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ABSTRACT

Fault-tolerant architectures and algorithms are studied for pro-
cessor arrays which are subject to computational loads that alternate
between two phases. A strict phase which is characterized by a
heavy load and strict constraints on response time, and a relaxed
phase which is characterized by a light load and relatively relaxed
constraints on response time. Under this type of loads, a bi-level
algorithm may be applied to reconfigure the system after faults.
Specifically, at one level, called the fast response level, a local dis-
tributed fault-tolerant algorithm is used during strict phases to
achieve fast fault recovery at the expense of possible rapid degrada-
tion in the potential to tolerate future faults. In order to minimize
the effect of this degradation, a second level, called the optimiza-
tion level, is added. At that level, a global, relatively slow, reor-
ganization algorithm is applied during relaxed phases to restore the
system into a shape that ensures adequate fault tolerance capability
in the remaining part of the system’s mission.

Three examples are given for bi-level reconfiguration algo-
rithms which emphasize three different restoration criteria. In the
first example, the goal of the optimization level algorithm is to
maximize the probability of survival of the system. In the second
example, the goal is to maximize the potential of fault detection
and correction in the system, and in the third example, the goal is
to guarantee the locality of fault coverage during subsequent strict
phases of the system’s operation.

1. INTRODUCTION

Computing arrays that are composed of a large number of
processors provide a computational power which is comparable to,
and potentially larger than, the computational power of super-
computers. One way of providing such arrays with adequate fault
tolerance capabilities is to include in the array a number of spare
processors that are capable of taking over the tasks of processors
that fault at run-time. Many algorithms have been suggested for the
run-time reconfiguration of different processor arrays architectures.
These algorithms may be classified according to the amount of
knowledge needed to recover from a fault. On one extreme, some
algorithms require a knowledge of the state of the entire system in
order to successfully recover from a fault, while, on the other
extreme, some algorithms require only a knowledge of the states of
the faulty processor and its immediate neighbors. In many cases,
the acquisition of more knowledge about the system leads to more
robust algorithms and more efficient utilization of the available
redundancy.
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In addition to the above classification, it is possible to classify
array reconfiguration algorithms according to the changes in the
configuration required to recover from faults. In order to allow for
fast reconfiguration with very little interruption in service, it is
desirable that the coverage of a faulty node causes very few changes
in the system interconnections and in the assignment of tasks to
nodes. The modular approach (5, 18] and the roving approach [171,
for example, require extremely local reconfiguration and very few
node reassignment. Only the faulty node and its immediate neigh-
bors need to be aware of any change in the configuration. How-
ever, in such systems, the nodes are typically partitioned into
groups, and each group is assigned some specific number of spares.
A spare may only be used to cover for a node in its assigned group
or at most in a neighboring group (as in [18]). This inflexibility
reduces the fault coverage capability and thus the reliability of the
entire system.

In this paper, two types of algorithms will be considered.
Namely local algorithms and global algorithms. In a local algorithm,
no processors need to know the status of all other processors in the
system. The recovery process is distributed among the processors
with each processor using extremely local knowledge. Moreover,
only the neighbors of a faulty processor need to take some correc-
tive actions. With these properties, the reconfiguration algorithm
may achieve fast recovery and real time response, but may sacrifice
the optimal use of redundancy. In contrast, the goal of a global
algorithm is to optimize the use of redundancy with respect to some
fault tolerance criteria. This, however, requires global knowledge
about other processors in the system and often necessitates exten-
sive changes in the configuration of the system.

For unmaintained, long-life systems, local fault tolerance
algorithms have the advantages of fast recovery and real time
response. Global fault tolerance algorithms, on the other hand, pro-
vide better reliability and longer life expectancy, but often cannot
meet real time requirements. Fortunately, under certain condi-
tions, it is possible to combine the advantages of the two types of
algorithms. These conditions are described in the next Section.

