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An Efficient Modular Spare Allocation Scheme and
Its Application to Fault Tolerant Binary Hypercubes

M. Sultan Alam and Rami G. Melhem

Abstract—In this paper, we consider fault tolerant systems that are
built from modules called fault tolerant basic blocks (FTBB’s), where
each module contains some primary nodes and some spare nodes. Full
spare utilization is achieved when each spare within an FTBB can replace
any other primary or spare node in that FTBB. This, however, may
be prohibitively expensive for larger FTBB’s. Therefore, we show that
for a given hardware overhead more reliable systems can be designed
using bigger FTBB’s without full spare utilization than using smaller
FTBB’s with full spare utilization. We also present sufficient conditions
to maximize the reliability of a spare allocation strategy in an FTBB
for a given hardware overhead. The proposed spare allocation strategy
is applied to two fault tolerant reconfiguration schemes for binary
hypercubes. The first scheme uses hardware switches to replace a faulty
node and the other scheme uses fault tolerant routing to bypass faulty
nodes in the system and deliver to the destination node.

Index Terms— Binary hypercube, fault tolerance, modules, multipro-
Cessors, rec ation, redundancy, routing, spare allocation.

I. INTRODUCTION

We investigate modular techniques that efficiently use spare nodes
to achieve fault tolerance in multiprocessor systems. Modular re-
configuration techniques have been previously proposed for binary
tree architectures [7], [8], [11] and hypercubes [3], [6], [9]. The
advantages of using modular techniques are 1) local and fast fault
detection and reconfiguration, 2) ease of construction, scalability, and
module replacement, and 3) simple fault tolerant routing algorithms.
A module consists of some primary and spare nodes, and is called
a fault tolerant basic block (FTBB). If each spare in an FTBB can
replace any primary node from that FTBB, then full spare utilization
in the FTBB is achieved. With full spare utilization within each
FTBB, the reliability may be enhanced by using larger FTBB’s.
However, full spare utilization in large FTBB’s may require a large
number of switches and therefore may not be practical. In such cases,
it may be more advantageous not to use full spare utilization in
FTBB’s. In other words, for a fixed hardware overhead, systems built
from large FTBB’s without full spare utilization may be more reliable
than systems built from smaller FTBB’s with full spare utilization.
In Section II, we show that the reliability of an FTBB without full
spare utilization may be optimized for a given hardware overhead if
the spares are allocated such that coverage overlap is minimized. This
spare allocation strategy can be used for any FTBB irrespective of
the interconnection among the primary nodes. That is, the proposed
spare allocation strategy is architecture independent. In Section III,
we apply this spare allocation strategy to two reconfiguration schemes
for fault tolerant binary hypercubes. The first scheme uses hardware
switches to preserve the hypercube topology and the second scheme
uses fault tolerant routing to deliver a message correctly to its
destination without considerable delay.

The use of hardware switches to tolerate faults in hypercubes
has first been suggested by Rennels [9]. Recently, Chau et al. [3],
Dutt ef al. [6] and Banarjee ef al. [1] have suggested fault tolerant
reconfiguration schemes for hypercubes. Chau et al.’s scheme uses
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decoupling switches to achieve the same reliability as Rennels’
scheme using less hardware overhead and fewer spare nodes. The
drawback of Chau et al.’s scheme is that it takes longer to reconfigure
since, on average, the states of half the nodes in a module have to
be shifted to neighboring nodes. Dutt et al.’s scheme uses hardware
switches to replace a faulty node and can be used to design any
fault tolerant multiprocessor system with any degree of redundancy.
This scheme is shown to be more efficient than Rennels’ modular
scheme in terms of the area/hardware overhead. In Section III-A,
we introduce a scheme which requires the same number of spares
and less switches to achieve the same reliability as Chau et al.’s
scheme. This scheme, however, does not have the overhead of
shifting processor states, and thus, reduces the reconfiguration time
and overhead significantly. Our scheme also compares favorably in
terms of the area/hardware overhead for the switches with that of
Dutt et al.’s. Banarjee et al.’s scheme is different from the above
schemes since it does not use hardware switches. Instead it uses the
spare nodes to act as switching elements.

