ARRAY PROCESSORS WITH PIPELINED OPTICAL BUSSES

Zicheng Guo, Rami G. Melhem, Richard W. Hall,
Donald M. Chiarulli and Steven P. Levitan

Departments of Electrical Engineering and Computer Science
The University of Pittsburgh
Pittsburgh, PA 15260

Abstract

A synchronous multiprocessor architecture based on pipe-
lined optical bus interconnections is presented. In this archi-
tecture the processors are placed in a square grid and are inter-
connected to one another through horizontal and vertical opti-
cal busses. This architecture has an effective diameter as small
as 2 due to its orthogonal bus connections, and allows all pro-
cessors to have simultaneous access to the busses due to its
capability for pipelining messages. Although the resulting
architecture is mesh like and uses bus connections, it has a sub-
stantially higher bandwidth than conventional and bus aug-
mented mesh computers. Moreover, it has a simple control
structure and is universal in that various well known multipro-
cessor interconnections can be efficiently embedded in it. This
architecture appears to be a good candidate for hybrid optical-
electronic systems in the next generation of parallel computers.

1. Introduction

Two-dimensional meshes of processing elements (PE)
have been extensively studied [17,20], and large scale imple-
mentations of two-dimensional meshes have been built [7,12].
However, since the communication diameter of an n X n mesh
is O (n), different approaches have been considered to augment
the communication capabilities of the mesh to reduce this
diameter. Meshes have been augmented with global busses
[1,28] and row and column busses [23], yielding both small
communication diameter and higher efficiency for certain
classes of algorithms. Interconnection networks, including
trees [21,31] and compounded graphs [13, 14], have also been
considered for augmenting rows and columns in a mesh. In
this context the binary hypercube can also be viewed as a two-
dimensional mesh with horizontal and vertical hypercube inter-
connections [13, 14].

One of the simplest mesh augmentation schemes is the
row and column bus augmentation. However, exclusive write
access to busses is a major contributor to the low bandwidth of
bus interconnections. A unique property of optics provides an
alternative to this exclusive access; namely, the ability in
optics to pipeline the transmission of signals through a chan-
nel. In electronic busses, signals propagate in both directions

This work was, in part, supported under Air Force grant AFOSR-88-
198, and under NSF grant MIP-8901053.

CH2908-2/30/0000/0333/$01.00 — 1990 IEEE

333

from the source, while optical channels are inherently direc-
tional and have predictable delays per unit distance. Hence, a
pipeline of optical signals may be created by the synchronized
directional coupling of each signal at specified locations along
the channel. This property has been used to parallelize access
to shared memory [3], to enhance the bandwidth in bus con-
nected multiprocessor systems [16], and to minimize the con-
trol overhead in networking environments [30].

In this paper, we study a synchronous communication
model which employs pipelined optical busses in computa-
tional arrays. In Section 2 we review the basic principle of
pipelining messages on optical busses. Section 3 studies com-
munication patterns and embedding results for a linear array of
PE’s interconnected with optical busses. In Section 4 we intro-
duce the basic architecture of our two-dimensional array of
PE’s interconnected with horizontal and vertical optical busses.
Here, we discuss message routing issues and embedding issues
for this new architecture. We show how binary tree intercon-
nections can be effectively embedded and identify key design
issues for effective embeddings of arbitrary interconnections.
Section 5 proposes a structural variation of the basic two-
dimensional architecture, which is capable of switching mes-
sages from horizontal (vertical) busses to vertical (horizontal)
ones, and thus increases the efficiency of the basic architecture.
In Section 6, we compare the efficiency of the pipelined bus
communication model with that of non-pipelined busses and of
store and forward communications in nearest neighbor struc-
tures. Finally Section 7 contains concluding remarks.

2. Message Pipelining on Optical Busses

Consider the linear array of processors shown in Fig
2.1(a), where n processors, each having a constant number of
registers, are connected through a single optical waveguide
(bus). Each processor is coupled to the optical bus with two
couplers, one for injecting (writing) signals on the waveguide,
and the other for receiving (reading) signals from the
waveguide [15,32]. As in the case of electronic busses, each
node j communicates with any other node i by sending a mes-
sage to i through the common bus. However, because optical
signals propagate in one direction, a node j in the system of
Fig 2.1(a) may send signals to another node i only ifi > j.

Assume that a message on an optical bus consists of a
sequence of optical pulses, each having a width (or duration) w
in seconds. The existence of an optical signal of length w

—-—

(a)

(W}

Fig 2.1. (a) A linear array of processors connected with a
waveguide. (b) Message pipelining on the waveguide.

represents a binary bit 1, and the absence of such a signal
represents a 0. For analytical convenience, we let D, be the
optical distance between each pair of adjacent nodes and T be
the time taken for an optical pulse to traverse the optical dis-
tance D, . To transfer a message from anode j to node i,i >},
the sending node j writes its message on the bus. After a time
(i=j)t, the message will arrive at the receiving node i, which
then reads the message from the bus.

The property of uni-directional propagation of optical sig-
nals may be used advantageously. Specifically, unlike the elec-
tronic case, where the writing access to the bus by each node
must be mutually exclusive, all nodes in the system of Fig
2.1(a) can write messages on the bus simultaneously , provided
that the following collision-free condition [16] is satisfied:

ey

where b is the number of binary bits in each message, and Cg
is the velocity of light in the waveguide. Clearly if this condi-
tion is satisfied and the network is synchronized such that
every node starts writing a message on the bus at the same
instant, then no two messages injected on the bus by any two
distinct nodes will collide. Here by colliding we mean two
opitcal signals injected on the bus by any two distinct nodes
arrive at some point on the bus simultaneously. This kind of
synchronized pulse generation is restrictive but it can be met in
several ways. An optically distributed clock can be broadcast
without skew to each node [5], or electro-optical switches [22]
can be used in place of sources to "switch in" pulses generated
from a single source. With this condition satisfied, every node
can, in parallel, send a message to some other node, and the
messages will all travel from left to right in a pipelined fashion
as shown in Fig 2.1(b), thus the term "pipelined bus". In the
rest of this paper we will always assume that this collision-free
condition is satisfied.