2. BI-MODAL COMPUTATIONAL ENVIRONMENTS

As suggested by its name, a bi-modal computational environ-
ment is defined to be one which alternates between two modes that
have different characteristics and different computational require-
ments. The two modes considered in this paper are called the
**strict mode™ and the “‘relaxed mode’’. The strict mode is charac-
terized by a heavy computational load and a demand for fast
response within severe time constraints, while the relaxed mode is
characterized by a light computational load with relatively relaxed
constraints on the response time. A computing system subject to
such a bi-modal load, thus, alternates between strict phases and
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relaxed phases, and it is reasonable to assume that the duration of
each of the two phases is not fixed or predictable. For example, an
advanced radar system may be considered in a relaxed phase as
long as the system does not detect any target within its range.
However, at any instant, a detected target may carry the system
into a strict phase in which the nature of the target as well as its
speed, direction and destination should be determined as quickly
and reliably as possible.
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Figure 1 - A state diagram model for bi-modal
computational environments

A state transition diagram for bi-modal computational
environments is shown in Figure 1. A crucial distinction between
the two modes is that the computational load for the strict mode,
o, is much larger than the load for the relaxed mode, o, (o, and
o, are measured in some appropriate units, as for example
MFLOPS or MIPS). Another distinction concerns the allowable
delay in response time, 7. Specifically, it is assumed that the com-
puting system is subject to run-time faults and that such faults. are
reparable on-line. However, repairing a fault is assumed to con-
sume some time during which the system is not available to
advance the status of the computation. In other words, the
response time of the system is delayed, for each fault, by the time
needed to repair that fault. In the model of Figure 1, it is assumed
that allowable delays in response times are much smaller in strict
phases than in relaxed phases. Note that it is possible, though not
necessary, for 7 and o to be related in the sense that larger o
implies smaller 7. For example, in air traffic controller systems,
heavier traffic necessitates faster responses because of the higher
accuracy and more timely information required to manage the
traffic.

The average durations of the strict modes and the relaxed
modes are assumed to be u, and u ,, respectively. That is, the aver-
age transition rates from the strict mode to the relaxed mode, and
from the relaxed mode to the strict mode are assumed to be 1/u,
and 1/u,, respectively. No assumptions are made about the values
of £, and u, or about the ratio u /5.

Computing systems emphasized in this paper consist of
ensembles of computing elements where some elements are initially
designated as primary elements that contribute to the progress of
the computation and other elements are designated as spares for
the primary elements. If, during the system’s mission, a primary
element becomes faulty, then an on-line reconfiguration algorithm
is invoked to replace the faulty element by a spare. Fault-tolerant
two-dimensional arrays [8,9, 12], tree architectures [6, 10} and aug-
mented hypercube architectures {3, 14], are examples of such sys-
tems.

Let n be the number of primary elements in the computing
system and assume that the reliability of an element is given by
e~ Hence, if faults in elements are independent of each others,
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then faults in primary elements will occur at a rate of A=n\ and,
on the average, the system will need reconfiguration every 1/A
time units. In systems subject to bi_modal computational environ-
ments, it is possible for A to be larger during strict modes than dur-
ing relaxed modes. This may be due to harsher operating condi-
tions (as in systems subject to military attacks), or to high utiliza-
tion (which may lead to the emergence of hidden software and
hardware errors). For this reason, A, and A, will be used for the
fault rates during strict and relaxed phases, respectively.

3. BI-LEVEL RECONFIGURATION ALGORITHMS

As mentioned earlier, a fault in a primary element of a com-
puting array causes the invocation of an on-line reconfiguration
algorithm which disables the array temporarily. The state of the sys-
tem during reconfiguration is modeled in Figure 2 by the two states
denoted ‘‘reconfig. phase”. The transition rates from the strict
mode and the relaxed mode to the reconfiguration phase are A, and
A,, respectively. The rate of transition out of the reconfiguration
phase is 1/p, where p is the average time needed for
reconfiguration.

reconfig
phase

reconfig
phase

e

Figure 2 - Array reconfiguration in bi-modal environments

Clearly, the time, p, consumed by the reconfiguration algo-
rithm should be of the order of 7, to meet the response time con-
straints during the strict phases of the computation. Such a
demand for fast and correct responses may require the application
of extremely local and distributed reconfiguration strategies because
global and centralized strategies may not meet the time constraints
imposed on the system. However, local/distributed reconfiguration
algorithms do not take into consideration the state of all the ele-
ments in the system, and thus, in many cases, do not use the
redundancy of the system in the most efficient way. Such under-
utilization of redundancy may be the cause for rapid reliability
degradation and reduced life expectancy.

The basic idea in bi-level reconfiguration algorithms is to
apply some fast, local, distributed algorithm when the system is in
strict modes. In this mode, the reconfiguration time, p,, is con-
strained by 7,. Whenever the system enters a relaxed mode, a glo-
bal, centralized reorganization (clean-up) algorithm is applied to
restore the system into a shape that ensures adequate fault toler-
ance capability in the remaining portion of its mission. The global
reconfiguration time, p., can be afforded during relaxed phases
because it is constrained by 7, which is much larger than 7.