The second technique, introduced in Section III-B, uses a general
two-phase fault tolerant routing technique. This technique preserves
the logical topology of a binary hypercube by modifying the routing
algorithm rather than preserving the physical topology. A node failure
in this scheme is assumed to be the failure of the processor, the
router, and the links of the node. If a node P fails, then a spare
node that replaces P inherits the address of P. The routing algorithm
is completely distributed and requires local fault knowledge, in the
sense that only the neighbors of the failed nodes need to know about
the fault in order to take corrective action. We derive an upper bound
on the number of steps the algorithm requires to deliver a message
to its destination. This routing algorithm is different from the routing
algorithms used in injured hypercubes [2], [4], [5] since it routes
messages in fault tolerant hypercubes that utilize spare nodes.

II. MoDULAR FAULT TOLERANCE

In order to formally describe the notion of modular fault tolerance,
we introduce some terminology. The primary set PS(S) of a spare
node S is the set of primary nodes that S can replace. The flexibility
flex(S) of a spare node S is the cardinality of PS(S). For a primary
node P, the spare set SS(P) of P is the set of spare nodes that can
replace P and the degree of coverage deg (P) of P is the cardinality
of SS(P). If, in a given system, flex(S) is constant for each § and
deg(P) is constant for each P, then, these constants are referred to
by flex and deg, respectively. In terms of system implementation,
a constant degree of coverage and a constant flexibility means that
the spare nodes and the primary nodes may be homogencous. In this
paper, we only consider systems with constant deg and flex.

A fault tolerant basic block F is defined as a minimal set of nodes
such that, for any primary node P and spare node S in F, the nodes
of SS(P) and PS(S) are in F. For example in Fig. 1(a), the primary
nodes 1, 2, 3 and 4 (denoted by the large circles) and the spare nodes
1 and 2 (denoted by the small circles) belong to one FTBB. The size
of an FTBB is given by a tuple (M, K) where M and K are the
number of primary and spare nodes, respectively. In an FTBB of size
(M, K), full spare utilization is achieved if flex = M and deg = K.
In this case, the FTBB is K-fault tolerant in the sense that it can
tolerate any combination of up to K faults, and cannot tolerate any
combination of more than K faults.

Constructing fault tolerant systems using small size FTBB’s with
full spare utilization has the advantage of localized recovery mecha-
nisms. However, using large FTBB’s leads to more reliable systems.
For instance, consider a system constructed from two FTBB’s, fi and
f of sizes (M., K1) and (M>, K>) respectively, with full spare uti-
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Fig. 1.

lization within each FTBB. Such a system is less reliable than another
system formed by a single FIBB, f3, of size (M; + Ms, K1 + K3)
with full spare utilization. Specifically, the first system can tolerate
up to any combination of min { A7, A} faults and cannot tolerate
any combination of more than K + K> faults. The system may
or may not tolerate configurations with a number of faults between
min {K1. K2} and K; + K>, depending on the fault distribution.
The second system, however, can tolerate any combination of up to
K1 + R faults. Hence, the fault configurations that f, can tolerate
is a proper superset of the fault configurations that the system of f;
and f, can tolerate.

Constructing a system using FTBB’s with full spare utilization
requires more hardware than constructing it using smaller FTBB’s,
and therefore may not be practical. An alternative to using full spare
utilization in small FTBB’s is to use large FTBB’s with less than full
spare utilization. We use bipartite graphs to explain this. The primary
and spare nodes in a system are represented by the left- and right-
hand sides, respectively, of a bipartite graph (see Fig. 1), and each
edge in the bipartite graph specifies, for each primary node, a spare
that can replace that node. In Fig. 1(a), a system which consists of 16
primary nodes and 8 spare nodes is constructed from four FTBB’s,
each having four primary and two spare nodes and uses full spare
utilization. Therefore, flex = 4 and deg = 2. Two systems with the
same flex and deg are given in Fig. 1(b) and in Fig. 1(c) for FTBB’s
with 8 and 16 primary nodes, respectively. Each of the FTBB’s in
Fig. 1(b) and (c) has less than full spare utilization. In the remainder
of this section, we study the effect of different coverage schemes
on the reliability of the system, where a coverage scheme is defined
by a corresponding bipartite graph. In all the figures in this paper,
the larger circles denote primary nodes and the smaller ones denote
spare nodes.

