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Abstract

Given a doubly fault tolerant system with m faults, we present an algo-
rithm for finding a fault-to-spare assignment for the m faults in O (m)
time. This improvement over the O (m'5) bi-partite graph technique for
finding an assignment is obtained by partitioning the problem into in-
dependent regions and proving that, in each region, an assignment may
be found in linear time. The region approach also allows for an
efficient solution of a related problem. Namely, finding a fault-to-spare
assignment which minimizes the number of uncovered nodes. For two
dimensional arrays augmented with one row and one column of spares,
such an optimal assignment may be found in linear time.

Introduction and Problem Formulation

Current technology allows for the efficient implementation of large arrays of processing ele-
ments which are regularly interconnected. However, as the sizes of such arrays increase, so
does the importance of providing techniques for tolerating manufacturing-time defects and
run-time faults. One such technique which has become popular in recent years is the augmen-
tation of processor arrays with spares, thus allowing fault tolerance through reconfiguration
[3,5,7,8,13). Spares may be added to arrays either globally or locally [12]. In the former
case, any spare may replace any faulty processor in the system, while in the latter case, restric-
tions are imposed regarding which spare may replace which processor. More specifically, in a
local sparing system, each spare, S, may only replace faulty processors in a subset, PS(S) of
processors. Using the same notation, we can characterize a global sparing system to be one in
which PS (S ) consists of all the processors in the system, for any spare S. Clearly, global spar-
ing provides more fault tolerant capabilities than local sparing, but requires more complex
hardware support.

In [1], it was shown that, for a given hardware overhead, the fault tolerance capabilities of local
sparing strategies may be optimized if coverage overlap is minimized. That is, if for any two
spares, S and $’, the intersection of PS (S) and PS (S’) is minimized. For doubly fault-tolerant
systems, that is for systems where each faulty processor may be replaced by one of two spares,
minimum coverage overlap is obtained when the processors are logically arranged as a two
dimensional mesh with one added row and one added column of spares. A spare may replace a
faulty processor in its row or its column. Figure 1 shows such an arrangement that we will call
a "2-D augmented mesh”.

In order to generalize the architecture of Figure 1, we consider a set of nodes (processors) X =
{x1.X2,...xn }, where some nodes in X are designated as primary nodes and some as spare
nodes. We assume that the system is modular in the sense that X is divided into subsets called
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Figure 1 - A two-dimensional augmented logical mesh

1_FT sets, where each 1_FT set can handle exactly one failure. From a different perspective, a
1_FT set consists of some primary nodes and a spare which, if not faulty, can replace any
faulty primary node in the 1_FT set. We consider a specific class of systems in which each
node in X belongs to at most two 1_FT sets. Doubly fault tolerant systems fall into that class
because if each primary node belongs to two 1_FT sets, and each spare node belongs to one
1_FT set, then any two faults in X can be tolerated. In the doubly fault tolerant system of Fig-
ure 1, each row of processors and each column of processors form a 1_FT set.

In addition to the 2-D augmented mesh shown in Figure 1, many fault tolerant arrays structures
may be described by the model outlined above. For example, in the 50 percent redundancy
interstitial structure introduced by Singh [14], spares are added in interstitial sites of an array
(see Figure 2(a)). Each spare can cover for any one of four primary nodes and each primary
node can be replaced by at the most two spares. Therefore, each 1_FT set consists of a spare
node and at most four primary nodes as shown in Figure 2(b).

Given a set of failed nodes F = {f1f2....f/m ), which is a subset of X, the fault-to-spare
assignment problem is to assign each faulty primary node to a non-faulty spare. This is
equivalent to assigning each node f in F to a unique 1_FT set. Note that if f is a faulty spare,
then it is assigned to the 1_FT set that contains it, and thus no other node can be assigned to
that 1_FT set. This means that no faulty node will be assigned to a faulty spare.

