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Abstract

In this paper we consider the problem of reconfiguring processor arrays subject
to computational loads that alternate between two modes. A strict mode is charac-
terized by a heavy computational load and severe constraints on response time while
a relazed mode is characterized by a relatively light computational load and relaxed
constraints on response time. In the strict mode, reconfiguration is performed by a
distributed local algorithm in order to achieve fast recovery from faults. In the relaxed
mode, a global reconfiguration algorithm is used to restore the system to a state that
maximizes the probability that future faults occuring in subsequent strict modes will
be repairable.

Several new results are given for this problem. Efficient reconfiguration algorithms
are described for a number of general classes of architectures. These general algorithms
obviate the need for architecture-specific algorithms for architectures in these classes.
We show that it is unlikely that similar algorithms can be obtained for related classes
of architectures since the reconfiguration problem for these classes is NP-complete.
Finally, a general approximation algorithm is described that can be used for any
architecture. Experimental results are given, suggesting that this algorithm is very
effective.

1 Introduction

Advances in VLSI and WSI technologies allow increasingly larger processor arrays to be
fabricated on a single chip or wafer. As the number of processors in an array increases,
the problem of reconfiguring the array to replace faults occurring at run-time becomes
increasingly important. One common way of providing fault tolerance in processor arrays
is to augment the array with a set of spare processors that can replace primary processors
that become faulty. This approach has been proposed for a number of architectures
[9, 10, 12] and a variety of reconfiguration algorithms for these reconfigurable systems
have been studied.

It has been observed that in many applications, systems are subject to computational
loads that alternate between a strict mode in which the computational load is heavy
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and severe constraints are imposed on response time, and a relazed mode in which the
computational load is light and the constraints on response time are relaxed substantially
[5, 6]. In order to achieve fast response time, it is desirable that reconfiguration in the
strict mode be performed in a distributed fashion so as not to incur the overhead of com-
munication with a central host processor. Moreover, in order to minimize interruption
in service in the strict mode, it is important that the replacement of a faulty processor
causes only a minimal number of changes to the existing system interconnections. There-
fore, during strict mode reconfiguration, a processor uses only very local knowledge about
its immediate neighbors. These objectives are met by using a distributed local algorithm
in the strict mode in which a faulty processor finds a replacement by selecting an available
spare processor to which it is directly connected [6].

Although local reconfiguration allows fast replacement of faulty processors, repeated
application of the local reconfiguration algorithm may quickly degrade the reliability of the
system since spare elements are often not used in the most effective way. Consequently, in
the relaxed mode we wish to use a global reconfiguration algorithm to restore the system
to a more reliable state. Specifically, the goal of reconfiguration in the relaxed mode is
to assign faulty elements to spare elements maximizing the probability that any processor
becoming faulty in the next strict mode will be repairable by the local reconfiguration
algorithm. Such an assignment is called an optimal assignment. This approach of using
both local and global reconfiguration algorithms, depending on the state of the system,
is called bi-level reconfiguration. It was shown in [5, 6] that bi-level reconfiguration can
substantially improve the expected lifetime of a system and this approach was illustrated
for the case of an augmented hypercube architecture. Subsequently, Chen et al. [2] gave
a linear time reconfiguration algorithm for this particular architecture.

In this paper we investigate the problem of finding optimal assignments for several
broad classes of architectures. We give efficient algorithms for finding optimal assignments
in several important classes of architectures, including a number of well-known architec-
tures that have been proposed in the literature. We show that the problem of finding
optimal assignments in several other classes of architectures is N P-complete. Moreover,
we give an efficient approximation algorithm that can be used for any architecture. Fx-
perimental results indicate that this algorithm performs extremely well.

2 Bi-level Reconfiguration

In this section we describe efficient algorithms for finding optimal assignments in several
classes of architectures. These classes contain a number of existing and proposed processor
array designs. Consequently, these general algorithms obviate the need for architecture-
specific algorithms for architectures in these classes. In addition, we show that the optimal
assignment problem is NP-complete for several related classes. We begin by introducing
some notation and definitions that will simplify our discussion.

