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Abstract 

The unidirectional propagation of optical signals in waveguides allows for the con- 
struction of pipelined optical busses on which many processors may write their mes- 
sages simultaneously. In [ 5 ] ,  a multiprocessor system architecture has been proposed 
based on a two dimensional array of processors connected by horizontal and vertical 
pipelined busses, and efficient interprocessor communications have been presented for 
it. In this paper we present an efficient embedding of pyramids onto this architecture. 
The embedding has the property that neighboring nodes in the pyramid are mapped to 
the same bus, thus allowing any two neighbors in the embedded pyramid to communi- 
cate with each other using a single bus cycle. 

1. Introduction 
Mesh computers are among the most promising parallel architectures in image processing 

and computer vision [lo, 121, and have been extensively studied. Meshes, however, are 
inefficient in global interprocessor communications because of their large communication diam- 
eter. For this reason, approaches have been considered to augment the communication capabili- 
ties of meshes with busses [l ,  14,151. Although this approach decreases the communication 
diameter, it does not substantially increase the communication bandwidth because of the 
exclusive access property of electronic busses. Specifically, if n processors are connected to a 
bus, only one processor is allowed to write a message on the bus at any given time. This disad- 
vantage may be overcome if optical busses are used instead of electronic busses. In this case, all 
n processors can write their respective messages on the bus simultaneously, and all the mes- 
sages will then travel on the bus in a pipelined fashion [3,9]. This is possible because optical 
signals propagate unidirectionally in waveguides. 

In order to describe the operation of pipelined optical busses, we consider Fig l.l(a) which 
shows a linear array of n processors connected by an optical bus (waveguide). Each processor is 
coupled to the bus with two couplers [8], one for injecting (writing) signals, and the other for 
receiving (reading) signals. Assume that a message on an optical bus consists of a sequence of 
optical pulses, each having a width (or duration) w in seconds. The existence of an optical pulse 
of length w represents a binary bit 1, and the absence of such a pulse represents a 0. For analyti- 
cal convenience, we let Do be the optical distance between each pair of adjacent nodes and z be 
the time taken for an optical signal to traverse h e  optical distance Do. As in the. case of 
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electronic busses, each node j communicates with any other node i by sending a message to i 
through the common bus. However, because optical signals propagate in one direction, a node j 
in the system of Fig l.l(a) may send signals to another node i only if i > j .  To transfer a mes- 
sage from a node j to node i , i > j  , the sending node j writes its message on the bus. After a 
time (i-jfi, the message will amve at the receiving node i , which then reads the message from 
the bus. 

Fig 1.1. Array processors with pipelined busses (APPB). (a) A linear array connected 
with a single optical bus. (b) A node coupled to four busses (c) A schematic drawing 

of 2-D APPB with each node coupled to four busses as shown in (b). 

Unlike the case of an electronic bus, where writing access to the bus is exclusive, all the 
processors may send their messages on the bus simultaneously if every node writes its message 
at the same instant and the length of each message is smaller than the optical distance between 
any two consecutive processors. Let b be the maximum number of bits in each message, w , as 
before, be the width (duration) of the pulse used to represent one bit, and cg be the speed of light 
in the waveguide. Then we may ensure that messages sent by distinct processors do not collide 
with one another if the following collision-free condition is satisfied 

Do > bwc,. 

Here by colliding we mean two opitcal signals injected on the bus by any two distinct nodes 
arrive at some point on the bus simultaneously. With this collision-free condition satisfied, every 
node can, in parallel, send a message to some other node, and the messages will all travel from 
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left to right in a pipelined fashion, thus the term pipelined bus. Note that the requirement for 
synchronized message generation is restrictive but it can be met in several ways. An optically 
distributed clock can be broadcast without skew to each node [4] or electro-optical switches [I31 
can be used in place of sources to "switch in" pulses generated from a single source. 