D, > bwc,

To facilitate our discussion in subsequent sections we
define some terms. Let 1 be defined as before, and n be the
number of nodes on the pipelined optical bus. We define nt as
a bus cycle , and correspondingly T as a petit cycle . Note that
a bus cycle is the time taken for an optical signal to traverse
the entire length of the optical bus. For the time being, we do
not include in a bus cycle the time taken to prepare and process
the message before it can be injected on the bus. If every node
is writing a message simultaneously on the bus, then each node

334

has to wait for at least a bus cycle to inject its next message.

Before moving to the next section, let us look at a simple
example where each node transmits a message and each node
is programmed to receive a message from the k' node (if it
exists) to its left. All nodes start injecting messages at the
beginning of a bus cycle, and all the messages will then travel
on the optical bus in pipelined fashion without collision. By
waiting for a specific interval of time, a node can selectively
read the message intended for it as that message passes by the
node. In our example, each node i is to receive a message
from node ik, and thus must read that message from the bus
after k1 time relative to the beginning of the bus cycle. In this
way, a message routing pattern in which each node sends a
message to the k™ node to its right has been realized. In fact,
as will be seen, we can efficiently realize various message rout-
ing pattems in a simple and straightforward way.

3. Linear Array Processors with Pipelined Optical Busses

The system of Fig 2.1(a) supports only message transmit-
tion from left to right. To allow message passing from right to
left, we add another optical bus to the system in Fig 2.1(a).
Now our system looks as in Fig 3.1(a). There, we have two
optical busses, the upper one is used for sending messages
from left to right, and the lower one is used for sending mes-
sages from right to left. Each node can write and read mes-
sages on either bus as desired. Obviously signals on different
busses do not disturb one another, that is, the two busses can
support two separate pipelines. The system in Fig 3.1(a) is our
architecture of linear Array Processors with Pipelined Busses
(APPB). For convenience this linear APPB will be schemati-
cally drawn as in Fig 3.1(b).

R Y
\1; \é/‘ oo \iw\. ese \/
t) \n
AN CAN LA LAY
 ————

O @ = O -6

(b)

Fig 3.1. (a) A linear array processor with pipelined optical
busses (linear APPB). (b) A schematic drawing of (a).

To specify the time at which a node should receive a mes-
sage, we define a control function wait (i) as the time that node
i should wait, relative to the beginning of the bus cycle, before
reading the message sent to it from some other node j . Thus

wait (i)= (i—j)t.

For convenience, if T is considered as a time unit, then wait
can be interpreted in terms of the number of such time units
and thus be written as wait(i)=i—j. Clearly if wait(i) > 0,

the message is to be received from the left; if wair (i) < 0, then
the message is to be received from the right. If wait (i) =0,
then no message should be received by node i. The value of
wait (i) can be stored in a wait register , and more than one
such register may be used if a node is to receive more than one
message.

3.1. Message Routing in Linear APPB

Various message routing patterns can be realized in linear
APPB’s in a simple, straightforward way. Since a routing pat-
tern is determined by the wait functions, we need only deter-
mine these wait functions for each routing pattem. The most
commonly used message routing patterns are:

One ~to—one : The system executes a SEND (j, i) instruction,
which means that a message is to be transferred from node j to
node i. Thus, wait (i) = i—j, where i is a single specific node.

Broadcast: the system executes BROADCAST (j), which
means that node j broadcasts a single message, and all other
nodes i will be receiving that message. In this case,
wait (iy=i—j forall i#j.

Semigroup Communication (2]: The system executes a
SEMIGROUP (i) instruction, which means that some global
information, e.g., extrema and sum, is to be computed and
stored at node /. This task can be accomplished by having the
linear APPB function logically as a tree with root being node i.
Later in this section we will present some embeddings of
binary trees which facilitate such tree emulation task.

Permutations : For each node j to send a message to a node
i = PERM (j), where PERM () is an arbitrary permutation, we
set wait (i)=i—j forall i.

It is clear that all these routing tasks can be performed
using a single bus cycle, except the semigroup communication,
which takes log(n) bus cycles. Such efficient accomplishment
of these commonly used message routing pattens can
significantly improve the efficiency of many parailel algo-
rithms. Note that, in linear APPB, message passing between
two non-adjacent nodes is nearly as efficient as that between
two adjancet nodes. Specifically, a message takes T more time
to pass one more node on the bus. This is not the case in con-
ventional linear arrays, where to pass a node, en route to
another node, a message has to go through a router, which
takes a much longer time. In this sense we may say that the
APPB is communication efficient, and in particular global-
cominunication efficient.

3.2. Embedding Binary trees in Linear APPB

In addition to efficiently accomplishing the above com-
monly used message routing patterns, many well known com-
munication structures can be efficiently realized by embedding
them in APPB’s. Once such embeddings are obtained, all
algorithms designed for these structures can be efficiently exe-
cuted on APPB’s. In the remaining of this section we use the
complete binary tree network to illustrate how to embed a
communication structure in the linear APPB. To show that the
binary tree network can be embedded in the linear APPB it is
sufficient to find the wait function for each processor in the
linear APPB such that the desired message routing patterns in

335

the binary tree are accomplished.