A processor array can be represented by a bipartite graph G = (X UY, FE) where X
is the set of vertices representing primary processors, Y is the set of vertices representing
non-faulty spare processors, and E is the set of edges representing connections between
primary processors and non-faulty spare processors. Thus, there is an edge {z,y} € E
iff the primary processor corresponding to # € X is connected to the spare processor
corresponding to y € Y. We assume that a faulty processor can only be replaced by
a spare processor if the two processors are connected, that is, there is a physical link
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between them. The vertices in X are denoted primary vertices and the vertices in Y are
denoted spare vertices. We let F' C X represent the set of faulty primary processors and let
N = X — F represent the set of non-faulty primary processors. A matching, M, of F into
Y represents an assignment of faulty primary processors to non-faulty spare processors. A
vertex z € N is said to be repairable with respect to M if it is adjacent to an unmatched
vertex in Y. Thus, a repairable vertex corresponds to a non-faulty primary processor that
can be replaced using the local reconfiguration algorithm. A vertex ¢ € N that is adjacent
only to matched vertices in Y is said to be unrepairable since the corresponding primary
processor cannot be replaced by the local reconfiguration algorithm. Our objective is to
find a matching for ¥ that maximizes the number of repairable vertices and thus maximizes
the probability that a fault occurring in the next strict phase will be replaced by the local
reconfiguration algorithm. Such a matching corresponds to an optimal assignment and is
therefore called an optimal matching. A special case of an optimal matching is a matching
in which every vertex in N is repairable. Such a matching is called a safe matching.

Theorem 1 The problem of finding an optimal matching in a bipartite graph is NP-
complete.

The proof of this theorem is by a reduction from the MAX 2-SAT problem [3]. The details
of the proof can be found in [4]. Although Theorem 1 tells us that the optimal matching
problem is NP-complete in general, some architectures have properties that allow us to
find efficient algorithms for optimal matching.

In many processor arrays the degree of each processor, that is, the number of processors
to which a single processor can be directly connected, is bounded by a small constant.
We show that for certain bounds on processor degrees, optimal matchings can be found
by efficient algorithms. Let D(X) represent the maximum degree among all vertices in
X, that is, D(X) is the maximum number of spare processors that are connected to a
primary processor. Similarly, let D(Y) represent the maximum degree among all vertices
in Y, that is, the maximum number of primary processors that are connected to a spare
Processor.

2.1 Algorithm 1

Theorem 1 can be strengthened to show that the problem of finding an optimal matching
in a bipartite graph is NP-complete even when D(X) < 2. However, in this subsection
we describe an O(n?) algorithm for finding safe matchings when D(X) < 2, where n is
the total number of processors in the array. Clearly, for some patterns of faults there
exists an optimal matching but no safe matching. In such cases, our algorithm will fail to
find a2 matching. However, experimental results suggest that when the number of faulty
processors is not too large, most optimal matchings are in fact safe matchings and thus
our algorithm can be used in these cases. For example, in a simulation on randomly
generated arrays with 32 primary processors, 16 spare processors, and D(X) = 2, more
than 86% of the optimal assignments found! were safe assignments when the fraction
of faulty processors was not higher than 10%. We note that a number of well-known
architectures have the property that D(X) < 2. For example, the fault tolerant binary tree
architecture proposed by Raghavendra et al. [8], the interstitial redundancy scheme used
in the Hughes 3-D Computer [12], and the 2-D augmented mesh proposed by Melhem [5]

10Optimal assignments were obtained by exhaustive search.
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all have this property. The reconfiguration algorithm is given in Figure 1. The algorithm
first transforms the problem into an instance of the 2-Satisfiability Problem (2-SAT) and
then solves 2-SAT using a linear-time algorithm [7]. The proof of correctness and analysis
of time complexity can be found in [4]. Finally, we have obtained the following result,
suggesting that this algorithm cannot be extended for larger values of D(X).

Theorem 2 The problem of finding a safe matching in a bipartite graph is NP-complete
when D(X) < 3.

2.2 Algorithm 2

In this subsection we describe a linear time algorithm for finding optimal matchings when
D(Y) < 2. This result implies that optimal assignments can be found efficiently in a
number of well-known architectures, such as the fault tolerant hypercube proposed by
Banerjee (1] and a number of interstitial array schemes [10]. The correctness of our algo-
rithm and the analysis of time complexity are based on several technical lemmas which
are omitted and can be found in [4]. Here we give a brief overview of the algorithm.
The algorithm first determines the connected components in the graph?. The connected
components share no edges, and can therefore be considered independently. If a connected
component contains at least as many spare vertices as primary vertices (both faulty and
non-faulty) then we can show that there exists a complete matching of the primary ver-
tices into the spare vertices. Thus, each faulty vertex in the component is matched to a
spare vertex and each non-faulty vertex is assigned to a unique unmatched spare vertex.
Consequently, the matching found in this component is a safe matching and thus is part
of an optimal matching for the graph. Moreover, it is not difficult to show that because
D(Y') < 2, this matching can be obtained in linear time by constructing a spanning tree3
of the component and repeatedly matching primary vertices of degree 1 to spare vertices.
If the connected component contains fewer spare vertices than primary vertices then we
can show that the component must be a tree. An arbitrary primary vertex in the tree is
assigned to be the root. The tree is then scanned in a bottom-up fashion. When a faulty
primary vertex is encountered it can be replaced by either its parent spare vertex or one
of its children spare vertices. The rules for determining which of these spares to select are
given in the full description of the algorithm in Figure 2. Finally, we have the following
result, suggesting that similar general algorithms are unlikely for larger values of D(Y).

