diagonal. So the objective will be
to map all PEs on each pair of projection lines onto the same processor, thus achieving
uniform computational load per processor. Specifically, we define

x(i,j) = m(i,j)=t+7-1, ifi+j—1<n
D=\) =i+j—-1=n, ifi+j-1>n.

To visualize the above steps, consult Figure 3. We first cut the part of the array which
is below the cross-diagonal, then move them above the first row of PEs and finally we
project all elements along cross-diagonals onto the same processor. Often, each element of
the original triangular array has a small amount of memory it operates on. For example,
in the QR factorization array, each PE (4, j) stores the element r;; of the triangular

-

Mapping Techniques 93

Figure 3: Projecting the triangular array onto a ring

NN N N N\

Projection Vector /

matrix R produced so far. When projecting many PEs to one processor, we have to
preserve these stored data, typically in a circular queue. In this queue, together with
the data items that constitute the original contents of each PE, it is convenient to store
as well the opcode that defines the operation of the PE on these data items, as defined

S —

94

International Conference on Application Specific Array Processors

above. So, the discipline of each resulting processor is now to get a set of data items
and the respective opcode from the circular queue, communicate with its neighbors get
any necessary input (or, depending on the opcode, get external inputs) compute the new
data set, send any results to its neighbors and append the computed data items at the
end of the queue. At this point we note that the above projection results in an optimal
schedule only for n odd; for n even, the projection method that guarantees uniform load
is somewhat different. The schedule derivation methodology for n even is similar to what
follows, however, due to lack of space, in the following we will only describe the case of
odd n.

Schedule: Two factors are of major importance in deriving a schedule. The first is
to preserve data dependences of the original array. The second is to derive an optimal
schedule for pipelined operation, i.e., a schedule that will allow processors of the resulting
ring to operate on successive instances of the same problem optimizing their utilization.
This is particularly needed in Least Squares minimization, where the matrices that have
to be triangularized are typically long (m > n). In the QRD context, the rows of the
matrix A represent the successive instances of the same problem, that of annihilation of
a vector through a triangular matrix.

A different problem encountered in scheduling is the use of buffering. Buffers should be
inserted between each two processors to hold results produced by one processor until
they are used by the next. With respect to buffering we are concerned with the amount
of memory needed for buffers and the discipline (FIFO, LIFO, or other) according to
which data are stored in the buffer. These problems will be examined in turn after the
mapping methodology has been discussed.

The schedule of the original systolic array can be defined as a function f from the
set of space indices {(i,7)} of a computation to a set of time indices {t;;}, such that
ti.; = f(3,7) is the time at which the computation (%, j) takes place. A pipelined schedule
is a function from the set of triples {(4,j, k)}, where i and j are the space indices of
computations and k is the data set indez of the computation, onto the set of time indices
tijk- The idea here is that the PE (i, j) operates on successive rows of the matrix A,
called data sets, which are indexed by k. A pipelined schedule maps computations of data
sets onto available time slots. In the original array, a schedule derived using standard
data dependence analysis methods [5,10] is used. This schedule is t; ;% = f(i,7,k) =
i+j+k-2,1<4,j<n,1<k<m. This schedule is described in the bibliography in
terms of computational hyperplanes. The intersection of each hyperplane with the plane
of the systolic array defines the PEs that are simultaneously performing operations on
the same data set. Hyperplanes are parallel to each other and at each time step move
one unit ‘east’ and ‘south’. The direction of this displacement is constant throughout
the array and can be described by a schedule vector. The magnitude of the schedule
vector represents the amount of displacement of hyperplanes for each time unit.

In the above context, mapping a computation performed by a triangular systolic array
onto a ring of processors is just an alternative pipelined schedule, such that data depen-
dences of the original computation are preserved. This is denoted by a function g from
the set of space/dataset indices {(i,7,k)} to the set of time indices {r;;} such that

Tijk = g(i, 4, k). For the function g to represent a valid schedule, it must satisfy the
following conditions for all 4, j, k, ¢/, j/, k':

9(i,5,k) > g(¥',5', k"), if f(i,5,k) > f(@, 5", K'); (La)
90,5, k) # (&', 5, k), for =(i,5) = n(¢,5"), (i,5) # (', 5% (1.6)
9(5,5,k) # 9(&', 5, k), for (i,)= n(¥,5), (i,5) # (¥,5) and k £ K. (L.c)

-

Mapping Techniques

Condition (1.a) implies that data dependences will be satisfied in the ring if they are
satisfied in the original array. Condition (1.b) implies that, for the same processor of the
ring and the same data set, no overlap arises according to the schedule. Condition (1.c)
implies that, for the same processor of the ring and different data sets, there will be no
overlap as a result of the schedule.