For each set, 1_FT;, we define a set, 7;, which contains all the faulty nodes of 1_FT;. We also
define the superset [Tr to include all the 1_FT sets that contain a faulty node. That is, g =
(1_FT; | m; # D} is the set of all 1_FT sets that are affected by the failures. With this, an
assignment a, may be defined as an injection which assigns to each node f € F,a 1_FT set,
a,(f)e M. Clearly, the assigned 1_FT set should contain the faulty node. That is
f € ag(f). Note that for a given F and I, there may not be any assignment or there may be
more than one assignment.
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Figure 2 - The Interstitial redundancy approach

In the cases where more than one assignment exists, it is desirable to find the one which optim-
izes some performance criteria. In [10], it is argued that real time systems alternate between
strict phases and relaxed phases. When a fault occurs during a strict phase, local
reconfiguration is necessary due to severe constraints on response time. Hence, during a
relaxed phase, the faults in F may be assigned to 1_FT sects in a way that allows for local
reconfiguration in subsequent strict phases. Local reconfiguration is guaranteed after any
future fault if for each non-faulty primary node, x, in X, at least one of the two 1_FT sets con-
taining x is available to cover for x. Here,a 1_FT set is not available to cover for x if that set
is already assigned to some fault in F'. If both 1_FT sets containing x are not available, then x
is called uncovered in the sense that any future fault in x cannot be covered locally. In other
words, if an uncovered node x becomes faulty, extensive reallocation of faults to spares may
be needed to free-up a spare in one of the two 1_FT sets containing x.

For a given F, there may not be an assignment which leaves all the non-faulty primary nodes
in X covered. In this case, it is shown in [10] that the expected life time of the system improves
substantially if the number of uncovered nodes is minimized. We will call an assignment that
minimizes the number of uncovered nodes, an "optimal assignment". For example, in Figure 3,
we show (in bold) the 1_FT sets used in two possible assignment for the given 5 faults. We
will use (i,j), 0<i,j <4, 1o denote the node at row i and column j. In the assignment of Fig-
ure 3(a), faults (1,2) and (4,2) are assigned to the spare in their rows and faults (2,1), (2,2) and
(3,3) are assigned to the spares in their columns, resulting in 4 uncovered nodes. In the optimal
assignment of Figure 3(b), faults (1,2), (2,1), (3,3) and (4,2) are assigned to the spares in their
rows and fault (3,3) is assigned to the spare in its column, resulting in only one uncovercd
node.

It has been recognized that finding a fault-to-spare assignment is equivalent to solving a bi-
partite matching problem [4,9]. This requires an O (n'9) time complexity, where n is the
number of spares in the system. In the next section, we describe a solution to the assignment
problem which is linear in the number of faults, and thus, linear in number of spares. This
solution is based on partitioning the problem into smaller independent sub-problems. This par-
titioning is also used to find, in linear time, the optimal assignment for a subclass of problems
that includes the 2-D augmented mesh of Figure 1. The algorithm applied in [10] to find an
optimal assignment for this problem uses exhaustive search techniques.
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Region Perspective.

In order to find an assignment g : F — [1r, we may partition F into subsets, 1;, =1,...,z such
that F =My "M, and accordingly Mg =Ry -\ JR,, where R; = {1 FT; :
T N #D)}. Thatis R; contains the 1_FT sets that are affected by the faults inn;. The par-
titioning is done such that finding an assignment from n; to R; is independent of finding an
assignment from n; to R;, if i#j. In order to define regions formally, we define a predicate
8:(1_FT;,1 FT;)— {true false}, such that,

true  if (m; w;) 2O,
S8(1_FT;,1_FT;)=\true if8(1_FT;,1 FT})=08(_FT;,1 FT,)=tirue, forsome k
false otherwise

For any two 1_FT sets, this predicate is defined recursively. The 8 of any two sets, 1_FT’ and
1_FT” is true if either 1) there is a fault at the intersection of the two sets or 2) if there exists a
sequence of sets 1_FT;,1 FT;q,1 FTiy, ..., 1_FT,, such that T’ ~\ 7 # @, & ™\ W41 #
D, ...\, 2D, and 1, ~ 1 #D. The proof of the following lemma follows directly
from the above definition of 3.