In cases where the communication pattem is known, a wait register in each processor may 
be programmed such that it indicates the number of messages that a processor has to skip before 
reading the message destined to i t  Alternatively, the wait register may indicate the time, rela- 
tive to the beginning of a bus cycle, at which the processor should read its message. 

To show how message pipelining works, let us look at a simple example where each pro- 
cessor wants to send a message to the k f h  processor (if it exists) to its right. If all processors 
start injecting their messages at the beginning of a bus cycle, then all the messages will travel on 
the bus in a pipelined fashion without collision. The control function wait ( i )  is defined at each 
processor i such that processor i is to receive a message from processor i - k .  Then 
w u i t ( i )  = (i - (i - k)) t  = kz. If T is considered as a unit time, we can simply write wait(i) = k. 
That is, each processor i must read its message from the bus after k time units from the begin- 
ning of the bus cycle. In this way a simple permutation, perm (j) = j + k , has been realized in a 
single bus cycle. Note that the bus shown in Fig l.l(a) supports only message transfer from left 
to right, and that a second bus should be added to support message transfer from right to left, that 
is, from a processor j to a processor i , i < j .  In general, by using two optical busses, one for 
message transfer in each direction, arbitrary permutations may be realized in one bus cycle, 
using only U ( n )  hardware 191. 

A two-dimensional array with horizontal and vertical optical busses, called Array Proces- 
sors with Pipelined Busses (APPB), has been proposed in 151. In this architecture each node is 
connected to four busses, as shown in Fig l.l@), and the entire array is schematically drawn as 
in Fig l.l(c). Many efficient interprocessor communication schemes have been suggested for 
the APPB, and it has been shown that the communication bandwidth of the APPB is substan- 
tially higher than conventional parallel architectures based on nearest neighbor and exclusive 
access bus interconnections [ 5 , 6 ] .  Thus it is of substantial interest to consider how we may take 
advantage of the APPB architecture to accomplish more parallel processing tasks in an efficient 
way. In particular we present in this paper an efficient embedding of pyramids, which, like 
meshes, are another very promising architecture for image processing and computer vision 
[2,16]. Our embedding of pyramids in the APPB has the property that all the neighboring nodes 
in a pyramid are mapped to the same bus in the APPB, thus allowing any two neighbors in the 
embedded pyramid to communicate with each other using a single bus cycle. With such an 
embedding, all algorithms designed for pyramids can be efficiently executed on the APPB. 

The dilation cost is an important measure used to evaluate the quality of embeddings of 
any source graph S = (V, , E, ] with a set of nodes V, and a set of edges E, into a target mesh 
with nearest neighbor connections. Specifically, the dilation of an edge ( U ,  v )  E E,, which is 
mapped to a path Q in the target mesh, is I Q I - 1, where I Q I is the number of processors on 
Q . This measure, however, is of little value when S is mapped to an APPB because the bus con- 
nections in the APPB will allow processors U and v to communicate in one bus cycle if Q is 
either a horizontal path or a vertical path, and in two bus cycles, otherwise. Hence, a good 
embedding of S into the target APPB should map every two neighbors in S onto the same row 
or the same column in the APPB. A mapping which satisfies this condition will be said to 
satisfy the alignment condition. As will be seen, the pyramid embedding presented in Section 3 
will satisfy the alignment condition. We start, however, by introducing a new coding scheme, 
called the reflection code, for meshes, which will be used to define our pyramid embedding. 
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2. The Reflection Code 
In this section we define a coding scheme, called the reflection code, for meshes. This code 

will be used to define our embedding of pyramids in APPB since each level of a pyramid is a 
mesh. The coding scheme is a two step scheme, which uses two transforms, G () and R ( ). The 
first transform, G ( ), results in a Gray code 171, to which the second transform, R ( ), is then 
applied to obtain the reflection code. G ( ) is defined as follows. Let s be an integer with binary 
representation sk-1 . . . so. Then 

(1) 
where ti = si+l $si fori = 0, . . . , k-2, tk-1 = sk-1, and @is the logical Exclusive-OR operator. 