Let L be the number of levels of a binary tree and let the
root of the tree be node 1. Each node i, i 2 1, which is not a
leaf node, has two children, 2i + &, where 8 =0, 1, correspond-
ing to i’s left and right child, respectively (see Fig 3.2(a)).
Consider an embedding in which node i in the tree is mapped
to node i in the APPB. That is, our embedding is defined by
the mapping M (i) =i. For convenience, we will call this
embedding E,| (see Fig 3.2(b)). In E,;, the wait functions for
node i to receive messages from its children are:

i <2L-1

i =2 +3)=-(+93),
3 otherwise

wait, 5(i) = {0

Thus, to realize children-to-parent message routing each parent
should wait for wait, o(i) and wait, ;(i) time to read the mes-
sages from its left and right child, respectively. Clearly this
routing task can be performed using one bus cycle.

level O
level 1

level 2

@)

O 00

CHICHICNIC

NONCONONG

(©)

® 00

Fig 3.2. Embeddings of binary trees in the linear APPB.
(a) A binary tree. (b) Its first embedding, E, .
(c) Its second embedding, E, .

For parent-to-children message transfer in E,;, each
parent has two messages to send to its two children, respec-
tively. To avoid message collision, two bus cycles are needed
for carrying out such a routing task, one to send messages to
left children and the second to send messages to right children.
Let wait, 5(i) be the wait function for a child node i to receive
the message from its parent. Then we have, during the first bus
cycle,

wait, o(i) = i— % = % i even
and during the second cycle we have
waity (i) =i- 5L = L i odd i %1

where, in each cycle, wait, 5(i) =0 if not specified.

Mapping each node i in the binary tree network onto
node i in the APPB, as we have just shown above, is a straight-
forward approach. Using this straightforward approach we can
embed any type of networks in the APPB. This approach, how-
ever, may not give a good embedding in the sense that it may
take more time than needed, in number of bus cycles, to
accomplish a given communication task. As will be seen,
another tree embedding, E,;, has a better communication
efficiency than E; .

Leti, 1Si <2L, be anode at level /,0</ <L, in the
L-level binary tree, and M 5(i), be the node in the linear APPB
to which i is mapped in embedding E,,. Then E,, is defined by

Mo(i)=2L-1(i mod 2')+2L--1.

The wait functions for i to receive the messages from its two
children are:

i <2k
otherwise

{(_1)8 oL -1—2'

wait. §(i) = 0,

Embedding E,; may be viewed as being obtained by
pressing the binary tree from the root down until all the nodes
fall in the level of the leaf nodes (see Fig 3.2(c)). For this
embedding, the two children of a node i are on opposing sides
of i. Thus the parent-to-children message routing pattem in
E,, is different from the one in E,; in that the two messages
from a parent will travel on two different busses. Then the two
messages from each parent node can be simultaneously
injected on the two busses, respectively. As a result, the
parent-to-children, as well as the children-to-parent, routing
pattern can be accomplished in one bus cycle. wait,, (i) can be
obtained by noting that wait,, 8) =—wait. 5(I), where I is the
parent of i. That is, the wait functions for children-to-parent
message transfer are

_1)3+1L—1~1
waity 5(1) =15 7

4. Two-Dimensional Array Processors with Pipelined Opti-
cal Busses

Long linear optical busses have the disadvantage that a
message transfer may incur N T time delay in an N -processor
system. To reduce this delay to O (N), we consider two
dimensional APPB’s. Assume that we have N=m X n proces-
sor nodes optically interconnected as a two-dimensional m x n
array. In this two-dimensional APPB, each node is coupled to
four busses as shown in Fig 4.1, where the two horizontal
busses are used for passing messages horizontally in the same
way as before, and the two vertical busses are used for passing
messages vertically in a similar way. Each node in the array
will be given two identifications, one being a pair of numbers
x,y),08x <m,0sy <n, indicating the row-column posi-
tion of the node in the two-dimensional m x n APPB, and the
other being the row-major index, i =xn +y, of the node.
Corresponding to the bus cycle defined for the linear case, we
define, in the two-dimensional APPB, nt and m1t as a
row bus cycle and a column bus cycle , respectively, where 1

336

is a petit cycle as defined previously. When there is no confu-
sion, e.g., while talking about message transmissions in a row,
we will simply say a bus cycle instead of a row bus cycle .

-
2

PA—

Fig 4.1. A node coupled to 4 waveguides
in the two-dimensional APPB.

4.1. Message Routing in Two Dimensional APPB

A unique issue that arises in two-dimensional APPB is the
relay of messages. Specifically, suppose a message is to be
transferred from node (x,y;) to node (xz,y2), with x1#x2
and y;#yy, and it has been decided that the row transfer is
done first. Thus the message will go from (x 1, y1) to (X1, ¥2),
which is the node at the intersection of row x; and column y,,
in the first bus (a row bus cycle), and from (x, y3) to (x2,¥2)
in the second bus cycle (a column bus cycle). That is, at the
end of the first bus cycle, the message has to be buffered at
node (x,y,). For the purpose of relaying the message, we
define a control function relay for node (x 1, y2) as follows

relayl[(x,y2)l=y2-Y1,

which indicates that node (x|, y,) will read a message from a
row bus at time y; — y) (relative to the start of the row bus
cycle), and then write that message on the proper column bus
at the beginning of the following column bus cycle. If
relay [(x1,y2)] =0, then no message is to be relayed by node
(x1,y2). Clearly, in the worst case, up to n messages have to
be relayed and, therefore, n relay buffers are needed at the
relaying node. Now we are ready to show how the four most
commonly used message routing pattems discussed in the pre-
vious section can be realized in the two-dimensional APPB.
One—~to—one : The system executes a SEND [(xy, y1), (X2, ¥2)}
instruction, which requires that node (x, y)) sends a message
to node (x3,y;). Thus, we have relay [(xy, y2)l=y2-y1 (in
row bus cycle), and wait [(x2, ¥2)]=x2—x (in column bus
cycle). This communication takes 2 bus cycles.