Theorem 3 The problem of finding an optimal matching in a bipartite graph is NP-
complete when D(Y) < 3.

2.3 Algorithm 3

Although the optimal matching problem is NP-complete for D(X) < 2 and D(Y) < 3, we
now describe an approximation algorithm that can be applied to any architecture and is
guaranteed to be at least 5 lx -optimal. In other words, if the number of repairable vertices
in an optimal solution isz_tihen the approximation algorithm finds a solution in which

2A connected component is a maximal set of vertices such that there is a path in the graph between
any two vertices in the set. The connected components of a graph can be found in linear time using
breadth-first search.

3A spanning tree of a graph is a connected subgraph containing all the vertices of the graph and the
minimum number of edges. A spanning tree can be found in linear time by using breadth-first search.
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the number of repairable vertices is at least DlX « k. Experimental results, summarized
in the next section, suggest that in practice this algorithm performs substantially better
than indicated by this theoretical lower bound.

The approximation algorithm transforms a given instance of the optimal matching
problem into a weighted matching problem as follows. From the given bipartite graph
G = (X UY,E) and set F C X, we construct a weighted bipartite graph G’ = (FUY, E’)
where E’' C E is the set of edges in E that are incident to vertices in F. For each edge
e = {z,y} € E with z € F, let w, denote the number of vertices in N that are adjacent
to y. Edge e = {z,y} € E’ is assigned weight w,. An example of this construction is
illustrated in Figure 3.

Theorem 4 Let M be a minimum weight complete matching in G' and let k be the number
of repairable vertices in an optimal matching for G. If matching M is used in G, at least
WIYT - k vertices are repairable.

The proof of this result can be found in [4]. The complexity of the approximation
algorithm is that of finding a minimum cost maximum matching which, in this case, is
O(nmlogn) [11].

2.4 Related Results

In addition to the algorithms and NP-completeness results described above, we have ob-
tained several other related results. We have found a linear time algorithm for the case
that the bipartite graph is acyclic. This implies that optimal assignments can be found
in a number of tree architectures such as those proposed by Singh [9, 10] and others.
This algorithm can also be applied to any architecture to find an optimal solution when
the fault pattern in the array induces an acyclic graph. Preliminary experimental results
indicate that in many architectures this property is almost always true when the number
of faulty elements is not excessively large.

We have also shown that the problem of finding optimal matchings is NP-complete
for a number of specific architectures. For example, Chen et al. [2] conjectured that the
polynomial time algorithm they proposed for the 2-D augmented mesh architecture could
be generalized to higher-dimensional augmented meshes. We have shown that the problem
of finding optimal matchings in the 3-D augmented mesh architecture is NP-complete,
implying that it is very unlikely that the conjectured polynomial time algorithms exist.

3 Experimental Results

In this section we summarize experimental results obtained for the approximation algo-
rithm described in the previous section. The approximation algorithm was implemented
in C++ on a Sun Sparcstation and on an Encore Multimax computer.

In the first set of experiments, processor arrays with 32 primary processors and 16
spare processors were generated with connections between primary processors and spare
processors selected randomly. In the first experiment we set D(X) = 2 and in the second
experiment we set D(X) = 4. In each randomly generated array, faulty elements were
introduced at random with fault frequency ranging from 0% to 30% in increments of 5%.
(At fault frequency 35% there were already fewer spare processors than faulty primary
processors, and thus no assignments could be found.) For each fault frequency value, 100
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random arrays were generated. For each array, the approximation algorithm was used to
find an assignment. In addition, the optimal assignment was found for each array using
an exhaustive search algorithm and an assignment was found using standard unweighted
matching. For D(X) = 2, the approximation algorithm found solutions that were at
least 0.97 times the size of the optimal solution (on average), depending on the fault
frequency. In contrast, the standard matching algorithm found solutions of size only 0.85
times optimal in the worst case. For D(X) = 4, the approximation algorithm found
solutions that were at least 0.94 times the optimal size, whereas the standard matching
algorithm found solutions as low as 0.75 times optimal. The results are summarized in
Tables 1 and 2.

Additional experiments were performed for larger arrays and for several specific ar-
chitectures. Figures 4 and 5 give results for randomly generated arrays with 100 primary
processors and 50 spare processors for D(X) = 2 and D(X) = 4, respectively. The
performance of the approximation algorithm is compared only to that of the standard
matching algorithm, since these arrays were too large to be solved optimally by the ex-
haustive search algorithm. These results indicate that our approximation algorithm can
find matchings that, in many cases, contain 6% to 14% more repairable processors than
are obtained by standard matching. Experimental results for several specific architectures
indicate that the approximation algorithm finds solutions that are frequently within 0.95
times the optimal size.