Global algorithms applied during relaxed modes, however,
should not make the system un-available (or reduce drasticly its
computational capability) for prolonged period of times. This is
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because, at any instant, the system may be transferred from a
relaxed mode to a strict mode. Hence, global reorganization should
proceed in short incremental steps, each meeting the strict mode
constraint =,. Between any two steps, the system should be in a
consistent state and be ready to resume computation at full capa-
city. For example, if a centralized controller decides to reassign the
task of each processor node in the system to a different node, then
reading the state of all the nodes and then writing them back to the
reassigned nodes may not be acceptable because it may incapacitate
the system for an extended period of time. An alternative strategy
is to complete the reassignment by performing, if possible, a
sequence of pair-wise node interchanges. Such strategy will be
acceptable if the time for each interchange is bound by 7, and after
each interchange, the system is ready to resume computation.

Given that the average durations of strict phases is x, and
that the average fault rate during strict modes is A,, the average
number of faults that occurs during a strict phase is ¢, = m, AL
Similarly, the average number of faults that occur during a relaxed
phase is ¢, = u, A,. The values of ¢, and ¢, may be used to
approximate the frequency of global reconfiguration in bi-modal
algorithm. Specifically, if Si.f0f3, - is a sequence of faults and
¢ =d,+¢,, then it may be assumed that global reconfiguration is
invoked after each fault f,, where k = id+b,,id+¢,+1, ..,
(i+1)¢, for i=0,1,.... For example, if ¢ =3 and ¢,=2, then global
reconfiguration is invoked after I3 fas [50 fss fon Fro f13, and so
on. In the following sections, simulation studies will be simplified
by assuming that the frequency of global reconfiguration, denoted
by RF, is constant for the life-time of the system. Such an
assumption may be justified if A, <<A; or u,<<p, thus leading
to RF ==¢,. If this is not the case, then a constant RF may be
regarded as the average frequency of global reconfiguration, namely
(6,+4,)/($,+1). It should be also noted that if ¢,<1and ¢,<1,
then RF=],

In the next sections, we present three examples of fault
tolerant systems that may benefit from bi-level reconfiguration algo-
rithms. The examples emphasize three different optimization cri-
teria and illustrate the advantages of the bi-level concept

EXAMPLE 1: MAXIMIZING LIFE-TIME IN
FAULT TOLERANT HYPERCUBE ARCHITECTURES

Hypercube multiprocessor systems are being used for a variety
of scientific applications and dedicated real time systems. However,
as the number of processors in a hypercube system increases, the
complexity of the system increases, thus leading to possible high
failure rates. For applications where degraded performance is not
allowed it is necessary to reassign the tasks of the failing processors
to some spare processors without destroying the logical hypercube
interconnection among the functioning processors. One approach
to achieve fault tolerance in hypercubes is to initially designate only
some of the processors as active and designate the rest as spares
that may cover for faulty active processors [13]. Another approach
is to decompose the hypercube structure hierarchically and add
redundancy at several levels [4, 14, 15). In this section we consider
a yet different approach in which an N node hypercube is aug-
mented with E extra nodes that are to be used as spares (2,3].
From the application point of view, only N nodes are used and
messages between them are interchanged by using the usual log ¥
hypercube addresses. When a node fails, one of the spare nodes
takes over its task and inherits its address. From this point on,
messages addressed to the failed node should be routed to the spare
node that replaces it.

For example, consider a 4-dimensional binary cube which is
augmented with 8 spare nodes such that each spare is added to
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Figure 3 - A 4-dimension augmented hypercube

some face (4 nodes) of the cube and is connected to all the nodes
in that face. Such an augmented cube is shown in Figure 3 where
Figure 3(a) shows the interconnections among the primary nodes
and among the spare nodes, and Figure 3(b) shows the intercon-
nections between the primary and the spare nodes (spare nodes are
drawn using bold lines). In accordance with Figure 3, a primary
node will be referred to by a tuple (i,j), where 1<i,j<4, and a
spare node will be referred to by (0,/), or (i,0). The 24 nodes form
a fault tolerant basic block (FTBB) in which each primary node
(i,j) may be covered by one of two spares, namely (0,;) or (i,0).