Assume that a system is to be built from M primary nodes and
K spares, with specific values for flex and deg (note that M deg =
K flex). For any coverage scheme C satisfying the above conditions,
we can group the M primary nodes into a number of sets, 71, -, 0,
such that the nodes in each o,, where 1 < u < ¢, are covered by
the same set of deg spares. That is, SS(I%) = SS(F;) for any two
P; and P; in o,. Clearly, the intersection of any two sets ¢, and o,
is empty. Thus, if X, is the size of o4, then 3.7 _ A, = M. For
example in Fig. 1(a), the primary nodes can be grouped in to four
sets o1 = {1,2.3,4}. 02 = {5.6,7.8}, o3 = {9,10.11,12}, and
o1 = {13.14,15.16}. Also, in Fig. 1(b), the primary nodes can be

Systems built from small and large FTBB’s (deg = 2, flex = 4).

grouped into 12 partitions, where o1 = {1,2,}, 02 = {5,6}, 03 =
{9,10}, o4 = {13,14} and each one of 05,0, -+, 012 contains one
of the primary nodes 3,4, 7,8, 11, 12,15, and 16. Finally, in Fig. 1(c),
we have o, = {u} foru = 1,2,---,16.

Since each primary node is covered by deg spares, the system can
tolerate any combination of deg faults. However, its ability to tolerate
more than deg faults highly depends on the coverage scheme C. The
number of combinations of deg + 1 faults that the system cannot
tolerate is given by the following lemma.

Lemma 1: If the primary nodes in a system can be partitioned
into a number of sets, 01,02,---,0., as defined before, then the
number of deg + 1 fault configurations that a coverage scheme C
cannot tolerate is given by

“~ [ Ay + deg
®(C) _;< deg + 1 )

Proof: The A, primary nodes in o, are covered by the same
set of spare nodes pu, where || = deg. Let v, = {ou {Jptu} and
assume that the system has deg + 1 faults which are distributed over
7 sets of ¥,’s, where 1 < 7 < e. If 7 > 1, then without loss of
generality we can denote the 7 sets of v,’s by ¥, 42,---,¢-. For
each u,v = 1,2,---,7 and u # v, we have |u.| = |u.| = deg and
Mu # ftu, therefore the cardinality of |J]_, pu > (deg+ 1). This

r

implies that the primary nodes in the set | J]_, o, are covered by at
least deg + 1 spare nodes. Therefore, it can be shown that the set
Ui, ¥u can tolerate at least deg + 1 faults. Hence, if the deg + 1
faults are distributed over more than one v, then any combinations of
deg + 1 faults can be tolerated. However, if 7 = 1, i.e., the deg + 1
faults are confined to a single 1., then any combination of deg + 1
faults in ¢, will cause the system to fail. This is because the primary
nodes in each 1, are covered by deg spares. Therefore, the total
number of combinations of deg + 1 faults that any set ¢, cannot

tolerate is(’\(;‘e;;“;g). Since there are e such v,’s in the system the

result follows. O
Therefore, by choosing a configuration which minimizes the func-
tion ¢, we increase the probability of the system to tolerate deg + 1
faults. The following proposition specifies the minimum possible
value of ®:
Proposition 1: For any configuration C, the value of ®(C') is always
larger than or equal to M.
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Proof: Let o1,---,0. be as defined earlier. By construction,
Al 44+ A = M and e < M. The result follows directly by using
in the definition of @ the relation

A ‘
tdeg) S\ AL > 1L
deg + 1 =

O

Clearly, the lower bound on ®(C) is obtained if e = M and A, = 1
for u = 1,--+, M. A coverage scheme that satisfies this condition
is called a coverage with minimal overlap. This name is justified by
the following corollary.

Corollary 1: A coverage scheme C satisfies ®(C) = M if and
only if, for any set of deg spares,{S1, 52"+, Saeg}» the cardinality
of PS(S1) NPS(S2)N - PS(Saeg) is at most one.