We now want to derive a linear function g, that is, g(i, 7, k) = €11 + a5 + cak + c4, such
that g represents a valid schedule. Condition (1.a) is satisfied for ci,cz and c3 positive
and ¢4 such that ¢; + ¢ + ¢3 + ¢4 is positive. For the schedule to reduce as much as
possible the overall execution time, ¢;...cs should take minimum values. Moreover,
condition (1.b) requires ¢; # c;. Thus, two alternatives are possible: either ¢; =1and
€2 =2,0r ¢; =2 and c; = 1. The first alternative corresponds to scheduling first the
computations performed in the first row of the original array, then those of the second
row, and so on, thus we call it “First Row First” (FRF). The second one corresponds to
the same scheme columnwise, so we call it “First Column First” (FCF). Both schemes
can be shown valid if 7(%, 7) is a continuous linear function. However, our definition of =
is by cases, so 7 is only continuous in its two sub-domains. Thus, before deriving values
for ¢3 and ¢4, we will have to check the properties of our schedule separately for each
sub-domain of (3, 5).

Let us apply the FRF scheme to the first half of the original array, that is, to PEs
(i,j) with 1 < i < (n4+1)/2,1 < j < n+1—i. Then, condition (1.c) is satisfied
by c3 > (n +1)/2. We choose ¢z = (n + 1)/2, in order to satisfy the abovementioned
minimality criterion. Finally, adjusting ¢4 so that g is always positive, we get

.. L 1 . .
gl(z,],k):2z+]+%—(k—l)—2, for 1<i< 1,1§]§n—1+1.

u T o0 4 L3 27 9@

13 133 34 262 182 55(1)
12 120 332 25(2) 17(2) 461
1 110 24 162 451 37(1)
10 232 15 44(1) 36(1) 28(1)
9 22(2) 14(2) 35(1) 27(1) 19(1)
13 34(1) 26(1) 180

7 122 330 251 17
6 11 24(1) 161
5 231 15(1)
4 22(1) 14(1)
3 13()
2 12()

t=1 1M

Figure 4: Example for the FRF mapping

In order to help visualizing this schedule, we denote by i) the computation performed
by the PE (i,) of the original array on the data set k. Figure 4 shows an example of

95

96

International Conference on Application Specific Array Processors

FRF for n = 9. As it can be seen in this figure, the rest of the computations should be
scheduled in the triangular ‘free time-slot’ area between two successive data set frames.
Unfortunately, the FRF scheme does not work for this area. The reason is that the
remaining computations cannot be scheduled to fit inside this area without violating
condition (1.c). In order for the remaining computations to fit in the free slot, they
have to be skewed timewise, resulting in a “skewed” FRF. This latter schedule, however,
violates condition (1.a), that is, it does not preserve the data dependences of the original
array.

This problem can be rectified if an FCF schedule is used for PEs (4,7) with (n+1)/2 <
J<n,n+1-j<i<n. The values produced by such a schedule are (with appropriate
values for c3 and ¢4) complementary to those of FRF, that is, FCF computations fit
exactly in the free time slot area mentioned in the previous paragraph. To see this,
using the same method as before, we derive the minimum c3, which is equal to (n +1)/2,
as for FRF. The value of ¢4 determines the starting time for the entire set of operations
that correspond to the second half of the original array, and should be set so that
conditions (1.a) and (1.c) are satisfied. Let us, for the sake of derivation of this value, fix
(i,7) so that 7(,) = 1."From the definition of #, this means that either i = j = 1, and
g(ivjv k) = 91(17 lvk) =1+ (n + 1)(k - 1)/2v ori+ J =n+2,and g(‘v]” k) = gz(i,j, k)?
where

.. . ., on+1
9208, 5, k) =i+ 27 + Tk +ca.
In order to satisfy condition (1.c), we have to define c4 so that

VE>0 3K'>0: Vi,jwithi+j=n+4+2;:
91(1, 1K) < g2(3,5,k) < g1(1, 1,k + 1).