Broadcast: The system executes a BROADCAST [(x,y)]
instruction, which states that node (x,y) is to broadcast the
same message to all other nodes (x;, y;). In the row bus cycle,
(x,y) broadcasts its message to all nodes (x,y;), y; #. Then
in the following column bus cycle all (x, y;), including (x,y)
broadcast the message in their corresponding columns. Thus
relay[(x,yj)]=y; —y,and wait [(xj,y;)] = x; —x. This com-
munication also takes 2 bus cycles.

Semigroup Communication This corresponds to the execution
of SEMIGROUP [(x, y)}, which says that some global infor-
mation is to be computed and stored at node (x,y). Clearly

this task can be accomplished using two linear semigroup com-
munications, one in rows and the other in a column. That is,
first we view each row as a linear APPB and do
SEMIGROUP (y) in all rows. Then in column y, we perform
SEMIGROUP (x). Thus 2log(n) bus cycles are needed for this
task.

Permutations : Let PERM {(x,y)] be an arbitrary permutation.
To avoid using up to n relays at each node, we can use a
three-phase routing approach [18,25] or equivalently a three-
bus-cycle approach in the two-dimensional APPB. In this
approach the first bus cycle is a "preprocessing” step which
distributes the messages in each row such that the messages
going to the same row will occupy different columns. Then
the second and third bus cycles will route the messages to their
destination row and destination node, respectively. Although
this approach is efficient, it is pointed out that the approach
inherently requires a central arbiter for arbitrary permutations.
This is because the preprocessing step requires the construction
of a bipartite graph and the partition of the bipartite graph into
complete matchings.

4.2. Embedding Binary Trees in Two-Dimensional APPB

As mentioned in the previous section, arbitrary message
routing and permutations in two-dimensional APPB may
require either three bus cycles or up to n relay buffers in each
node (in the worst case). In this subsection, we present an
embedding for binary tree networks in which only one relay
buffer is needed to route messages. Our embedding of a binary
tree network into the two-dimensional APPB is defined by a
mapping M 3(i) = (M3 (i), M3,(i)), which maps each node i,
1<i <21, in the tree to a node (M3,(i), M3,(i)) in the
two-dimensional APPB. Let i be a node at level /, 0</ <L,
in the binary tree. The mapping is defined by

) 0, 1<i <2k
M3,(1)={21—k +i mod 21+ 2k <i <2
and
; 1<i <2k
My, ()=
i mod 2 k <j <2L
[5 }, 2k <i <2

As an example, the embedding for tree in Fig 4.2(a) is
shown in Fig 4.2(b). Let us call this embedding E;3. E,3 has
these properties: (i) Parent nodes i, 1 i < 2*~1, and their chil-
dren are in row 0; (i) Parent nodes i, 2¢—! <i < 2%, which are
in row 0, have their children in row 1; and (iii) Parent nodes i,
2k <j < 2L-1 and their children are in the same column. Pro-
perties (i) and (ii) are obvious. Here we only prove (iti). Since
in a binary tree network each parent node i has two children
2i +8, 8=0,1, to prove (ili) we need only show that
M3, (i)=M3,(2i +3) for 2k <j < 2L-1 1et i be a parent
node at level I, where k <! <L—1 and i =p2! +q for some
integers p and ¢ such that 0 < g < 2. Then we have

(@)

SIS
@[_©

CHONE
e

<l
{f>

—
w
I

(b)

Fig 4.2. (a) A binary tree. (b) Its embedding,
called E,3, in the two-dimensional APPB.

M3y (2i +8)= l(Z(p 2’+q%t‘§£ mod 2I+IJ

- [(pf“ +2q +8)mod 2“’1}
= TR

et
=Ms,G).

It is now clear that the relay function is not needed for
message transfers between parent nodes i and their children if
1<i <2*1or2k <i <2L-1, However, such a relay is needed
if 2k-1<i < 2%, The wait and relay functions for E,3 are

337

obtained next.

Let wait, s[(x,y)}, where (x,y)=M(), be the wait
functions for a parent node i to receive a message from its left
and right child for 3=0,1, respectively. For the case
1 <i <21, the results for E,| in the linear APPB directly
gives wait, 5[(x, y)] =—(y +). For the case 2k < < 2L-1 let
ibeatlevel [,k </ <L-1,andi =p2'% + 4. Then it can be
shown that

M (i)=2*% +q,

M, (Q2i +8) =21+ +2q +35,
and thus

wait [(x, y) =M (i) = Mx(2i +8)=~(x +3).
wait, §(i) can be easily obtained by noting that wait, (/) =
—wait, s(I), where [is the parent of i.