Lemma 1 : Given a set of failed nodes F,
IF I is partitioned into regions, R;, i=1,...,z, such that,
L_FT;,1_FT; € R; iff 6(1_FT; 1_FT;)=true,
THEN finding an assignment in each region is independent of the assignment in the other
regions. (O}

The regions can be built on the basis that any two 1_FT sets that intersect at a failed node
belong to the same region. Using this property, we start with one 1_FT set which has at least
one failed node. Then, all the other 1_FT sets that intersect with the first set at failed nodes are
added to the region. This procedure is propagated to the newly added 1_FT sets. When a
region cannot grow any more, the next unused 1_FT set is taken as the nucleus for the next
region. In the following implementation of this algorithm, each fault f € F is given a tag
which initially indicates the sets that the node belongs to. That is, zag (f )={i,j} if f is in both
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1_FT; and 1_FT;. If f is in only one set, 1_FT;, then tag(f)=(i}. Each node with
lrag (f )|1=2 is visited twice to process its two 1_FT sets. A set, visited, is used to keep track
of the nodes that have been visited once, but yet is to be visited a second time.

Algorithm 1: (Input: F, [1r - Output: all the regions, R, k=12, -)
k=0; visited =D ;
While Iz # @ do
1) k=k+1;
2) Getthe next 1_FT; from I1g, remove it from I1z and add it to Ry ;

3) Foreachnode f, inm;, if tag (f,) = {i,j}, then set tag (f,) ={j },
and add f, to visited ;

4)  While visited # & do
4.1) Get and remove the next node f, from visited ; Assume tag (f,) ={j}.
4.2) If 1_FT; e Iy, then
4.2.1) Remove 1_FT; from Iy and add it to Ry ;

4.2.2) For eachnode f, inm;, if tag (f,) = {/,j}, thenset tag (f,) = {/ },
and add f, to visited ;

In step 4), each failed node is examined exactly once in the visited set. Thus, the algorithm
runs in time O ( | F | ). The regions resulting from the application of the above algorithm can
be classified according to the ratio of the number of 1_FT sets to the number of failed nodes in
the region. This is described by the following lemma.

Lemma 2: Given a region R,

) If Img | > IR |, then, there is no possible assignment for that region,

2)If Ing | = IR, |, any assignment is a one-to-one total function and uses all the 1_FT sets.

DIfIng | < IRy |, then, IR, | = IM, | + 1. That is, there is exactly one more 1_FT set than

failed nodes.

Proof: If the maximum number of 1_FT sets available, IR |, is less than the number of
failures, Im, !, then it is obvious that not all faults can be covered. Thus, there is no assign-
ment. The result forng = IR, | is also obvious. The result for In, | < IR, | will be proved by
induction on the number of failures.
If IMg | =1, then by the property of doubly fault tolerant systems, the fault in 1, may be in at
most two 1_FT sets. Hence, if In, | < IR, |, then IR, | =2. Next, let us assume that the
Lemma is true for In; | =m faults. In other words, IR, | is m+1. We will prove that the
lemma is satisfied if we add another fault, f 1, to this region. We will refer to this augmented
region as R, * and to its fault set as 1, *.

The node f,,+1 can be in at most two 1_FT sets. However, for f,,4 10 be in the same region as
the faults in 1, it has to share one of these sets with a fault in 1y,. Thus, R;* may have at most
one 1_FT setthatisnotin Ry. Thatis, IR, *l = IRy 1 +1=m+2=Inf1+1. O

In Figure 4, we illustrate a region in which IR |>inl; In Figure 4(a) we show a set of faulty
nodes in a 2-D augmented mesh, and in Figure 4(b), we show the & sets for that region. Recall
that a 7 set contains the faulty nodes ina 1_FT set.
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Figure 4 - A region with IR 1>In|.

Finding an Assignment in a Region.