Proof: We prove by contradiction that a coverage scheme C sat-
isfies ®(C) = M only if for any set of deg spares, {S1, 52 - -, Saeg}
the cardinality of PS(S1)NPS(S2)N---
N PS(S4eg) is at most ome. For any set of deg spares,
{51,852+, Saeg}, if the cardinality of PS(S1)(PS(S2)N---
(N PS(Saeg) is x, where « > 1, then the x primary nodes in the
intersection must be in the same partition. This implies that |o.| =
z > 1, for some u, and hence ®(C) > M.

If for any set of deg spares, {S1, 52 -+, Saeg}, the cardinality of
PS(S1) NPS(S2)N -+ - N PS(Sqeg) is at most one, then by construc-
tion, each o, will contain no more than one primary node. Since there
are M primary nodes in a module, there are M distinct ¢,’s containing
one primary node each. This implies that A, = 1 for u = 1,-++, M,
which in turn implies that (C) = M. O

For example in Fig. 1(c), deg = 2, and for any deg spare nodes
S) and Sy the cardinality of PS(S:)(PS(S:) is at most one.
Therefore, the coverage scheme in Fig. 1(c) has minimum overlap. It
is worth mentioning that ®(C') for the coverage schemes in Fig. 1(a)
and (b) are 80 and 24, respectively.

For a fixed hardware overhead (i.c., fixed deg and flex) it can be
shown that building a system from large FTBB’s with minimal cov-
erage overlap is better than building it using small FTBB’s with full
spare utilization. Specifically, consider a system, SYS1, composed
of Q FTBB’s, each having M primary nodes, K sparc nodes, and
full spare utilization. The number of deg + 1 fault configurations that
this system cannot tolerate is

Q

_ M + deg

B(SYS1) ; ( dog + 1 )

If a system, SYS2, is built from a single FTBB of size (M, QK)
and with the same degree of coverage deg (and consequently the same
flex), then it has the same hardware complexity as SYS1 but has less
than full spare utilization within the FTBB. If SYS2 is organized to
minimize the coverage overlap, then, the number of deg + 1 fault
configurations that it cannot tolerate is ®(SYS2) = QM.

Clearly, ®(SYS1) is larger than ®(SYS2). However, this only
means that SYS2 has a higher probability of surviving deg + 1 faults.
This result is expected to extrapolate to larger numbers of faults, but
the general analytical expressions become more complex and less
manageable. For this reason, we consider few specific cases and
we present simulation results which show that SYS2 has a higher
probability of survival for any number of faults. Specifically, in
Fig. 2(a), we compare a single FTBB of size (16,8) and minimal
coverage overlap [Fig. 1(c)] with a system composed of 4 FTBB’s
of size (4,2) and full spare utilization [Fig. 1(a)]. In Fig. 2(b),
we compare a single FIBB of size (64,16) and minimal coverage
overlap with a system composed of 8 FTBB’s of size (8,2) and full
spare utilization. Finally, in Fig. 2(c), we compare a single FTBB of
size (64, 48) and minimal coverage overlap with a system composed
of 16 FTBB’s of size (4,3) and full spare utilization. In all of
these examples, systems composed of large FTBB’s with minimal
coverage overlap are more reliable than systems composed from
smaller FTBB’s with full spare utilization.

Given specific M, flex, and deg it is desirable to build the system
from FTBB’s which may be arranged to minimize ®. However, it

is not always possible to design a coverage scheme C such that
&(C) = M. 1t is only possible to do so if we can find M different
subsets of {1,2---, K}, each of size deg, such that each integer
j,1 < j < K appears in exactly flex subsets. For example,
®(C) > M for any coverage scheme C, for a system of M =8,
K =4, flex = 4, and deg = 2. This is because it is impossible to
find eight different subsets of {1,2,3,4}, each of size 2. In the
following proposition, we give conditions which are sufficient, but
not necessary, to find a coverage with minimal overlap:

Proposition 2: Given deg and flex, a coverage scheme C with
®(C) = M can be designed if M = flex™.