For the case 21 i < 2k, both wait and relay functions
are needed. Let relay. 5((0,y)], 8=0,1and 0<y < 2k be
the relay function of node (0, y) for relaying the message from

a left and right child node, respectively, to its parent. Then we
can show that

0<y <2,

k-lgy <2k,

relay. s((0, y)l =-1,
wait. §[(0, y)}=2¢ —y = §,

Note that each node (0, y) needs to relay only one child-to-
parent message with the message from left (right) child being
relayed by (0, y) with y even (odd), and that although node 0
is not a node in the tree it helps relaying messages. Also note
that relay. 5 is applicable to column bus cycles. Now let
relay‘,vg[(O, y)], ¥ even (odd), be the relay function for node
(0,y) to relay the message from a parent (0,Y) to its left
(right) child for §=0 (1). Then relay, 5 and wait, 5 are easily
obtained from relay, 5[(0, ¥)] = —wait. 5[(0, Y)].
wait,, 5[(0, Y)] is determined as in the linear case.

5. A Structural Variation of Array Processors with Pipe-
lined Optical Busses

The basic two-dimensional APPB architecture in the pre-
vious section was proposed to reduce the length of a bus cycle
for an N -processor system from N in linear APPB to N .
Although the reduction in the length of a bus cycle is
significant, in general it takes 2 bus cycles, a row bus cycle and
a column bus cycle, for two processors to communicate with
each other, while only 1 bus cycle is necessary for the same
communication in the linear case. Such 2-bus-cycle communi-
cation requires a message relay which involves an optical-
electronic-optical information conversion, reducing the com-
munication efficiency.

Two approaches may be used to deal with this disadvan-
tage: a “software" approach and a hardware approach. The
software approach relies on designing algorithms that require
only communications between two processors on the same bus.
For example this approach has been used in [10, 11] to obtain
embeddings of many interconnection networks, e.g., binary
trees, hypercubes, and pyramids, into the basic APPB such that
any two neighboring nodes in the source network are mapped
to the same bus in the two-dimensional APPB. In this paper

338

we consider a hardware approach. In particular, we propose a
structural variation of the basic APPB, called APPB with
switches. In this structural variation of the basic APPB some
electronically controlled optical switches are used to switch an
optical signal, say, from a row bus to a column bus, eliminat-
ing the optical-electronic-optical conversion in the basic
APPB. In an m xn APPB with switches, a bus cycle is
defined as (m +n)t.

5.1. The Architecture of APPB with Switches

In APPB with switches the connection of the switches at
each node is as shown in Fig 5.1(a), where each switch is a
Ti:LiNbO; switch [22,26] of the type used to implement the
4 x 4 nonblocking interconnection network in [8]. A switch
may assume one of the two states straight and cross as defined
in Fig 5.1(b). Initially all the switches are at state straight,
which corresponds to the case where there is no message
switching. That is, the APPB with straight switches is identical
to the basic APPB architecture. When a message switching is
desired at some node, a switch at that node must be set to the
cross state.

2 — o
Y Y
~ “x
I®,
- <)
N I
(@

Skp SrD
—> —p - p —
straight cross l

®)

Fig 5.1. (a) Switch connections at each node in APPB
with switches. (b) Difinition of switch states.

To determine a switch state at a node (x,y)inanm Xn
array, we define a variable S;;(x,y), 0<x <m, 0Ly <n,
and i,j e {R,L,D,U}, where R,L,D, and U stand for
rightward, leftward, donwward, and upward, respectively. For
example, Sgp (x, v) is used to specify the control of the switch
which guides optical signals in rightward-to-downward direc-
tion at node (x,y). The value of S;;(x,y) is a tuple (A, p),
where the integer A specifies the time, in number of petit cycles
and relative to the beginning of a bus cycle, at which the
switch is set to cross, and the integer p determines the period,

again in number of petit cycles, during which the switch should
remain cross. Note that although the length of a bus cycle is
m + n, a switch must be set to cross before time n so that a
message can be switched from a row bus to a column bus, that
is, 0<A <n. For the same reason if messages are to be
switched from column busses to row busses, then 0< A < m.
In both cases, 0 Sp<m+n~X.

For example, if Sgp (x, y) = (0, 2), then switch Sgp(x,y)
should be set to cross at time 0, i.e., the beginning of the first
petit cycle of a bus cycle (which is also the beginning of that
bus cycle) and should remain cross for 2 petit cycles thereafter
in that bus cycle. If Spp(x,y)=(A,0), switch Sgp(x,y)
should remain straight throughout an entire bus cycle, as in its
initial state. Clearly Sj;(x,y)=(A, m+n~1-A) means that a
switch should remain cross until the end of a bus cycle once it
is set to cross at time A, and Sij(x,y)=(0, m+n—1) means
that a switch should be set to cross at the beginning of a bus
cycle and then remain cross throughout the entire bus cycle.

In the basic APPB architecture messages will not collide
as long as the collision-free condition (1) in Section 2 is
satisfied. This condition, however, is not sufficient for APPB
with switches, as can be seen in Fig 5.2 where two messages
from source nodes (s, t) and (u, v), respectively, are colliding
on the downward bus at node (x, y). Thus additional condition
must be imposed to ensure collision-free communications in
APPB with switches. For this, we present the following
Lemma.

Lemma Assume that the collision-free condition (1) in
Section 2 is satisfied and that all nodes start writing their
messages simultaneously. Then, two messages from two
distinct nodes (s,) and (u, v), respectively, passing node
(x, y) on the same bus will collide iff

[s—x|+1t=yl=lu—-x|+|v-yl|

Proof Noting that two messages from (s,t) and (u,v)
will collide at node (x, y) iff they arrive at (x, y) simul-
tanenously, i.e., their Manhattan distances to (x,y) are
equal, the proof can be completed by simple distance
arguments and is thus omitted.