An n-dimensional hypercube may be constructed from n—4
FTBB’s by connecting, for every i and j, the corresponding n—4
nodes (i,j) as a hypercube. Message routing in such augmented
hypercube architectures [2] will not be discussed here. Rather, the
primary concern will be the reliability of the system. Specifically,
system failure is defined as the failure of a node (i,j) while neither
spare (i,0) nor spare (0,/) is available to cover for @Gi.j).

A local and distributed replacement policy in an FTBB has to
attempt to replace a failing node by one of its two spares in some
order. For example, if (/,7) fails then the replacement policy may
be to first try to replace (i,j) with (i,0) and, only if (i,0) is not
available, try to replace (i,j) with (0,/). Alternate policies are to
chose the order in some arbitrary fashion, or to try (i,0) first if
i<j, and try (j,0) first otherwise. All these policies are fast to
implement because they do not have to investigate the status of all
the other nodes. However, there are cases where, by looking at the
global status of the FTBB, an intelligent decision may be made
regarding the replacement which increases the probability of sur-
vival of the system.
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Figure 4 - (a) Local Vs. (b) global fault coverage
in the cube of Figure 3

We clarify this by an example. Assume that the nodes 2,1),
(2,2), (3,3), (1,2) and (4,2) failed in that order. If spare (i,0) is
always tried before (0,/), then the configuration after the 5 faults is
as shown in Figure 4(a). By studying that figure more closely we
find that 4 of the 11 non-faulty primary nodes have both their



spares unavailable. Such nodes are called uncovered nodes and are
denoted in Figure 4 by double circles. In other words, if each of
the 11 non-faulty primary nodes have equal probability of failure,
then the probability that the system will survive one more fault in a
primary node is 7/11. In Figure 4(b), an alternative coverage is
shown where only one node is left uncovered. This means that,
with the reconfiguration of Figure 4(b), the probability of surviving
one more fault in a primary node is 10/11.

probability of

survivval

— bi_level reconfiguration
local reconfiguration

RF =1
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Figure 5 - Probabilities of survival of 7-dimensional
augmented hypercubes
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It is straight forward to write a recursive algorithm which,
given a certain fault configuration, exhaustively finds all possible
fault-to-spare assignments and choses the one that minimizes the
number of uncovered nodes. The effect of such global
reconfiguration on the life-time of the system have been studied by
considering two d-dimensional augmented cubes (each having 2
primary nodes and 2~ spares) and simulating both systems under
randomly generated sequences of faults. Local reconfiguration have
been applied to both systems after each fault, but global
reconfiguration have only been applied to the second system every
RF faults (stands for reconfiguration frequency). For each
sequence of faults, the number of node failures that causes system
failure may be considered as an indication of the life-time of the
system. By repeating the above experiment for 1000 different
sequences, an estimate have been obtained for the probability of
each system to survive a specific number of faults, n_faults. The
results of such simulation are shown in Figure 5 for 7-dimensional
augmented cubes assuming RF = 1, S5 and 9 and following the
local policy of trying spare (i,0) or (0,/) first depending on whether
i<j or j<i, respectively. Clearly, a remarkable improvement in
the life-time of the system results from bi-level reconfiguration,

In the above discussion, a spare was not allowed to fail, an
assumption which is not realistic. In order to allow for spare failure,
one more spare is added to each FTBB. This spare is referred to by
(0,0) and is used to cover for the failure of any one of the nodes
(k,0) and (0,k), k=1,..,4. Simulations similar to the one described
above was conducted for d-dimensional systems (in this case the
number of spares is 2/7'+d—4). The results of these simulations
are shown in Figure 6 for d=7. In this figure, the probability of
survival is given in terms of the number of faults n_faults. This
number is related to the time ¢ by n_faults = At, where A=2\.

Finally, we note that the goal of the global reconfiguration
described in this section is to minimize the number of uncovered
nodes in the systems. Exhaustive search techniques were applied to

491

probability of
survivval

1.0
0.9
0.8
0.7
0.6
0.5
04
03
0.2
0.1

— bi_lcvel reconfiguration
- local reconfiguration

107720 30 %0 n_faulis

Figure 6 - Reliability of 7-dimension hypercubes with one
additional spare per FTBB

solve this minimization problem. It is not quite obvious that faster
solutions do not exist for this problem. Moreover, it is interesting
to study fast heuristics that may approximate the solution.
Specifically, any algorithm that decreases the number of uncovered
nodes is expected to improve the reliability of the system.