Now consider a mesh of size 2' x 2'. The row/column position of each node in this mesh 
is given by ( x , y ) ,  where O < x , y  < zk. Ifxk-1 I . . x o  and yt-1 . . . y o  are the binary represen- 
tations of x and y ,  respectively, then the TOW major index for ( x , y )  is 
z = X y  =xk-i ' .  ' xoyk-1 . . . y o  (see Fig 2.1(a)). The Gray code for ( x , y )  is given by ( e , f )  
where 

G(Sk-1Sk-2 ' ' . S1So) = tk-ltk-2 ' ' ' tlfO 

(e .f 1 = (G (XI, G 0 )I. (2) 

The Gray code index for ( x ,  y ) is then defined as g = ef = ek-1 . . . eafk-1 . ' fo, that is, the 
Gray code of x concatenated with the Gray code of y (see Fig 2.1(b)). 

C !  I I I I I 

Fig 2.1.. Indexing schems: (a) Row major index z and row/column 
position (x  , y ). (b) Gray code index g and Gray code (e, f ). 

(c) The reflection code index r and the reflection code ( p  ,9). 

If k is even, then the reflecuon code ( p , 9 )  can be defined by a transform R ( ) applied to 
the Gray code (e , f ) as follows: 

( P . 4 ) = R [ ( e , f ) I = ( e k - L f k - l e k - Z f k - 3  ' ' ' eLfl, et-2fk-Zek-4fk-4 ' . '  e d 0 )  (3) 
It is easy to show that transform R ( ) belongs to the class of BPC permutations [ 111. Although 
this definition is given fork being even, the reflection code for a mesh of size 2J x 2 ,  where j is 
odd, can also be defined. In this case the binary representations of e and f are both augmented 
with a 0 at the highest bit. That is, in definition (3) we assume k = j + 1, and ek-1 = O  and 
ft-1= 0. We may then augment the original 2J x 2J mesh to a size 2J+' x D+I. After applying 
the transform R ( ), the reflection code for our original 2J x 2J mesh is obtained in the first qua- 
drant of the augmented mesh. 
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Thus given a node ( x ,  y ) in a mesh of size 2k x 2 k ,  its reflection code is obtained by 

The reflection code index of ( x ,  y )  is then given by T = p q  (see Fig 2.1(c)). 
If k is even, it is possible to define the reflection code in a modular, recursive way. That is, 

instead of encoding each node, the recursive approach encodes each block of nodes of succes- 
sively larger sizes in a 4 x 4 mesh of these blocks. Specifically, a mesh of size 22i+2 x 22i+2 is 
considered as a 4 x 4 mesh of blocks each of size 2z x 2”. If (ezi+l . . . eo , f z i + l  . . .fo) is the 
gray code of a node in the mesh, then (eZi+lez , f ~ ; + L f z ; )  is considered to be the gray code of 
the 22i x 22i block that contains the node, and (ezi-1 . . . e o ,  f2i-1 . . . fo) is considered to be the 
gray code of the node within the block. The reflection code of each 22i x 22i block in the 4 x 4 
mesh of such blocks is determined by a block transform defined as follows: 

Now, to find the reflection code of ( e u + l .  . . e o ,  f u+l . . .f o), we start with i = 0, that is, each 
block containing a single node. We then apply the block transform to successively larger i until 
the desired mesh size is reached. This definition reveals the recursive pattems of the reflection 
code, as shown in Fig 2.2. 