Proof: Assume that the primary nodes are logically arranged
as a deg-dimensional mesh with flex primary node along each
dimension. Clearly, the total number of primary nodes required for
such an arrangement is flex®. For each dimension i, and each
set of flex primary nodes along that dimension, add a spare node
to cover for those primary nodes. For example in Fig. 3(b), spare
S1 covers the flex primary nodes along dimension 1, enclosed in
a slim rectangle pointed to by an arrow from S;. Similarly, the
primary sets of the spare nodes S» and S3 are shown in Fig. 3(b).
Clearly, with this arrangement each primary node is covered by deg
spares and each spare covers flex nodes. Also, for any deg spares,
Si,+ -+, Sueg, the sets PS(S1), -+, PS(Saeg) intersect at at most one
primary node. From Corollary 1, this implies that for such coverage
schemes ® = M. Examples of such spare allocation for systems
logically arranged as a 4-ary two-dimensional mesh and a 4-ary
three-dimensional mesh are shown in Fig. 3(a) and (b) respectively.0]

In the next section, we describe fault tolerant hypercube architec-
tures that are built in a modular way. Specifically, an n-dimensional
hypercube system with N = 2" primary nodes is viewed as
an (n — m)-dimensional hypercube of m-dimensional subcubes, for
some m < n. This n-dimensional hypercube is called the primary
cube and its links are called the primary links. To each m-dimensional
subcube, K spares are added to cover for the M = 2™ primary nodes
in that subcube, thus forming an FTBB.

For the hypercube system of Section III-B, we have chosen to use
flex = 4 and deg = 2. For these values, minimum coverage overlap
can be achieved if the system is built from FTBB’s with M =
flex®®® = 16 primary nodes that are arranged as in Fig. 3(a). But if we
want to build a fault tolerant system from FTBB’s with M = 8 and
the same flex and deg as above, then we have to build a system with
® > 8. For such an FTBB it is easy to show that the minimum value
of ® is 12 and is obtained if \; = A, =2 and A\, =1, u = 3,--+,6.
An FTBB with this specification is shown in Fig. 4(a), where spare
nodes adjacent to a primary node P can replace P. However, the spare
distribution in the FTBB of Fig. 4(a) is rather irregular, and thus, if
used as a building block of a hypercube system, results in a complex
and irregular reconfiguration and routing algorithm. For this reason,
the FTBB shown in Fig. 4(b) is used, in which, Ay =2, u =1,---, 4
and thus ® = 16. For the given hardware complexity of deg = 2 and
flex = 4, let sys3 and sys2 be the systems containing eight primary
nodes which are built from FTBB’s of Fig. 4(a) and (b), respectively.
Also, let sys1 be the system constructed from two FITBB’s of size
(4,2) with full spare utilization.

Let Ry, Roys2, and Ryyqr be the reliabilities of the sys3, sys2,
and sysl, respectively. In order to calculate the reliability of the
systems we use C} to denote the number of combinations of j
nodes selected from a set of i nodes, and use r to denote the
reliability of a single node (r = e™**, where w is the failure
rate and ¢ is the time). The reliability of a module of sysl is
RM, = +5 4 CH(1 —r) + C3r*(1 — )°. The reliability of sysl
is therefore (Ré‘y’lsl)z. The same method can be used to calculate the
reliability of sys2 except that we need to know how many 3 and 4
faults can sys2 survive. The number of 3 faults that sys2 can survive
is given by C3? — ®, this is because @ is the number of deg + 1
faults that the system cannot survive (deg = 2). In sys2, there are
C# different ways to pick a set of three spare nodes. Each such
set is denoted by Y., where 0 < u < 3. Let 6, denote the set
of primary nodes such that if p € 6., then SS(p) C xu. Also,
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Fig. 2. Probability of survival for given number of faults. (a) N = 16, deg = 2, and flex = 4. (b) N = 64, deg = 2, and flex = 8. (c) N = 64, deg = 3,

and flex = 4.