Given a region, R, and the corresponding set of faults 1, the assignment algorithm is based on
the successive reduction of the region size. Nodes are assigned to the appropriate 1_FT sets
one by one. After a node f ey is assigned to a 1_FT set from Ry, f is removed from 1, and
1_FT is removed from Ry. Two types of assignments of an individual node are defined:

1) Ifanode, f, belongs to only one 1_FT set in Ry, then the assignment of f to that 1_FT
set is called a mandatory assignment.

2) If a node, f, belongs to two sets, 1_FTy and 1_FT; in R, and one of the two sets, say
1_FT}, has no other faults beside f (that is 17; 1=1), then the assignment of f 101 FT,
is called a greedy assignment.

We first consider assignments for regions with (1 |=IRy . If we apply the greedy assignment
repetitively in such a region, then each time we assign one fault to a 1_FT set, we reduce the
size of both R, and n; by one. This process may terminate, thus giving an assignment for the
entire region, or may be blocked because every node belongs to two 1_FT sets and neither of
them satisfies the requirement for a greedy assignment. This case is formally defined next.

Definition: A locked region is a region R, such that for every f en, there are two sets, 1_FT
and 1_FT’in Ry, that contain f . Thatis, f € 1_FT ~1_FT’.0

If may be shown that if a region R, with IR, 1=in| is locked, then Im I=2 for every
1_FT;eR,. (This may happen only if the © sets form a cycle or if Re={1 FT,1 FT'}and
intersects 7 at exactly two nodes - see Figure 5). If faced with a locked region, the assignment
may proceed by forcing an arbitrary assignment. That is, chosing any fault f from n, and
assigning f to one of the two 1_FT sets that contains f . This will also reduce the sizes of R
and 1 by one, and will allow the assignment process to continue. In fact, it may be proved that
once an assignment is forced, the process will not encounter another locked region. This
observation, however, is not crucial to the assignment algorithm discussed next, and thus will
not be proved here.

In order to find an assignment for a region with IR, | = In, |, first, all greedy assignments are
made. When no more greedy assignments are possible, either all the nodes in the region are
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Figure 5 - The two types of locked regions

assigned or the region is reduced to a locked region. In the latter case, an arbitrary node is
assigned to one of the 1_FT sets that the node belongs to. Due to this forced assignment, one
of the sets in R, will contain only one unassigned fault. This either allows for the resumption
of the greedy assignment (in case of cycles) or reduces the region to one 1_FT set and one
fault. In the latter case, a mandatory assignment will complete the solution. The algorithm
uses a set, greedy which initially contains the failed nodes in 1, that satisfy: tag (fp)={i.j}
and either Im; I=1or Ix; I=1.

Algorithm 2: Input: R, and M with IR | = In |,

Output: an assignment of the nodes in 1.

While n, # & do
While greedy # < do

1)

2)

L1
1.2)
1.3)
1.4)

If ng
2.1)
2.2)

2.3)
2.4)

Get the next node, f,, from greedy ; Let tag(fp)={i,j}.

Chose [ in {i,j} suchthat i I=1 andletA={i,j}-{l};

Assign f, to 1_FT; and remove f,, from greedy, Ny, ®; and m, ;

Ifmy, = {f,}, then

1.4.1)if tag (f;) = {u,\}, then add £, to greedy

1.4.2) if tag (f;) = (A}, then assign f, to 1_FT, /* mandatory assignment */
and remove f, from greedy, M and m.

# J, then /* we have reached a locked region */
Get anode f, from 1, ; Lettag (f,)={i,j}and m; ={f, f,}.
Assign f, t0 1_FT;, /* forced assignment */

and remove f, from 1, 7; and 7; ;
If tag (f4) = {i,l }, then set tag (fy) = {1 }.

If tn, | =1, then assign f, to m; and remove f, from N,
else, add the node in 7 to greedy  /* Im; 1=1*/
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Since the algorithm visits every node in the greedy set once, and each failed node in the region
becomes a member of greedy at most once, this algorithm has O (11, |) running time.