E l  

q 
12 

0 

I 

Fig 2.2. Recursive pattems of the reflection code index. 
(a) Numerical representation. (b) Graphical representation. 
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The reflection code index gets its name from the fact that it can be obtained through suc- 
cessive column and row reflections as seen from the reflexive relation among the four shorter 
amwed curves in Fig 2.2(b). This code has the following properties: 
1) Squaring e f f e c t :  Nodes of indices r such that 0 5 r < Z4' are arranged in a 2z x2*' 

square area at the upper-left comer of the mesh. 
2) Adjacency : The reflection codes for two adjacent nodes ( x ,  y ) and ( x ,  y+l) or (x+l, y ) are 

at Hamming distance 1. This will become clear from a Lemma in the next section. 
It is interesting to compare the reflection code index with two well known indexing 

schemes: the Gray code index and the shuffled row major index [17]. Like the reflection code 
index, the Gray code index also possesses the adjacency property, but it does not have the squar- 
ing effect. On the contrary, the shuffled row major index also has the squaring effect, it, how- 
ever, does not possess the adjacency property. Thus neither the Gray code index nor the shuffled 
row major index has both squaring effect and adjacency properties, which are both crucial to our 
pyramid embedding presented in the next section. 

3. Embedding Pyramids in Array Processors with Pipelined Busses 
As mentioned at the end of Section 1, in an embedding of a source graph into the APPB if 

every pair of neighboring nodes in the source are mapped to the same bus in the APPB, then the 
embedding is said to satisfy the alignment condition. In this section we first define specific 
alignment conditions for pyramid embeddings, and then present our pyramid embedding and 
show that it satisfies the alignment conditions. 

3.1. Alignment Conditions for Pyramid Embeddings 
Consider a pyramid of L levels with the apex at level 0. Level I ,  0 1 I 1 L - I ,  of the 

pyramid can be viewed as a mesh of size 2' x 2 [ .  To each node at level I we assign a label 
( x ,  y , I), where (x , y ), 0 S x ,  y < 2', is the row/column position of a node at level I. As a 
result, the four children of a node (x ,y . f ) .  011 IL-2,  have labels (2x,2y, f+l), 
(2x+1,2y, f+l), (2x, 2y+l, I+1) and (2x+l, 2y+l, f+l), respectively. Equivalently, if the 
binary representations of x and y are q - 1  . . xo and yl-1 . . . yo, respectively, then the chil- 
drenof (x ,y , f )  are(xr-1 . . .  X&XO, yl-1 . . .  yoY~,I+l)=(xX~,yY~,f+l), whereXo and YO 
are either 0 or 1. For convenience we may also refer to node (x ,y ,  I )  by ( e , f ,  I) or ( p ,  q ,  I), 
where ( e ,  f ) and ( p  , q )  are the Gray code and the reflection code of ( x ,  y ), respectively. In the 
case where the level number I in the label of a node is not of interest, we may omit I and simply 
write ( x ,  y ) ,  ( e ,  f > or ( p  ,q ) .  

Given the above labeling scheme, a mapping of the pyramid to the APPB satisfies the 
alignment condition if the following are satisfied: 
Cl) All the neighboring nodes at the same level, i.e., (x ,y ,  I)  and (x,y+l, I )  or (x ,y ,  I )  and 

(*+I, y , I), are mapped to either the same row or the same column in the APPB. 
C2) Eachnode(x,y,I)anditsfourchildren(xX0,yY0,1+1),X0,Yo=O, 1,aremappedtothe 

Same row or column in the APPB. This condition will be satisfied if the following are met 
C2.1) Nodes ( x X 0  , yY0, I +l), XO , YO = 0, 1, are mapped to the same row or column. 
C2.2) If (SO, yY0, I +1) are mapped to row i of the APPB, then ( x ,  y , I )  is also mapped 

to row i of the APPB. Similarly, if (XXO , yY0, f +1) are mapped to column j of the 
APPB, then (x , y , I )  is also mapped to column j . 
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In terms of the above conditions, we will present an embedding which maps the nodes of 
each level, I ,  of the pyramid such that Cl) and (2.1) are satisfied, and maps the nodes of two 
consecutive levels, 1 and 1+1, such that C2.2) is satisfied. 