let n. = {6ulJxu}, for w = 0,---,3. For instance, in Fig. 6,
x1 = {82,83,84},61 = {P3, Py, P5, B}, and m = {61 x1}. Thus,
sys2 cannot tolerate any combination of four faults in an 7, since
there are only three spares in it. In the four 7,’s there are 4C; — 4
combinations of four faults that the system cannot tolerate. The minus
4 is because there are four combinations out of the 4C] that are
counted twice. In Fig. 6, Y(us1) mod 4 = {7 mod 4 [ T(u+1) mod 4}
for u = 0,.--,3. Therefore, 11 contains the four nodes that are
in the intersection of no and 7;. The dotted lines in Fig. 6 denote
the wrap around. Also, sys2 cannot tolerate any four faults, where
three of the faults are in a ¢, and the other fault is elsewhere. All
combinations of four such faults have been counted before except
for the 4C3C} combinations which were not counted since for each
Y, {nu mod 4 U M(ut1) mod 4} contains all but two primary nodes of
sys2. Therefore, the total number of four faults that sys2 cannot
tolerate is 4C] + 4CiC? — 4. The reliability of sys3 can be
calculated in the same way. Rqyq1, Rsys2, and Riyss are given below.

Ry =2 4120 (1 = r) + 6601°(1 —
+225¢%(1 — 7)*

12 + 01127‘11(1 _ 7‘) + 02127‘10(1 _ T)2

+ (G - @)’ (1~7)°

+(Ci? —4C] + 4CiC — 4)r*(1 — )"
4127 (1 = ) +660'°(1 — )2 + 2047°(1 — 7)°
+ 32731 — r)?

)’ +1607°(1 — r)°

RsysZ

Rya =1+ ' (1= r) + G351 - 1)
+(C3? = @)’ (1~ r)?
+(Ci* — 207 - 2C§ + 2 — 2C} - 2C} - 6CY)
x 31 —r)?

P 1271 - ) + 66001
+3597%(1 — ).

—7) +2087°(1 — 1)

The values of r*(1 —7)"*™" for i = 8,..-,12, are 2positive for any
value of w and ¢. Let the coefficients of (1 — 7)) for sysN be
denoted by Z} - In the reliability equations glvcn above, Z} < Z3 <
Zj for i = 8,9,---,12. Therefore, Reys > Rgys2 > Roysi for any
value of w and ¢ In Fig. 5, Ry, Reys2, and Reyss are shown for
typical values of wt. Given that for sysl, sys2, and sys3, the values
of & are 80, 32, and 24, respectively, this result shows that smaller
® results in a more reliable system.

III. FAULT TOLERANT RECONFIGURATION
SCHEMES FOR BINARY HYPERCUBES

A. Reconfiguration Using Hardware Switches

Given an FTBB with M primary nodes, P, - -, Py, and K spare
nodes, Si,---,Sk, full spare utilization within this FTBB means
that any P; may be replaced by any S;. Such a replacement may
be accomplished if hardware switches are used to redirect the n
communication links connected to P; into S;. The switching logic
may be described in terms of multiplexers and demultiplexers as
shown in Fig. 7, where, for simplicity, it is assumed that multiplexers
and demultiplexers can multiplex and demultiplex duplex links,
respectively. Specifically, a one_to K + 1 demultiplexer is used for
each P; to divert, when needed, the links of P; to any S;. Also,
an M_to_one multiplexer is used for each S; to connect it to
the appropriate links. If a primary node P; is nonfaulty then the
demultiplexer associated with P; is set to select the Oth output.
In case P; is faulty, the replacement of P; by S; requires that the
demultiplexer associated with P; be set to its ith output, and the
multiplexer associated with S; be set to select its jth input. This
scheme can also support spare failures. For example, assume that
spare node S; replaced primary node P; and then S; fails. Now, spare
node S; may replace S;, if the demultiplexer associated with P; is set
to select the kth output and the multiplexer associated with Sy is set
to select the jth input.

A different fault tolerant hypercube architecture is suggested in [3],
where the failure of a primary node P; requires that, on the average,
M /2 of the active nodes in the FTBB that contains P; be relocated
to other primary or spare nodes. This relocation requires the setting
of two multilayer decoupling networks, one to restore the logical
hypercube connections within the FTBB and the second to restore
the logical connections with other FTBB’s. Both our architecture and
that of [3] support full spare utilization within each FTBB. Hence,
as shown in [3], they achieve better reliability than the hierarchical
and the global scheme suggested by Rennels [9].