5.2. Embedding Binary Trees in APPB with Switches

In this section we use binary trees as an example to illus-
trate how to embed interconnection networks in APPB with
switches. The embedding, called E,4, is obtained by modifying
embedding E, ; for the basic APPB to facilitate switch states in
APPB with switches. (In the following we use the same nota-
tion as that in the definition of E, ;. So the reader may refer to
Section 4.2 for the meaning of each variable.) The embedding
is defined by a mapping M4(i) = (M4,(i), M4, (i)) with the
modification that for 0<i <2¥, we have My (i) =
2!k (i mod 2') + 2'-*-1 instead of M3, (i)=i as in the
definition of E,3. That is our embedding E,4 is defined by the
mapping M 4(i)= (M4 (i), M4, (i), where

1<i <2k

. 0,
M“J(’):{zl—k Yimod 2, Z<i<ok

339

{>l

O

O

Fig 5.2. Message collision in APPB with Switches. Two
messages from source nodes (s, ¢) and (u, v), respec-
tively, are colliding on the downward bus at node (x, y).

and

21 mod 21y + 2611, L<i<2t

i mod 2!
21—k ’

Note that if we view levels 0 through k—1 of the L —level
binary tree to be embedded as a k—level subtree, then in both
E,; and E,4 this subtree is embedded into row O of the two-
dimensional APPB. The difference is that in E,3 this subtree
was embedded into row 0 using embedding M (i), while in E, 4
it is embedded into row 0 using M,(i). As an example Fig 5.3
shows the embedding of the binary tree of Fig 4.2(a) into
APPB with switches.

In E, 4, communications between parents i and their chil-
dren are the same as those in E,, and E, 3 for 1 <i < 2%t and
2k <i < 2L-! respectively. For communications between the
parents i, 2¥~1 <i < 2% which are mapped to row 0, and their
children, which are mapped to row |, the switch states and the
wait functions are determined in the following.

May(i)=
2% < <2k

Assume that in E,4, node i, 2¥-1<i < 2k in the L —level
binary tree is mapped to node (0, y), ¥ odd, in the APPB with
switches. Then it can be shown that the two children 2/ + 3 of
i are mapped to nodes (1, y—149). That is, the right child of i
is mapped to the same column y as i, and the left child of 7 is
mapped column y—1. Therefore switching is needed only for
the communication between i and its left child. We obtain the
following switch state for i to send a message to its left child.

0,2),
Sip(0,y)= { E()‘ 0),

if v even
otherwise

Similarly the switch control for i to receive a message from its

1°

e
e}

CHCHC

10}
o |
@)

©
1

10l ©

Fig 5.3. Embedding E, 4 of the binary tree of Fig 4.2(a)

€
@

in APPB with switches.
left child is
©,2), if y even
Sur ©0,y) ={ (0, 0), otherwise

For all other switches not specified above, we have
Sij(x,y)=(0, 0). It should be easy to check, using the
Lemma, that these switch controls do not cause message colli-
sion in E,4.

The wait functions for i to receive a message from its left
and right child are, respectively,

. 2, ify odd (on row bus)
wait ol(0, y)] = { 0, or}):’erwise

and

. -1, if y odd (on column bus
wait. 1[0, y)l ={ 0, oﬂywrwise()

The wait functions for i ’s children to receive a message from i
can be obtained similarly.

In E,4, the k—level subtree, which consists of levels 0
through & — 1, is embedded into row 0 using E, instead of E; ;.
As pointed out in Section 3.2, E; has the disadvantage that the
parent-to-children message routing in linear APPB requires
two bus cycles so that message collision will not occur. Should
we use E,| for the subtree embedding in row 0, it would also
take two bus cycles for such message routing. Using E, for the
subtree embeddirtg in row 0 successfully solves the problem.

340

6. Performance Analysis

In this section, we evaluate the merit of our pipelined
communication model by comparing it with linear arrays with
nearest neighbor connections and exclusive access busses. We
evaluate the different models irrespective of the technology
used to implement these models. That is, we assume that the
transmission rate and the propagation delay are the same for
both optical and electronic communication links.

Consider a linear array of n processors with nearest
neighbor connections as shown in Fig 6.1 and assume that the
physical separation between each pair of neighboring proces-
sors is D. Such an array can emulate one cycle of a pipelined
bus in a time n(T,+Tp), where Tp is the propagation time
required for a signal to travel a distance D and T), is the time
required to process a message at the sending and the receiving
ends of a communication link. T, includes synchronization,
message generation, buffering and routing. The bandwidth of
the array, B,, defined as the maximum number of messages
that may be transmitted per second, is thus given by

B = n _ 1 1
" nT, +Tp) Tp p+I
where p=T, /Tp.
DG = D D

Fig 6.1. A linear array with nearest neighbor connections.

For the pipelined linear APPB, the optical distance, D,,,
between consecutive processors should be larger than the mes-
sage length bwc, (see equation (1) in Section 2). In other
words, if D 2 bwc,, then D, =D, otherwise, D, should be
made equal to bwc, (for example by coiling an optical fiber) so
that each processor can inject a message into the bus without
collision. Thus, the signal propagation time between two con-
secutive processors, Ip,, is max{Tp ,alp}, where
a=(bwc,)D. The pipelined bus cycle time is then
T, +nTp max{l, a}. Given that n messages may be transmit-
ted during a pipelined bus cycle, the bandwidth of the pipe-
lined bus is

_ n

By = T, +n Tp max/1,0J @
and thus,

B, ___ne+l) 3)

B, p+nmax{l,o}

In Fig 6.2, a parametric plot showing the relation between
B,/B, and p is given in terms of n for<1 and o> 1. The
curve for o<1 corresponds to the case where the message
length is less than or equal to the physical separation between
processors. The curve for o > 1 reflect the cases where mes-
sage length is longer than the physical separation D between
processors and thus the optical path has been extended to
accommodate the entire message. By taking the limit of equa-
tion (3) as p — oo, it is clear that, for fixed & and large p, the

bandwidth ratio B,/B, approaches n. Also, when p=1 and
a < 1, we obtain BP/B,, =2.