4 Conclusions

In this paper we have presented several efficient algorithms for bi-level reconfiguration of
processor arrays. Our algorithms are quite general and can be applied to a large number of
architectures. Although the optimal assignment reconfiguration problem is NP-complete
in general, we have presented an approximation algorithm that can be used for all processor
arrays. Experimental results indicate that this algorithm is very effective.

There are a number of interesting directions for future research. For example, we wish
to find efficient reconfiguration algorithms for additional classes of architectures. We also
plan to consider other types of local reconfiguration algorithms and their effect on system
lifetime.
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Input: Bipartite graph G = (X UY, E) and set F where D(X) < 2.
Output: Safe matching for F in G.

begin
Construct an instance of 2-SAT as follows:
1. For every edge {:,y;} € E where z; € F, introduce boolean variable u; ;.
2. For every edge {z;,y,} € E where z; € N, introduce boolean variable v; ;.
3. For each vertex z; € F adjacent to vertices y; and yx,
introduce clauses (u;; V ;) and (=t V ~u;4).
4. For each pair of vertices z;,z5 € F adjacent to a common vertex yj,
introduce clause (—;; V -, ;).
5. For each vertex z; € NV adjacent to vertices y; and y;,
introduce clause (;; V vi).
6. For each vertex z; € N and z € F adjacent to a common vertex y;,
introduce clause (~v;; V ~up ;).
D ine a satisfyi i for the 2-SAT instance, if one exists,
using a linear-time algorithm [7].
if 2-SAT instance unsatisfiable halt
for each boolean variable u; ; with value true do
Match z; to y;;
endfor
end

Figure 1: Safe matching algorithm for D(X) < 2.
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Input: Bipartite graph G = (X UY, E) and set F where D(Y) < 2.
Output: Optimal matching for F in G.

begin
Use breadth-first search to find connected components of G;
for each connected component C' do
if C contains at least as many spare vertices as primary vertices do
Use breadth-first search to find a spanning tree 7 in C;
while T contains vertices do
Find a vertex v € T' of degree 1;
Match v to its neighbor w;
Remove v, w, and all incident edges from T}
endwhile
endif
else (* C is a tree *)
Assign any primary vertex of C to be the root;
while C contains a faulty vertex do
Find a faulty vertex v with no faulty descendants;
if v is a leaf do
Match v to parent p(v); Remove subtree rooted at p(v) from C;
endif
else if v contains a child vertex ¢(v) such that by
matching v to ¢(v) no descendant of » becomes unrepairable do
Match v to child ¢(v); Remove the subtree rooted at v from C;
endif
else if parent of v, p(v), is non-faulty do
Match v to p(v); Remove the subtree rooted at p(v) from C;
endif
else if the tree obtained from C by removing the subtree rooted at v
does not contain more faulty primary vertices than spare vertices do
Match v to p(v); Remove the subtree rooted at p(v) from C;
endif
else
Match v to any child vertex ¢(v); Remove subtree rooted at v from C;
endelse
endwhile
endelse
endfor

end

Figure 2: Optimal matching algorithm for D(Y) < 2.
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Figure 3: An example of the construction used in the

rithm.

ﬁj-optimal approximation algo-

% Optimal Approzimation Algorithm Matching Algorithm

faulty || # repairable || # repairable oo # repairable | ZRERRC ble
0 32.00 32.00 1.00 32.00 1.00

5 31.00 31.00 1.00 31.00 1.00

10 28.84 28.45 0.99 28.15 0.98

15 27.32 26.62 0.97 25.77 0.94

20 22.31 21.72 0.97 20.07 0.90

25 15.97 15.53 0.97 13.64 0.85

30 9.33 9.25 0.99 8.42 0.90

Table 1: Experimental results for randomly generated arrays with 32 primary processors,
16 spare processors, and D(X) = 2.

% Optimal Approzimation Algorithm Matching Algorithm

faulty ([ # repairable [ # repairable e EI’e # repairable %
0 32.00 32.00 1.00 32.00 1.00

5 31.00 31.00 1.00 31.00 1.00

10 29.00 29.00 1.00 29.00 1.00

15 28.00 28.00 1.00 27.97 0.99

20 26.00 25.73 0.99 25.28 0.97

25 23.92 22.49 0.94 20.30 0.84

30 18.79 17.81 0.95 14.00 0.75

Table 2: Experimental results for randomly generated arrays with 32 primary processors

16 spare processors, and D(X) = 4.
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Figure 5: Randomly generated arrays with 100 primary processors, 50 spare processors,

and D(X)=2.
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