Now we examine the case where the number of 1_FT sets is more than the number of faults in
the region. Since we have already proved that there is exactly one more 1_FT set than are
needed in such a region, this implies that one of the 1_FT sets will be unused in the actual
assignment. Hence, we may arbitrarily remove one 1_FT set from Ry, thus reducing the size

of Ry such that R, | = In, |. However, removing one 1_FT set from R, may either leave Ry
as one region, or may partition it into two regions. In either cases, the problem of dealing with
aregion with | R, | = Im; 1+1 is reduced to dealing with regions with IR, | = In, |. Following
is the algorithm.

Algorithm 3: Input: R, and N, with IR, | = In, | +1,
Output: An assignment of the nodes in 1.

1) Pickanyset 1_FT; from Ry ;

2) Ifm; ={f,}, then
2.1) Ifrag(fp)={i,j} thensettag(fp)=1{j};
2.2) Apply Algorithm 2 to {Ry} — {1 _FT;};

3) Xm={fpfq} then
3.1) Form the two regions Ry and Ry such that Rey\) Re2\ U (T} =Ry 5
3.2) Iftag(f,)={i,j}, and tag (f ;)={i I}, then set tag (f , )={j } and tag (f;)={1 };
3.3) Apply Algorithm 2 to Ry; and Rz ;

The algorithm runs in O(In, ) time since it depends on algorithm 2. Figure 6 shows how the
region of Figure 4 is partitioned into two regions after removing 1_FT'3.

9

«l °
R
"9

Figure 6 - partitioning the region of Figure 4 into two regions with IR [=In1.

Hence, given a set of faults F, an assignment may be found by applying the following steps:
1)  Build Il from F; Apply Algorithm 1 to Iz to form regions;
2)  Foreach region R,
a)if [R¢ | < Im | then declare "no assignment” and exit;
b)if IR, | = I, | then apply Algorithm 2;
¢)if IR 1 > Im, | then apply Algorithm 3;
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Since each step runs in linear time with respect to the number of failures, the assignment algo-
rithm also runs in O(| F 1) time.

Optimal Assignment

In this section, we consider the problem of finding an assignment which minimizes the number
of uncovered nodes as defined in Section 1. Assuming that I is partitioned into regions, then
by Lemma 1, the assignment in different regions may be found independently. In general,
however, finding the optimal assignment in each region does not lead to an optimal assignment
for the entire problem.

The general problem of finding an optimal assignment in a doubly fault tolerant system may be
shown to be NP-hard by reducing it to the problem of finding a truth assignment which maxim-
izes the number of true statements in a 2-SAT problem. We will not go into the details of that
proof in this paper. We will, however, show that for a specific instance of doubly fault tolerant
systems, the optimal assignment may be found in linear time. This instance incorporates the 2-
dimensional augmented system (Figure 1) and is formally described next.

Definition: A doubly fault tolerant system is called 2-partitionable if its 1 _FT sets may be
categorized into two types, A and B such that:
Any two sets 1_FT{ and 1_FT} of type A have an empty intersection, and any two sets
1_FTBand 1_FTP of type B have an empty intersection. (]

We will use a superscript to denote the type of a 1_FT set. Both systems shown in Figures 1
and 2 are 2-partitionable. In Figure 1, the vertical sets may be classified as type A and the hor-
izontal sets as type B. In Figure 2(b), the sets enclosed in circles may be classified as type A
and those enclosed in squares as type B.

Definition: A 2-partitionable system exhibits the regular area property if each 1_FT set of a
certain type intersects with all the 1_FT sets of the other type. O

Note that the system of Figure 1 exhibits the Regular Area Property while the system of Figure
2 does not. This property will allow us to establish Lemma 3 which identifies optimal assign-
ments.

Given a set of faults, F, in a 2—pal{tilionable system, the corres%onding set [Tz may be parti-
tioned into the two disjoint sets Iy = {1_FTA | n# # @)} and [y = {1_FT? | nf Q). With
this, an assignment, a,, assigns each fault to either ap 1_FT4 set from I1x, orto a 1_FT? set
from I1r. Let o, and B, be the subsets of I and I, respectively, used in the assignment a, .
Note thatio, | + [B, | equals the total number of faults.