EXAMPLE 2:
RESTORING ERROR CORRECTION CAPABILITY
IN NMR LINEAR ARRAYS

Most research in fault tolerant computational arrays have con-
centrated on fault coverage (see for e.g. [1,12,161) and only few
research efforts have been directed toward fault detection and
correction in such arrays. The roving spare technique (17] and the
weighted checksum coding [7] are two approaches that may be used
to detect (and in some cases correct) transient or permanent faults.
However, in both cases, a latency period may elapse before faulty
processors are detected. If the processor array is subject to severe
recovery time constraints, or if the production of faulty results (due
to delayed error detection) may be disastrous, then the use of N
modular redundancy (NMR) seems to be appropriate.

(b) With TMR and a spare
Figure 7 - A 4-node linear array

In the context of computational arrays, NMR may be
achieved by replicating each node in the array N times (each replica
will be called a module). The input to a node is directed to its N
modules, and the output of the node is computed by taking a
majority vote among the outputs of the N modules. For example,




w-m v

In Fig 7(a), we show a linear array of 4 nodes, each composed of 4
modules. The array is constructed by embedding it into a
reconfigurable architecture in which every four modules are con-
nected to a switching element that may perform majority voting.
Bold and non-bold lines are used in Figure 7 to indicate active and
non-active connections, respectively. With a 4-way comparison at
the switches, it is possible to locate any single faulty module in a
node and to exclude it from that node. Clearly, a node with three
modules may still detect and correct a fault in any of its modules.
However, a node with two modules may only detect a fault.
Because of its inability to correct a detected fault, such a node is
declared faulty and consequently the entire system is declared
faulty.

We have just described a local redundancy method for increas-
ing the reliability of the array by using redundant hardware to
increase the reliability of each node. For instance, in Fig 7(a), a
failure of two of the 4 modules constituting a node may be
tolerated as long as failures do not occur simultaneously. Assuming
that the reliabilities of the modules are independent and the relia-
bility of each module is given by r(r)=e™', then the reliability of
an m-node array is given by

. [4
R,(0)= (Y [’] Fo(=p)ti ym M
i=2

where At is used as the independent variable to avoid separate
specification of the time s and the module fault rate A, If k=4ma t,
where 4m is the total number of modules, then R, (A1) is the pro-
bability of system survival after k faults. Note here that system
failure is declared as soon as any node looses its ability to detect
faults. This coincides with the detection of an un-correctable fault.

The local redundancy technique described above is not the
only way of allocating redundant hardware in a computational array.
Another technique, called horizontal redundancy, is to use only
three modules for each node and to employ the remaining modules
to form s spare nodes, each of which is also composed of three
modules. Spare nodes are to be used at run time to replace failing
nodes. For example, the system of Fig 7(a) may be reconfigured as
shown in Fig 7(b) where a spare node is available to replace any
node that becomes faulty at run time. The reliability of the array in
such case is given by:

m+s

R,,an=1%

i=m

m+s i mty—i
i e =py) @

where
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If the total number of modules in the above two redundancy
techniques is approximately the same, that is if 4m=3(m+s) + 2,
then the two reliability formulas (1) and (2) can be compared. For
example, for m=4 and s=1, it may be shown that
R,(AN<R, (1) ifrr<0.35, and R, (A1) >R, ,(\1), otherwise.

Although horizontal redundancy may, in some cases, improve
the overall reliability of the array, its implementation may require
global reatlocation of modules after a fault. In strict operational
modes, such global reallocation and any associated transfer of pro-
grams and data may be prohibited. The local redundancy technique
does not suffer from such a drawback. It only requires the
reconfiguration of the switch associated with the faulty node. As
will be described next, it is possible to design a bi-level
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reconfiguration algorithm which takes advantage of local redun-
dancy during strict phases and applies a global optimization during
relaxed phases to redistribute the redundant modules uniformly
among the nodes of the array. This increases the reliability of the
entire array.

Bi-modal reconfiguration of NMR Processor arrays.

Given 4m modules, the basic idea in the bi-modal
reconfiguration presented in this section is to initially configure an
m-node array by grouping every four modules into a node in a
manner similar to that shown in Figure 7(a). As described earlier,
faulty modules are excluded from the nodes as soon as they are
detected. However, when a node is left with only two non-faulty
modules, that node looses its fault correction capability and thus
leaves the entire system susceptible to failure. In this case, the
array is globally reconfigured such that, if possible, at least three
non-faulty modules contribute to each node. The global

reconfiguration should be performed when the system operates in a
relaxed mode. Consider for example, the same array shown in Fig-
ure 7. If the 3 modules marked by an X in Figure 8(a) fail, then
the second node in the array will have only two non-faulty
modules. A global reconfiguration of the array is shown in Figure
8(b), where each node consists of three non-faulty modules, and
thus may correct any future fault.