3.2. An Embedding Satisfying the Alignment Conditions 
The embedding of an L-level pyramid onto an APPB (the target APPB) is obtained by 

mapping each level I ,  0 5 I < L ,  (source meshes) of the pyramid into a square or rectangular 
area (a target mesh) in the target APPB. Specifically if 1 is even, then the target mesh is of size 
2' x 2' (of the same size as the source mesh); while if 1 is odd, then the target mesh is of size 
2'+l x 2l-l (see Figure 3.1(a)). The nodes in each level are mapped to a target mesh, and the L 
resulting target meshes are then properly positioned to form the target APPB. For odd L ,  the 
resulting APPB is a square array, while for even L the resulting APPB is a rectangular array. In 
the remainder of this section, we will simplify our formulas by assuming that L is odd. The for- 
mulas for the case of even L are slightly different and may be obtained in a similar manner. 
Specifically, for odd L , a node ( x ,  y , I)  of the pyramid is mapped to node 

inthe target WPB, where(p,q)=R(G(x),GCy))isthereflectioncodeof(x,y),asdefinedin 
Equation (4). and 

1 =L-1 

P'+lP 1 =even 
p, = P,+1+2'+', 1 =odd 

1 =L-1 
1 =odd 

a,+l +2[+2, I =even 

1 
That is, node (x,y , 1 )  in the pyramid is mapped to a node at row/column position 
( p  +a!, q + p1) in the APPB. In other words, a node ( x , y )  on level I of the pyramid is 
mapped to position ( p  , q ) in a 2' x 2' mesh if I is even, or a 2'+l x 2l-l mesh if 1 is odd. The 
origin of this mesh is, then, shifted to position (a ' ,  P I )  of the target APPB. The recursive formu- 
las for pi and ai have the solution 

An example of embedding P is shown in Fig 3.2. 
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level L-i level L- 

level L- 

(a) 

level L-I 

level L -I 

level L-: 

0) level L-7 - 
Fig 3.1. Embeddings of an L-level pyramid, L odd, obtained by mapping 

each level of the pyramid into a square or rectangular area in APPB. 

In order to prove that the embedding P in Equation (5) satisfies the alignment conditions, 
we start by proving the following well known result (71. 

Lemma : G (s) and G (s +l), where G ( ) is as defined in (1). differ at exactly one bit in their 
binary representations, i.e., the Gray codes of s and s +1 are at Hamming distance 1. 
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Fig 3.2. An embedding of pyramids. (a) A pyramid with the two numbers in each node 
indicating its reflection code index r and level number I ,  respectively. 0) Numerical 
presentation of the embedding. (c) Graphical presentation (compare with Fig 2.20)). 
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Proof : Let bk  be a string of b 's of length k for some integer k 2 0, and be an empty string 
if k = 0. Any integer s can be put in the form s = di+lOIi. where d = Sk-1sk-2. . . si+2. 

si=O,andsi-lsi-2 . . .  s o = l l  . . .  1 .Thens+1=d i+ l lOi .  WehaveG(s)=hcil@-I, 
where h = G ( ~ S ~ + ~ )  and ci =si+l 8 0, and G(s+l)= hCi 1Oi-l, where Ci =si+l 8 1. 
Clearly Ci f ci , and thus G (s) and G (s +1) differ in exactly one bit. This completes the 
proof. 

This Lemma tells us that, in a mesh, the Gray codes of two neighboring nodes, say ( x ,  y ) and 
(x,y+l) or (x ,y)  and (x+l,y), are at Hamming distance 1. Since the reflection codes for ( x , y )  
and ( x ,  y+l)  or (x+l, y )  are obtained by permuting the binary bits of their Gray codes, respec- 
tively, the reflection codes for any two neighboring nodes are also at Hamming distance 1. This 
is the adjacency property mentioned in the previous section. The Lemma simplifies the proof of 
the following Proposition. 