The critical area, A, , of an assignment q, is defined as the set of nodes at the intersection of the
1_FT* sets belonging to o, and the 1_FT3 sets belonging to B,. Hence, the number of nodes
in the critical area, 4,, is given by la, 1 X [, |. A non-faulty node, v, that belongs to A, is
uncovered if it lies at the intersection of a 1_FT4 set and a 1_FT? set that are used to cover
for faults. Thus no 1_FT set is available to cover for a possible future failure of v. Note that if
a non-faulty node, L, is not in A,, then at most one of the two 1_FT sets containing y is used
ina,, and thus the second is available to cover for a possible future failure of .
It is our goal to find the assignment that minimizes the number of uncovered nodc. In order to
formalize this notion, we define the following:

d}(A,) = number of failed nodes in A,

DA, ) =(la, | X IB, 1)~ D(A,) = number of uncovered nodes in A, .
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For example, the numbers of nodes in the critical areas for the two assignments in Figures 3(a)
and 3(b) are 6Aand 4, respectively. For Figure 3(a) ®(A)=2, and ®(A )=4, and for Figure 3(b),
D(A )=3, and D(A )=1.
It is possible to find the assignment a, which minimizes <f>(Ap) by decreasing the size of A,
and increasing ®(A,). The following lemma provides a means for chosing a, and B, such
that (A, ) is minimized.

ma A3: Let F be a fault set in a system that satisfies the Regular Area Property. If
Mr 2T, and a given assignment a, satisfies the following:

B

1)) Bp =Ip 2

2) DA,)2D(A,) for any other assignment a, with Bq =TI,

then a, is an optimal assignment in the sense that it minimizes <f>(A,,) over all assignments.

Proof: Let I = IH;.}I,] = Il'[ﬁl and f = |F|. Moreover, let J =f —k for some k>0, and
thus f —k 27. We will prove the lemma by contradiction. First, consider the assignment a,.
Given that I1B, | =J =f~—k and that | o, | + I8, | =f, the total number of nodes in the criti-
cal area of that assignment is

14,1 =104, 1 X [Bp | =k (f —k)

To compute the number of faulty nodes in A, observe that every faulty node in A, should be in
some 1_FT# set that belongs to o,,. In other words, ®(4,) is Squal to the total number of
faults in all the 1_FT# sets belonging to o,. Given that ITlp| =/ <f—k and, that each
1_FT# set in [1r contains at least one of the f faults, then there is a subset T of Iz such that
the total number of faults in the 1_FT* sets belonging to 1 is at least 2k. This implies that

©(A,) 2 2

because, otherwise, we can construct an assignment @, in which B, = l'[,? , 0, =T and
®(A,) 22k, thus contradicting the hypothesis of the lemma. From the definitions of ®(4,) we
then get:

DA,)= 14,1 —OA,) <k (f—k-2)

Now, consider any other assignment a,. If B, =H£, then from Bt_he choice of a,, ®(4,) 2
®(4,), and thus tf>(A,,) <&(4,). Hence, we assume that B, cg. For such an assignment,
8, =f—k—u and o, = k+u for some O < u </7—k. Thus the total number of nodes in the criti-
cal area of the assignment is

1A, V= (f —k—u) (k+u)

Ifasetl FTAandaset1 F Tf’ intersect at a faulty node, then a, should assign this fault to one
of these two sets. Hence, either 1_FTA is in &, or 1_FT? is in B,. This implies that if 1_FT#
is in [14 but not in o, and 1_FT# is in T1f but not in B,, then 1_FT; and 1_FT; intersect at a
non-faulty node. However, each 1_FT4 set that js in Iz should contain a faulty node, hence,
the 1_FTA sets 12 ITy — o, contain at leastB Iy — o, | =1—k—u faulty nodes. Similarly, the
1_FT® sets in Iy — B, contain at least |TIx — B, | =u faulty nodes. This means that at least
(I —k—u)+u =I—k faults are not in the critical area, A,, of a, . Thus, at most f —(/ —k ) faults are
in A,. Thatis,