Figure 8(b) - Global reconfiguration of the array
of Figure 8(a)

Let 7 be the time at which the global reconfiguration takes
place. Because of the memory-less property of exponential distri-
butions, the reliability of any non-faulty module at time ¢ 27 is
given by r.(1) = e7“~"*. Hence, given the configuration of the
system at 7, its reliability at any time ¢, + > 7, may be calculated.
Specifically, for the system of Figure 8(a), that reliability is

R, A0 =p,, p,, P}, 3

where

q
Py = i [,l rr (I=r)ek
ik

is the probability of having at least k non-faulty modules in a node
composed of ¢ modules. Similarly, for the globally reconfigured
system of Figure 8(b), the reliability is

R,.00) = pd, @

From (3) and (4), it is straight forward to check that the system of
Figure 8(b) is more reliable than that of Figure 8(a). In fact, it
may be shown that for any distribution of faults in an m-node
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array, it is very unlikely that the restoration of the fault correction
capability (the assurance that each node has at least three modules)
will lead to decreased reliability at any future time 7. In order to be
more specific, let n_fault=4mAr be the number of faulty modules
in the array at time r=7 and assume that global reconfiguration is
applied at time 7. If R, (A1) and R,, (A1) are the reliabilities of
the array with and without global reconfiguration, respectively, then
the following may be proved [11]:

Lemma: There exists a ¢. such that

R, > R, (1) TSt T4

Moreover, A1, > 0.35 and, at t = 741, R, ,(A1) < 0.4.

We have written an exhaustive search algorithm for the global
reconfiguration of any m-node array which consists of 4m modules

connected by switches as shown in Figure 7. Given the restrictions ~

imposed by the interconnection and the possible switch settings, the
objective of the algorithm is to maximize the error correction capa-
bility, that is, to minimize the number of two-module nodes in the
array. This optimization level algorithm was used to answer two
basic questions. First, what is the probability of successfully restor-
ing the error correction capability in an NMR linear array when this
property is lost?, and second, how is the reliability of an NMR
array affected when bi-level reconfiguration is applied with the
objective of maximizing the error correction capability.

m =10 m =12 m =16
n_faults

PL | PR| PL | PR | PL | PR
1 0 0 0 0 0 0
2 112 | 112 65 | 65 58 | S8
3 253 | 253 | 189 | 189 | 137 | 137
4 356 | 356 | 342 | 342 | 247 | 247
5 624 | 624 | 541 | 541 | 435 | 435
6 753 | 736 | 675 | 674 | 587 | 587
7 934 | 717 | 822 | 815 | 702 | 702
8 950 | 353 | 914 | 792 | 765 | 765
9 1000 | 84 | 973 [ 508 | 874 | 869
10 1000 | 15 | 991 | 238 | 966 | 937
11 1000 0| 999 | 41| 983 | 795
12 1000 0| 999 6 | 994 | 503
13 1000 0 | 1000 0| 998 | 221
14 1000 0 | 1000 0 998 | 67
15 1000 0 | 1000 0 | 1000 6
16 1000 0 | 1000 0 | 1000 0

Table 1 - Restoration of error correction for 1000 random
configurations of n_faults faults (PL = property lost,
PR = property restored).

In order to answer the first question for a specific number of
faults, n_faults, and number of nodes, m, n_faults < m, a 1000
different distributions of n_faulrs faulty modules was generated
randomly. For each fault distribution, the reconfiguration algo-
rithm was invoked if some node in the array had more than one
faulty module, and the reconfiguration was called successful if it
produced an array with at least three modules per node. The
results of the experiments are reported in Table 1 for m =10, 12
and 16. For each value of m and n_faults, two numbers are
reported. The first, PL (property lost), is the number of cases (out
of 1000) in which the error correction capability were lost and
reconfiguration were invoked. The second number, PR (property
restored), is the number of cases (out of property lost) in which the
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reconfiguration was successful. For low values of n_faults,
reconfiguration was always successful when called, and, for
n_faults >m, successful reconfiguration is not possible because The
number of non-faulty modules in this case is less than 3m.