The switch complexity of an N-node hypercube, N = 2", con-
structed using FTBB’s of size (M,K) may be easily calculated.
Specifically, each n-line, one_to_X multiplexer or X_to_one demul-
tiplexer may be constructed from n(X — 1) two_to_one switches,
where X is an integer greater than one. Hence, the number of switches
used for the demultiplexers associated with the 2" primary nodes
is 2" Kn. Similarly, if M = 2™, then the number of switches
used for the multiplexers associated with the spare nodes in the
2"7™ FIBB’s is 2" "™ K(2™ — 1)n. That is, the total number of
switches used is 2"~"nKk (2™ — 1). By comparing that number
to the 2" "™n (2™ + K — 1)K two_to_one switches used in the
configuration suggested in [3], it becomes clear that Chau and
Liestman’s scheme requires 2"~ ™"nK more switches than ours to



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 1, JANUARY 1991 121

o)

L
h
'
'
.
1
L
T
1

515

O

"

s

2
%
o o |
o o ‘|
F—o—O ol
4 |
\‘0|>§
o o o olly
o |

¢ o o

Fig. 3. d-dimensional meshes. (a) 4-ary two-dimensional mesh with deg = 2 and flex = 4. (b) 4-ary three-dimensional mesh with deg = 3, flex = 4.

Fig. 4. FTBB’s of size (8,4). (a) ® = 12 (sys3). (b) ¢ = 16 (sys2).
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Fig. 5. Comparison of reliabilities.

achieve the same reliability using the same number of spares per
module. Moreover, the reconfiguration in our scheme is faster since
the state of the failed node needs to be relocated.

An automorphic design approach to design of fault tolerant mul-
tiprocessors have been proposed by Dutt et al. [6]. This scheme
can impiement any degree of redundancy in regular multiprocessor
graphs that are circulant. For noncirculant multiprocessor graphs the
edge-supergraph of the multiprocessor graph needs to be constructed
efficiently in order to implement fault tolerance. For binary hyper-
cubes the degree of a node of the edge-supergraph is approximately
twice the degree of the node in the original multiprocessor graph.
To implement a K-FT hypercube with M = 2™ primary nodes the
total area required for the switches is §(mM K log K). To construct
the same K-FT system the total area required for the switches in our
scheme can be shown to be 6(m M K'). This is because an X_to_one
switch can be constructed using 8(X) two_to_one switches. The
complexity of log K in Dutt et al.’s scheme is due to the log K

bit address registers required to store the address of a spare node in
the demultiplexers.

This technique of using multiplexers and demultiplexers for re-
configuration is very flexible and may be applied to FTBB’s with
any coverage scheme. This implies that FTBB’s without full spare
utilization can be easily implemented using this scheme for a fixed
deg and flex. An advantage of this technique is that its hardware
overhead is fixed for fixed deg and flex and does not depend
on the coverage scheme. Specifically, for each primary node a
(deg + 1)_to_one demultiplexer is needed, and for each spare node,
a flex_to_one multiplexer is needed.

B. Fault Tolerant Routing

In this section, we present an alternative to preserving the physical
adjacency of the active nodes after reconfiguration. Specifically, when
a node fails, it is replaced by a spare that inherits its address.
Instead of changing the connections in the system to preserve physical
adjacency, the e-cube routing algorithm [10] is modifed such that
any message destined to P is sent to S if P has been replaced by S.
An advantage of this scheme is that there are no assumptions about
fault-free switches.

In order to implement fault tolerant routing, we consider
n-dimensional hypercube systems built from FTBB’s of the type
shown in Fig. 4(b). The number of primary nodes in an FTBB is
denoted by M, where M = 2™ and m is an integer greater than
zero. A primary node p has an n-bit address given by py, ---p; - - - p1.
An FTBB containing some node p is denoted by F,, where F), =
Pn,* -, pa. Four spare nodes are added to an FTBB each having an
address p, - - - psxxx, where the x’s denote generic bits. The spare
nodes are interconnected as a hypercube of dimension n — 1. A node
that is the neighbor of node p across dimension i is denoted by
C:(p) = pn ---P; - - * p1- Similarly, an FTBB that is across dimension
i from FTBB F is denoted by C;(F). When a primary node p fails,
it is replaced by a spare s which inherits the active address of p. If
no spare is available to replace p, then the system fails. A system
that has not failed is called a live system, and in such a system, the
active nodes are defined to be the set of nonfailing primary nodes and
the spares that replaced the failing primary nodes. A four-dimensional
hypercube system constructed from two FTBB’s of the type described
above is shown in Fig. 8.