=

N3

[
=

d

1 n-2 an-2 P

Fig 6.2. The ratio, B, /B, of the bandwidth of a pipelined
bus to that of a linear array with nearest neighbor
connections as a function of p, xand n.

For multiprocessor interconnections, D is determined by
placement and routing within VLSI chips, by PC board con-
nections, or by back plane interconnections. In all cases, D is
relatively small, and thus Tp is small. Given that T, is, at
least, on the order of microseconds, the ratio, p, of processing
to communication times should be much larger than one (on
the order of 10-1000). Also, with current technology, it is rea-
sonable to assume that o is relatively small (between 1 and
10). For example, for board to board communications (D = 10
cm), it is possible to drive an optical communication line at the
speed of 10 GHz. Assuming that the speed of light in optical
fibers is Cg = 2 x 108 m/sec, and that each message contains &
= 16 bits, we obtain o = 3. The same value of a is obtained if
optical communications are implemented on GaAs wafers at
100 GHz and a physical processor separation of 1 cm. Note
that the value of o may be reduced if parallel busses are used
to reduce b.

Next we compare the bandwidth of pipelined busses with
that of exclusive access busses. Given that the bandwidth of
exclusive access busses is B, = 1/ (T, + nTp), we have

Bp — np+n

‘B, p+nmax2i,(x}

This shows that, as o approaches one, the pipelined bus can
accommodate n messages in the same cycle time as the
exclusive access bus. For a > 1, the pipelined bus cycle will
be stretched to accommodate the length of the messages, and
thus, the performance gain due to pipelining will be less than
n. However for any given o > 1, as p goes to infinity B,/B,
will approach n.

The above analysis is independent of the media used for
communication. If optical pipelined busses are to be compared
with electronic busses, then the physical constraints on the
electronic propagation speed should be taken into account.

341

Specifically, the effect of capacitive loading and mutual induc-
tance on the signal propagation speed (the transmission line
effect) should be considered in the electronic case. Thus, mes-
sage pipelining using electro-optical technology offers a poten-
tial for substantially enhancing bandwidth utilization. Further,
message pipelining techniques will be of increasing effective-
ness because this technology offers the capability of generating
very short pulses [9, 27] thus reducing w and decreasing o.

7. Concluding Remarks

We have presented efficient communication models
which exploit the property of unidirectional propagation of
optical signals to pipeline messages on optical busses. As
shown in Section 6, the pipelined model has its merits irrespec-
tive of the technology in which it is implemented. Although
the presentation in this paper is based on an optical model in
which delays inherent in optical fibers serve as slots for space
multiplexing, it is possible to use shift registers as buffer
memories for these slots [29]. Thus pipelined busses may be
implemented in either optics or electronics. However, for the
electronic implementation, the signal propagation delay, Tp,
will depend on the speed of the shift registers, resulting in a
relatively small value for the ratio of processing to communi-
cation times, p.

In this paper we used only the binary tree networks to
illustrate how to embed a communication structure into our
APPB architectures. Optimal embeddings for other well
known interconnection networks, including pyramids, X-trees
[6], hypercubes, and shuffle-exchange networks have also been
obtained [10, 11].

We have not considered in this paper issues that are
relevant to the implementation of the proposed architecture.
Such issues include the synchronization of the processing ele-
ments to the accuracy implied by the speed of optics, temporal
pulse positioning, optical fanout and the distribution of optical
power in a way that allows the detector at each processor to
detect the optical signals correctly. These issues must be
addressed with reguard to the reliability, scale, and device
technology which is appropriate for computing applications.
Results related to these issues may be found in [4,19,24].

References

1. S.H. Bokhari, ‘‘Finding Maximum on an Array Processor
with a Global Bus,”” IEEE Trans Comput, vol. C-32, no.
2, pp. 133-139, 1984.

2. Y.C. Chen, W.T. Chen, G.H. Chen, and J.P. Sheu,
“‘Designing Efficient Paralell Algorithms on Mesh-
Connected Computers with Multiple Broadcasting,”
IEEE Trans Parallel Distributed Systems, vol. 1, no. 2,
pp. 241-245, Apr 1990.

3. D.M. Chiarulli, R.G. Melhem, and S.P. Levitan, ‘‘Using
Coincident Optical Pulses for Parallel Memory Address-
ing,”” IEEE Computer, pp. 48-57, Dec 1987.

4. D.M. Chiarulli, S.P. Levitan, and R.G. Melhem, ‘‘Optical
Bus Control for Distributed Multiprocessors,”” Journal of
Parallel and Distributed Computing, to appear.

I

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

B.D. Clymer and J.W. Goodman, ‘‘Optical Clock Distri-
bution to Silicon Chips,’’ SPIE Proceedings, vol. 625, pp.
134-138, 1986.

AM. Despain and D.A. Patterson, ‘‘X-Tree: A Tree
Structured Multi-Processor Computer Architecture,”” Sth
Symp on Computer Architecture, pp. 144-151, 1978.
M.J.B. Duff, D.M. Watson, T.J. Fountain, and G K. Shaw,
““A Cellular Logic Array for Image Processing,’’ Pattern
Recognition, vol. 5, pp. 229-237, 1973.