DA)Sf -1 +k
and thus, the number of non faulty nodes in A, is bounded by:
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SA,) 2 1A, | = (F 1 +k) = (f k= )k +u)~(f —[+k)
2(f—k—u)k+u)—f +u =k (f-k-2)+(f —2k—u) -1)
Giventhat u <1—k < (f —k )k =f -2k, we have
d@A,)z2d@,)

which proves the lemma. O3

Lemma 3 provides the means of chosing the 1_FT sets in a global sense. However, its real
value is providing a means for optimizing the global assignment by optimizing the assignment
in individual regions, as described next.

Lemma 4: For a system that exhibits the Regular Area Property, an assignment minimizes the
number of uncovered nodes in the system if it minimizes the number of uncovered nodes in
each region.

Proof: According to Lemma 3, all 1_FT sets of one type, say A, are going to be used in the
optimal assignment. Thus, the 1_FT sets which are not going to be used have to be of the other
type, B. Hence, the area of the optimal assignment, say a,, is fixed, namely o, B . By the
definition of regions, if a set 1_FT4 from o, and a set 1_FT? from B, are from two different
regions, then they intersect at a non faulty node (otherwise the two regions would form a single
region). Hence, any faulty node in ®(4,) should lie at the intersection of two 1_FT sets from
the same region. Consequently, by maximizing the number of faulty nodes at the intersection
of 1_FT sets in each region, the total number of non-faulty (uncovered) nodes in A, is minim-
ized. O

We can combine the result of Lemmas 3-4 with Algorithms 1-3 to design the algorithm for an
optimal assignment of failed nodes. Note that in Algorithm 3, there is one step (step 1) in
which a choice of NOT using a 1_FT set in a given region, Ry ,Bhas to be made. The type of
this 1 FT set may be determined by comparing |TIg | with ITIz1 as described in Lemma 3.
Moreover, in order to minimize the number of non-faulty nodes at the intersection of the 1_FT
sets in R, the set which is not used should have the minimum number of faults. With this
choice, the sets that are used are the ones with the maximum number of faults. For example,
in Figure 4, The minimum number of uncovered nodes is obtained when the set 1_FT is not
used in the assignment as shown in Figure 6.
The algorithm for optimal assignment is the same as the algorithm for any assignment except
for two modifications. Two steps are added at the beginning of Algorithm 3 to determine which
1_FT set should not be used in the assignment of a given region, Ry with 1Ry 1 > I l.
Specifically, step 1 of Algorithm 3 is replaced by:

11) If ITI7 1> 1TI7 | thenc = A else ¢ =B.

1.2) Chose 1 FTfe R, such that Infl is less than or equal to Imfl for any

1 FTf € Ry;

The above modifications results in an optimal assignment of all failures in doubly fault tolerant
systems exhibiting the Regular Area Property.



258 1991 International Workshop on Defect and Fault Tolerance on VLSI Systems

Conclusion

The contribution of this paper is two-fold. First, it reduces the time for finding an assignment
in doubly fault tolerant systems from O (m'S) to O (m). When more than one assignment
exists, the optimal assignment is specified to be the one which minimizes the number of
uncovered nodes, and for a two dimensional array with an additional row and column of
spares, that optimal assignment is found in linear time. This idea of choosing an assignment
which enhances, in some sense, the future operation of the array may be applied to other
optimization criteria such as the dilation between two nodes in the reconfigured array [2, 6],
and the minimum degree of redundancy in the reconfigured system |10, 11].

Finally, we note that the work in this paper have been restricted to doubly fault tolerant sys-
tems. That is, systems in which each node may be replaced by onc of two spares. Similar
optimization may be defined for K-fault tolerant systems, for K >2.
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