The above is clearly satisfied by ¢4 = {(n+ 1)/2. Our last step is to fix a minimal value
for 1, so that condition (1.a) is satisfied. This we do by examining the data dependences
of the computations that belong to the first frame (k = 1) and are scheduled using
FCF. These depend immediately on computations (4,5) with i + j = n + 1. The last
such computation happens for i = J = (n+1)/2, at time g,((n + 1)/2,(n+1)/2,1) =
3(n +1)/2 — 2. The first computation that uses its result must be, according to FCF,
fori=(n+1)/2,j=1+ (n + 1)/2. We can fix this to happen at time 2 + 3(n + 1)/2,
by setting [= —1. This corresponds to scheduling the FCF computations for the first
frame exactly after the fourth FRF frame, since g1(1,1,4) = 1+ 3(n+1)/2. That is, the
first three FCF frames are left empty; we will use this result when we discuss buffering.
The function g; is therefore defined as

n+1
2

g2(i, 5, k) =i+ 25 + (k-1), for n;1<j§'n,n+l—j<i$n.

and g is defined as

> 91(5,5,k), for1<i<a 1<j<n—i4y
9(17.71 k) = ;2 ntl ; y ;
92(i,5,k), for 2l <j<n, n+l-j<i<a,
In order for the above proof to be complete, we must show that g satisfies the three
conditions (1.a-1.c) for all i, , k within the appropriate ranges. This last proof (by con-
tradiction) is straightforward but lengthy, and thus it is omitted due to space limitations.
Using this combination of FRF and FCF , pipelined operation can be achieved and data

Mapping Techniques

470) 6613 136) 50(2) 78(2) 34(5) 96(5) 1g(5) 55(4)
56() 120) 49 68(2) 33() 2509 17() gg(1) 46(9
1160 30 582 771 24050 16(5) gg(1) 45(4) 37(4)
29 48 67() 23() 1500 79(1) 44(4) 36() 2g(4)
383 57 2205 1405 gg(1) gg() 35(1) 7(0) g(4)
4703 66 13G) 59(1) 78(1) 34(0) 964 18() 55(3)

56(2) 120 49(1) @8(1) 334 95 17(0 46()
116) 391 58(1) 77(1) 9400 1609 45(3) 373
29(1) 481 ¢7(1) 93(0) 15(4) 440 3603 23(3)
381 57(1) 22(4) 14(4) 35 27 1903
47 g6V 1309 34030 260 183 55(2)
56(1) 1204 333 253 1703 4602
114 243 160 45 370
233 150 44 36(2) 98(2)
2203 1403 35 2702 19(2)
130 342 26 18 g5(1)
1203 33 25 17(2) 46(1)
11 24 162 45(1) 37()
232 15(2) 441 3g(1) 28(1)
22 140 35(1) 27(1) 19(1)
13 34(1) 261 3g(1)
12(2) 33(1) 25(1) 17(1)
11@ 24 161

23(1) 151
22(1) 14(1)
13(1)
12(1)
11(1)

Figure 5: The combination of FRF and FCF yields a valid mapping
(the computations of frame 1 are shown in boldface)

dependences are preserved. Moreover, it can be shown that g asymptotically fills all
the available time slots. That is, the utilization of the processors is asymptotically (i.e.,
excluding the first and last few frames) equal to one, which is an optimal result. An
example of the resulting scheduling for 7 = 9 is shown on Figure 5. The computations
of the first frame are shown in bold typeface. These are split by the projection and
schedule functions into two parts. The first part, on the bottom of Figure 5, contains
the computations scheduled using the FRF function g1- The second part, which looks
like being “wrapped around” the ring, involves the computations scheduled by the FCF
function g,.

With respect to scheduling, a factor that deserves some attention is buffering. We can
see that, excluding the wrap-around communication step, all results that need to be
communicated from a computation to its dependent computations will be consumed
before the same computation is repeated on the next frame of data, This is in general
a property of the FRF and FCF mapping schemes. With this observation we can show
that a single buffer slot for each result that has to be communicated to a neighbor

97

98

International Conference on Application Specific Array Processors

computation and a FIFO buffering scheme provide an adequate and simple to implement
communication method. Unfortunately, this is not true for the wrap-around step. There,
since the scheduling scheme changes from FRF to FCF, the computation results are
consumed in the opposite order from the order they are produced in, and, since two
more frames of results have to be stored between the time the first result is produced
and the time it is consumed, three buffer slots for each result communicated between
two computations are needed. We can show that three buffer slots are necessary and
sufficient. For a proof, see the derivation of the functions g; and g,. In addition to
the extraneous buffering space needed, a LIFO buffering scheme has to be adopted for
the wrap-around step for results of the same frame, whereas a FIFO scheme must be
adopted between results of successive frames. The above buffering discipline can be
implemented using a circular queue as follows: the producer puts continuously results
in the queue, moving its write pointer, say, clockwise. The consumer, starting at the
appropriate position of the queue, consumes (n + 1)/2 — 1 items, each time moving its
read pointer one position anti-clockwise. After consuming the (n + 1)/2ﬂl result, the
consumer moves the read pointer 2(n + 1)/2 — 1 positions clockwise, thus starting with
the first result of the next frame the producer put in the queue. This scheme, although
seemingly complicated, provides a simple way of LIFO communication between the last
and the first processor of the ring for the wrap-around communication step.