probability of
survival

_ with global optimization
- Wwithout global optimization

'n_faults
Figure 9 - life-time of a 12-node NMR array

The effect of bi-level reconfiguration on the reliability of the
array have been studied via a discrete event simulation similar to
the one used in Section 4. Specifically, the effect of sequences of
random faults on NMR arrays with and without global
reconfiguration was observed and, for each sequence, the number
of faults that caused the system to fail (loose its fault detection
capability) was recorded. These numbers was then used to com-
pute the probabilities of the systems to survive specific number of
faults. Figure 9 shows the probability of surviving n_faults faults
for m=12, where as before, the parameter RF represents the fre-
quency of global reconfiguration. As expected, bi-level
reconfiguration is more effective when global optimization is
invoked frequently. As RF increases, the performance of the bi-
level reconfiguration approaches that of the local reconfiguration.

EXAMPLE 3: MINIMIZING FUTURE
RECONFIGURATION DELAYS

The problem that we consider in this section is the embedding
of a ring (or a linear array) into an n-dimensional hypercube such
that adjacent nodes in the ring are mapped to neighboring nodes in
the hypercube. We are interested in finding an embedding E that
does not occupy all of the hypercube nodes, thus designating some
nodes as spares. For fast fault coverage, we require that if v,;_;, v;
and v,,, are three consecutive nodes in the ring (+ and - are
modulo the size of the ring), then these nodes are mapped to three
neighboring nodes E(v,_;), E(,), E(v ) in the cube such that
there exist a spare node, s;, in the cube that is a neighbor to both
E@,,) and E(v,,). This ensures that if node E(v,) becomes
faulty, then it may be locally (and thus quickly) covered by s;.
Only E(v,) need to be remapped to s, and only E(, ) and
E(v,,,) need to know about the fault. This property is called the
local coverage property. Along the same line of reasoning, the
node E(v,) is said to enjoy the quasi-local coverage property if the
recovery of a fault in E(v;) requires that both E(v;) and one of its
neighbors, say E(v;,;), be remapped to two new nodes. In this
case, only nodes E(v;_;) and E(,) need to be aware of the fault.

Let each of the 2" nodes in the hypercube be given an 7-bit
address such that the addresses of any two neighboring nodes
across dimension i, i=1,...,n, differ only in the i bit. The embed-
ding of a ring (or a linear array) of length / may be given in terms
of a sequence {vy, - - - »,;} of / nodes, where each two nodes in the
sequence, as well as », and »;, are neighbors across a given




dimension. Alternatively, the embedding may be specified in terms
of a sequence {d,, - - - ,d,} of dimensions, such that nodes v; and
v,y (modulo /) are neighbors across dimension 4,. This second
specification sequence, called from now on the embedding
sequence, is more general than the first because it leaves the start-
ing node v, unspecified. For example, the ring shown in Fig 10(a)
has the following embedding sequence (1,2,3,4,1,2,3,4}.

Tz 3 dimension 4
A/_\
“a 3 4 5 3 4
5 6
2 2
! 1
8 7 8
® ®)
3 4 02
s / s s3
2 2 st | $4 S5
1 6 8 1 (I
7 7
© o)
3 2
4
! 8
6 7

Fig 10 - Fault tolerant embedding of an 8-node ring into
a 16-node hypercube

The number of faults that may be tolerated in the system
depends on the number of nodes in the cube designated as spares.
For example, it may be shown {13} that in order to tolerate any sin-
gle fault (and many multiple fault configurations) in the manner
described above, 25 percent of the nodes in the cube should be
designated as spares. Similarly, in order to tolerate any combina-
tion of two faults, half of the nodes in the cube should be desig-
nated as spares. Specifically, consider the embedding sequence gen-
erated from the following algorithm in which the notation x | y
denotes the sequence resulting from the concatenation of the two
sequences x and y:

x = {1,2,3)

FOR i = 4,....n DO

x=x|{i}]x

x=x|{n}
It may be proved that the embedding derived from this sequence
may tolerate any single fault with local coverage and any combina-
tion of two faults (and many multiple faults configurations) with at
worst quasi-local coverage.