Proposition : The embedding P in Equation ( 5 )  satisfies alignment conditions C1) and C2). 
Proof : Consider a node (x , y , 1 )  in the pyramid. Our proof will be given for 1 being even 
and the case for 1 being odd follows similarly. Let P (x, y , I )  = ( p + al , q + P,), where 
( p . q ) = R [ ( e . f ) l  and_ ( e . f ) = ( _ G ( x ) . G ( y ) ) ,  and let P (x ,y+ l . l )  = (P+ar ,4+pI)  
where ( p ,  4) = R [(e, f )] and (e ,  f ) = (G (x), G (y +l)). Then from Equation (3) we have 

Now from the Lemma, f andf differ in exactly one bit, say bit j .  In other words, if 
f =f1-1 . . . fj . . . fo, then f =fr- l  . . f', . . fo. where f', is the complement of 
f, . If j is even, then p = p  since they are independent of the even bits off and f , respec- 
tively. Thus ( x ,  y+l ,  I )  and (x , y , I)  are mapped to the same row. Similarly if j is odd, 
then (x  , y + I ,  I ) and (x , y , I  ) are mapped to the same column. A similar argument may be 
used to prove that (x , y , 1 )  and (x+l, y , I )  are mapped to either the same row or column, 
thus proving that P satisfies Cl). 
To show C2.1) is also satisfied, note that if (e, f , I )  is the parent of (E, F , I  +1), then 

( p , q )  = (el--I~I-IC[-I~I-3 . . e If I , el-d/-ze1-d+ . . eafo). 

( E , F ) = ( E l  . . .  ElEo,F[  . . .  F I F O )  

= (er-1 . . . eoEo . ~ I - I  . . . f o F o )  = (eEo .fFo) 
Then C2.1) in fact requires that the four nodcs (eE0. fF0,1+1) be mapped to the same row 
or column. Given that the Gray codes for these four nodes differ only in one or both of the 
bits EO and F o  and that 1 + 1 is odd, we conclude that the four nodes are mapped to the 
same column. 
Now we prove C2.2). According to Equation (5) the parent is mapped to 
Qp + cq , qp + P I ) ,  and the children are mapped to (qc + , p c  + PI+& While from 
Equation (3) we have 

(pp  , q p )  = (er-~f-lei-fr-3 . . . e If I . er -2 f1 - ze141-4  . . . eafd 
and 

Thus qp = p c .  Since for even I ,  PI = P/+I, we have qp + P I  = p c  + P~+I .  That is, the parent 
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(e,f, 1 )  and its four children (eE0 ,fFo, 1+1) are mapped to the same column. Thus 
C2.2)  is satisfied, completing the proof. 

33. Analysis of the Expansion Cost 
Given a source graph S = { V, , E, ) with a set of nodes V, and a set of edges E,, the 

efficiency of an embedding of S into a two-dimensional target array with V, processors is meas- 

ured by the expansion cost defined as C,  = +. 

columns in the target APPB. It may be easily shown that 

IV  I 

Assume that the embedding P of an L-level pyramid (L  odd) occupies H rows and W 

W = H = ('-Iyz 2i - 2L+1 - 1 2 -3 
Therefore, the size of the target APPB, in number of nodes, is 

~ L + I  - 2 ~ + 2  + 1 
9 IV, I =W X H  = 

Since the number of nodes in the pyramid is I V,  I = (4L - 1) /3,  the expansion cost is 

(-7, - 1; - 4(4L -,"" + 1/4) 
3(4 - 1) 

which is always less than 1.33. This expansion cost can be improved by flipping over levels L-4 
through 0 as shown in Fig 3.l(b). For this embedding we have 

w = 2L-I + 2L-3 

and 
H = 2L-1 + 2L-3 + 2L-5 

Thus the area taken by the embedding is 

105 X 4L 
256 IV, I =- 

from which it is straight forward to show that the expansion cost is always less than 1.23. 

4. Summary 
The concept of pipelined busses for parallel architectures diverges from the conventional 

exclusive access busses, and offers both possibilities and challenges for significantly improving 
the efficiency of interprocessor communications in parallel computers. We have presented an 
efficient embedding of pyramids in array processors with pipelined busses. The embedding has 
the property that all the neighboring nodes in the pyramid are mapped to the same bus. Thus any 
two neighbors in the embedded pyramid can communicate with each other using a single bus 
cycle. 
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