Mapping the bidirectional data flow array onto a double ring

In order to map the bidirectional array of Figure 2 onto a ring architecture, we use two
rings. The PEs of the original systolic array are projected onto the same processors in
both rings. In each PE, we separate the instructions that use the reverse data flow, and
assign them to the processors of the second ring. This is done so that results that have
to be passed between two computations originally performed at the same PE through
the internal queue of each PE, now have to traverse the simplest possible communication
path between the two rings, i.e., from a processor to the processor opposite to it.

In the array of Figure 2, each PE has to store results generated by the forward data flow
operations in an internal queue, so that they can be used by the reverse data flow com-
putations. These queues are now external to the processors, connecting corresponding
processors of the two rings. Therefore, there will be n distinct queues for each pro-
cessor. However, only one processor from each ring is using one queue at a time, so a
single output (for the first ring) or input (for the second one) is needed. We might use
some appropriate delivery mechanism for choosing the right queue to place a result in
or extract it from.

In order to derive an optimal schedule for the operations mapped to the second ring, we
proceed as follows: Formally, the schedule for the reverse dataflow operations is described
by a function f’ analogous to the function f of the previous section, where:

fl g k)= —i—j+k+4n—1 for1<i,j<n,1<k<m.
We will describe the function ¢’ to be used for scheduling these operations in analogy

with the function g of the previous section. A valid schedule function g’ should satisfy
the conditions (1.b) and (1.c), whereas condition (1.a) is substituted by

g5,k > g (.5 k) i fG,5,k) > FI(7,5,K).

Using a similar arguments as in the previous section, we result in “reverse” editions of
FRF and FCF functions g; and g5. Reverse FCF should be used for the second part of

Mapping Techniques

the original array and reverse FRF for the first part. Reverse FCF can be described by
a function g4(i, j, k), where

n+1
2

g;(i,j,k): _i_2j+ ’C+Cfg
The minus signs for i and j result from the respective signs in f’. The constant ¢}
determines the starting time of the entire set of these operations. It should be set
so that the first reverse dataflow operation takes places exactly after the last forward
dataflow operation, i.e.,

g;("’, n, 1) = yz(n, n, 1) + 1.

Therefore, ¢ takes the value 6n —~ (n +1)/2 + 1, and

n+1
2

94,5, k)= —i - 25 + (k=1)+6n+1

The reverse FRF function g{ can be derived with the same method to
. .. o n+1
gi(ing k)= =2i = j + I (k4 11) - 3
The function g’ is therefore defined as

igiky= (3R, for 1 <i<ml 1<j<nmity;
IPIZg,5k), for sl <j<n nt1-j<i<n.
In Figure 5, the second set of operations would start right after 99(*), on the respective
processor of the second ring. It is easy to verify on that figure that all results needed
for a computation in the second ring will be present by the time processor 9 of that
ring will start to operate. The reverse dataflow schedule lends itself equally well to
pipelined operation, since it can be shown to fill asymptotically all available time slots,
thus yielding an optimal processor utilization factor.

With respect to buffering results between the two arrays, a problem arises, namely that
the results from each queue have to be consumed in the opposite order they are produced
in. This brings in the same kind of considerations about circular queues as in the second
section. Another possibility is that a small memory be used, together with a suitable
address generation scheme at both ends (producer-consumer). The reason for doing so
would be to avoid using specialized hardware between each two corresponding processors
of the two rings. In the original array, the queue at each PE has size O(n) [9], so the
amount of specialized hardware would be O(n?) per processor. Alternatively, attaching a
moderate-sized, dual interface memory to each processor is a cheaper and easier solution.
To visualize this latter architecture, consult Figure 6, where the two rings are shown,
together with their interconnecting memory modules. The two rings can be merged into
one single, dual dataflow ring, whose operating details will be exactly the same as those
of the double ring discussed in this section.