JR. Erickson and H.S. Hinton, ‘“‘Implementing a
Ti:LiNbO; 4 X 4 Nonblocking Interconnection Network,”’
SPIE Integrated Optical Circuit Engineering, vol. 578,
pp. 201-206, 1985.

J. Fujimoto, A. Weiner, and E. Ippen, ‘‘Generation and
Measurment of Optical Pulses as Short as 16 fs.,”
Applied Physics Letters, vol. 44, no. 9, 1984.

Z. Guo and R.G. Melhem, ‘‘Embedding Pyramids in
Array Processors with Pipelined Busses,”” International
Conf on Application Specific Array Processors, Princeton,
NJ, 1990, to appear .

Z. Guo, ‘‘Array Processors with Pipelined Busses and
Their Implication in Optically and Electronically Inter-
connected Multiprocessor Architectures,’” , Ph.D. Thesis,
Dept of Electrical Engineering, University of Pittsburgh,
in preparation.

D.J. Hunt, ““The ICL DAP and Its Application to Image
Processing,”” in Languages and Architectures for Image
Processing, ed. Duff & Levialdi, 1981.

AM. Jrad and R'W. Hall, ‘“The OFC Enhanced Mesh
Architecture: A Performance Study,”’ Proc of the 1987
Workshop on Comput Arch for Pattern Anal and Machine
Intelligence, pp. 184-191, 1987.

AM. Jrad and R.W. Hall, ‘‘Orthogonal Fast Channels:
An Enhanced Mesh Architecture,”’ International Conf on
Parallel Processing, pp. 828-831, 1987.

B.S. Kawasaki, K.O. Hill, and R.G. Lamont, ‘‘Biconical-
Taper Single-Mode Fiber Coupler,”” Optics Letters, vol.
6, no. 7, pp. 327-328, July 1981.

R.G. Melhem, D M. Chiarulli, and S.P. Levitan, ‘‘Space
Maultiplexing of Waveguides in Optically Interconnected
Multiprocessor Systems,’’ The Computer Journal, vol.
32, no. 4, pp. 362-369, 1989.

R. Miller and Q.F. Stout, ‘‘Mesh Computer Algorithms
for Computational Geometry,”” IEEE Trans Comput, vol.
C-38, no. 3, pp. 321-340, 1989.

M. Misra and V.K. Prasanna-Kumar, ‘‘Efficient VLSI
Implementation of Iterative Solutions to Sparse Linear
Systems,”’ Technical Report, Univ of Southern Califor-
nia, no. IRIS #246, May 1989.

M. Nassehi, F. Tobagi, and M. Marhic, “‘Fiber Optic
Configurations for Local AREA Networks,”’ IEEE Jour-
nal on Selected Areas in Communications, vol. SAC-3,
no. 6, pp. 941-949, Nov. 1985.

D. Nassimi and S. Sahni, ‘‘Data Broadcasting in SIMD
Computers,”” IEEE Trans Comput, vol. C-30, pp. 101-

342

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.

107, 1981.

D. Nath, S.N. Maheshwari, and P.C.P. Bhatt, ‘‘Efficient
VLSI Networks for Parallel Processing on Orthogonal
Trees.”’ IEEE Trans Comput, vol. C-32, no. 6, pp. 569-
581, 1983.

A. Neyer, ‘‘Electrp-Optic X-Switch Using Single-Mode
Ti:LiNbO 3 Channel Waveguides,”' Electronics Letters,
vol. 19, no. 14, pp. 553-554, July 1983.

V K. Prasanna-Kumar and D. Reisis, ‘‘Image Computa-
tions on Meshes with Multiple Broadcast,”” IEEE Trans
PAMI, vol. PAMI-11, no. 11, pp. 1194-1202, 1989.

P. Prucnal, D. Blumenthal, and P. Perrier, ‘‘Self Routing
Photonic Switching Demonstration with Optical Con-
trol,”” Optical Engineering, vol. 26, no. 5, pp. 473-477,
1987.

C.S. Raghavendra and V K. Prasanna-Kumar, ‘‘Permuta-
tions on ILLIAC-1V Type Networks,”” /EEE Trans Com-
put, vol. C-37, no. 7, pp. 662-669, 1986.

R.V. Schmidt and R.C. Alfemess, ‘‘Directional Coupler
Switches, Modulators, and Filters Using Alternating AP
Techniques,”’ IEEE Trans on Circuits and Systems, vol.
CAS-26, no. 12, pp. 1099-1108, Dec 1979.

C. Shank, ‘“The Role of Ultrafast Optical Pulses in High
Speed Electronics,”” in Picosecond Electronics and
Opto-electronics, ed. Morou G., Bloom D. and Lee C.,
Springer Verlag, 1985.

Q.F. Stout, ‘“Mesh Connected Computers with Broadcast-
ing,”’ IEEE Trans Comput, yol. C-32, pp. 826-630, 1983.

A.S. Tanenbaum, Computer Networks, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

F. Tobagi, F. Borgonovo, and L. Fratta, ‘‘Expressnet: A
High-Performance Integrated-Services Local Area Net-
work,”” IEEE Journal on Selected Areas in Communica-
tions, vol. SAC-1, no. 5, pp. 898-912, 1983.

1.D. Ullman, Computational Aspects of VLSI, Computer
Science Press, Rockville, MD, 1984.

M.S. Whalen and T.H. Wood, ‘‘Effectively Nonreciprocal
Evanescent-Wave Optical-Fibre Directional Coupler,”
Electronics Letters, vol. 21, no. 5, pp. 175-176, Feb 1985.