The 8-node ring shown in Fig 10(a) is embedded in a 4-
dimension cube using the above method. The local coverage pro-
perty is demonstrated in Fig 10(b), Fig 10(c) and Fig 10(d), where
the reconfigured ring is shown after the failure of nodes 5, 6 and 4,
respectively. By inspecting Fig 10(d) it is easy to see that the
remaining five spares, S1,...,§5, are not uniformly distributed in
the cube, and that none of the eight nodes constituting the ring in
Figure 10(d) enjoys the local coverage property. It is possible,
however, through a global reassignment of the nodes, to recover
the local coverage property for seven of the eight ring nodes.
Specifically, if nodes 1, 8 and 2 are reassigned to S4, SS and S2,
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respectively, and then node § is reassigned to the old location of
node -1, then every node in the ring, except node 1, will have a
spare that may cover it locally (see Fig 10(e)). Note that the res-
toration of the local coverage property requires the non-local reloca-
tion of four nodes. This may only be afforded if the system is in a
relaxed mode. Moreover, the four relocations may be performed
sequentially, and after each relocation, the system is consistent and
ready to enter a strict mode if necessary.

Hence, in a bi-level faults coverage algorithm for this exam-
ple, the goal of the global reconfiguration may be to minimize (and
possibly reduce to zero) the number of nodes that do not enjoy the
local coverage property. An exhaustive search algorithm may be
easily designed to solve this problem. Specifically, given a fault
configuration and a corresponding current embedding, the algo-
rithm finds all the embeddings that minimize the number of locally
uncovered nodes and, among these, choses the one that may be
reached from the current embedding with the least number of node
remappings. However, because of the huge number of possible
embeddings of rings in faulty hypercubes, the exhaustive search
technique may not be practically applied to reasonable size hyper-
cubes. A fast heuristic is definitely needed in this case to find a
near optimal configuration. Such a heuristics is given in [11].

CONCLUDING REMARKS

The concept of bi-level reconfiguration is a new concept that
applies, whenever possible, a global optimization algorithm to
optimize some fault tolerance criteria in the computing array. In
contrast with reconfiguration algorithms that only aim at the res-
toration of functionality, global optimization takes into considera-
tion possible distributions of future faults. The goal is to
reconfigure the array in a way that ensures optimal fault tolerance
capabilities in the remaining portion of the system’s life-time.

We have presented examples of three criteria that may be
considered during the global reorganization of computing arrays.
Namely, the expected system’s life-time, the error detection capa-
bility in the array, and the locality of fault recovery. Idealy, the
reorganization should minimize a closed-form cost function based
on these criteria. For instance, the cost functions in the examples
of Sections 4 and 5 are the number of uncovered nodes, and the
number of nodes with less than three modules, respectively. How-
ever, if more than one factor or criteria are to be considered, then a
closed-form cost function may not be easily, or even precisely,
defined. For example, in Section 6, the goal of the reorganization
is to minimize the number of nodes with no local coverage, and in
the same time minimize the reorganization effort. Also, in that
same section, a more complex cost function may be defined if, as
in Section 4, multiple modules are used for each node, and thus,
non-faulty nodes may have different probabilities of survival
depending on the number of non-faulty modules in each node.

In the three examples of this paper, we assumed that exhaus-
tive search is used to minimize the cost function. In some cases,
such a search is feasible. For instance, in Sections 4 and S, the

complexity of the search algorithms are O(% 21%) = O(n) and

0(2"), respectively, where n is the number of nodes in the sys-
tems. In other cases, however, exhaustive search is too costly. For
instance, in Section 6, the complexity of the search is O((logn)").
In all cases, it should be possible to design heuristic algorithms to
approximately solve the minimization problems. In general,
approximate solutions are acceptable in the context of bi-level algo-
rithms because any reconfiguration which reduces the cost function
is beneficial.



A different area that have not been investigated is the possi-
ble anomalies that may resuit if the giobal reconfiguration is forced
to terminate prematurely due to the start of a strict mode.
Specifically, when the global reconfiguration is completed in incre-
mental steps, it is only required that after each step, the system be
in a consistent state from which it may start computing. It is not
required, however, that the cost function does not increase after
each incremental step. In general, guaranteeing such a monotonic
decrease in the cost function seems to severly restrict the class of
applicable reconfigurations.

Finally, the idea of bi-level algorithms may be extended to
areas other than fault tolerance. In memory management, for
example, it is possible to implement bi-level garbage collection; a
fast algorithm may be applied to quickly retrieve part of the
unreferenced memory if the system is in a strict computational
mode, and an efficient algorithm may be applied to clean up
memory when the system in in a relaxed mode.
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