Concluding remarks)

A mapping scheme from triangular systolic arrays with simple unidirectional or bidirec-
tional data flow onto systolic rings has been developed and discussed. In particular, the
examples of QR decomposition and its extension to linear filtering have been projected

99

100 International Conference on Application Specific Array Processors

Figure 6: Mapping the dual dataflow array of Fig. 2
onto a double ring architecture

and mapped onto ring architectures, achieving maximal processor utilization. Although
the results in this paper are confined to these two examples, there is a wider class of
systolic algorithms for which non-rectangular systolic arrays have been introduced. The
technique described herein could be extended to cover these classes of algorithms, pro-
vided that there is a geometrical transformation such that after projection onto a linear
structure all processors of that structure receive equal computational loads.

References

[1] Kung, H.T. and C.E. Leiserson, “Systolic Arrays for VLSL,” Introduction to VLSI
Systems, Mead and Conway, Eds., Reading, MA: Addison-Wesley, 1980, Sect. 8.3

[2] Kung, H.T., “Why Systolic Architectures,” IEEE Computer, V.15, Jan 82, pp.37-46

[3] Gentleman, W.M., and H.T. Kung, “Matrix Triangularization by Systolic Arrays,”
Proc. SPIE Real Time Processing IV, 1981, pp.19-26

[4] Bozanczyk, A., R.P. Brent and H.T. Kung, “Numerically Stable Solution of Dense
Systems of Linear Equations Using Mesh-Connected Processors,” SIAM J. Sci. Stat.
Computing, V.5, 1984, pp.95-104

[5] Moldovan, D.I., and J. Fortes, “Partitioning and Mapping Algorithms into Fixed Size
Systolic Arrays,” IEEE Trans. on Computers, V.C-35, No.1, Jan 1986

[6] Chuang, H.Y.H., L. Chen and D. Qian, “A Size-Independent Systolic Array for Ma-
trix Triangularization and Eigenvalue Computation,” IEEE Trans. Circuits, Systems

Mapping Techniques 101

and Signal Processing, V.7, No.2, 1988, pp.173-189
(7] Torralba, N. and J.J. Navarro, “A One-Dimensional Systolic Array for Solving Ar-
bitrarily Large Least Mean Square Problems,” Proc. IEEE Intl. Conf. on Systolic
Arrays, 1988, pp.103-112
[8] Moreno, J.H., and T. Lang, “Arrays for Partitioning Matrix Algorithms—Tradeoffs
Between Cell Storage and Cell Bandwidth,” Proc. SPIE Real Time Signal Processing
X1, V.977, 1988, pp.156-169
[9] Varvitsiotis, A.P., and S. Theodoridis, “A Pipelined Structure for QR Adaptive LS
System Identification,” to appear in IEEE Trans. Acoust., Speech and Signal Pro-
cessing, Aug 1991
[10] S.Y. Kung et al., “Wavefront Array Processors—Concept to Implementation,” IEEE
Computer, Jul 1987, pp.18-33
[11] Nash, J.G., and S. Hansen, “Modified Fadeeva Algorithm for Concurrent Execution
of Linear Algebraic Operations,” IEEE Trans. on Computers, V.37, No.2, Feb 1988,
pp-129-136
[12] Guibas, L.J., H.T. Kung and C.D. Thompson, “Direct VLSI Implementation of Com-
binatorial Algorithms,” in Proc. Caltech Conference on VLSI, L.A., 1979
[13] Mc Whirter, J.G., “Recursive least-squares minimisation using a systolic array,” in
Proc. SPIE Real Time Signal Processing VI, V.431, 1983
[14] Haykin, S. Adaptive Filter Theory, Prentice-Hall, 1986
[15] Clauss, Ph., C. Mongenet and G.R. Perrin, “Calculus of Space-Optimal Mappings of
Systolic Algorithms on Processor Arrays,” in Proc. Intl. Conf. Appl. Specific Array
Processors, IEEE, 1990, pp. 4-18
[16] Bu, J., E.F. Deprettere and P. Dewilde, “A Design Methodology for Fixed-Size Sys-
tolic Arrays,” in Proc. Intl. Conf. Appl. Specific Array Processors, IEEE, 1990,
pp. 591-602
[17] Varadarajan, R., and B. Ravichandran, “Refining Algorithm Mappings for Linear
Systolic Arrays,” in Proc. 5th Intl. Parall. Process. Symp., IEEE, 1991, pp. 151-154

(18] Benaini, R., and M. Tchuente, “Matrix Product on Modular Linear Systolic Arrays,”
in Parallel and Distributed Algorithms, Elsevier, 1989, pp. 79-88