We consider two-phase routing algorithms which are applicable to
any architecture that uses message routing to communicate between
nodes. In this kind of algorithm a message addressed to a destination
node d is first routed to the FTBB that contains d, and then to
d. Specifically for hypercubes, in order to deliver a message to a
destination d, ---d; in FTBB Fy, the following general algorithm
may be applied:
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Fig. 6. FTBB of sys2 drawn in 2-D (dotted lines denote
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Fig. 8. A four-dimensional reconfigurable hypercube architecture (Spare links and nodes are shown using thin lines).

Phase 1: if the message is in some node p in FTBB F,, where
F, # Fy, then send that message to some node in FTBB C;(F),),
where j is the largest integer such that j > m and p; # d;. Repeat
this step until p; = d; for all j > m.

Phase 2: route the message to node d without leaving FTBB F,.

Given a distribution of faults in the system, a link which connects
two nonfaulty nodes is called a healthy link. A nonfaulty path between
two nonfaulty nodes is either a healthy link between the two nodes
or a sequence of healthy links that connect the two nodes through

nonfaulty nodes. A nonfaulty node p in an FTBB F, is said to be
not isolated in F, if there exists at least one nonfaulty path within F,
from p to every other nonfaulty node in F,. In this context, a path
within F, is one that does not leave F),.

The general two-phase routing algorithm described above may
deliver messages correctly only if certain conditions are met. For
instance, phase 1 may fail if there are two adjacent FTBB’s that are
not connected by at least one healthy link. Also, phase 2 may fail if
there exists a node in some FTBB which is isolated in that FTBB.
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Node isolation, however, may not take place in FTBB’s with full
spare utilization. Moreover, as shown by the following proposition,
healthy connections between adjacent FTBB’s in a hypercube may
be guaranteed if less than 100% redundancy is used.

Proposition 3: If a hypercube system is constructed from FTBB’s
of size (M, K’) such that the spare nodes are interconnected as a
hypercube then the existence of a healthy link between any two
adjacent FTBB’s in a live system is guaranteed if M > K.

Proof: Let fi and f be two FTBB’s that are adjacent across
dimension j. For each node p in fi, there exists a link (not necessarily
healthy) between p and C;(p), where C;(p) is in f. That is, there
are M + K links between fi and f>. For the system to be live, each
FTBB may not contain more than K faulty nodes. Hence, at most
2K of the M + K links between f; and f, may be nonhealthy, leaving
M+ K — 2R = M — K healthy links. The result follows directly.

|

For systems with M > K, a message in phasc 1 may be routed
from a node p in a FTBB, fi, to an adjacent FIBB, f3, if a path 7
is found within f; which passes through at most K nonfaulty nodes.
The message is then sent along 7 until a healthy link to f is found.
There are many methods to compute 7 for phase 1. The first is to
compute 7 in p from global information about the closest node in fi
which has a healthy link to f>. The problem with this approach is that
gathering global information wastes a lot of bandwidth. A second
method which does not require global information is to design a
backtracking algorithm similar to the one described in [2]. In such a
method, a list of nodes visited so far should be kept in the message to
prevent looping. This implies that the message needs to be updated at
each node that it visits resulting in slower message delivery because
store and forward approach with message update is used. A third
method is to carefully design a routing strategy within fi which
ensures that K distinct nodes are visited without explicitly computing
or storing 7. A similar argument may be given for the classification
of methods that implement phase 2 of the general routing algorithm.
In this section, we present a two-phase routing algorithm that uses
the third method for routing messages in hypercube systems that are
constructed from FTBB’s of size (8,4) (see Fig. 8). Our goal is to
achieve distributed routing with only local information at each node.
However, because of the flexibility of the architecture, a distributed
routing algorithm that is not carefully designed may lead to a live-
lock situation in which a message circulates in a loop, thus never
reaches it destination. The algorithm described here is distributed,
live-lock free, and requires each node to know only the status of its
neighboring nodes.

Within an FTBB, six faces are identified and denoted by
facel’;, @, 3 = 1.2,3,a # B, b = 0,1. Specifically, if v is
the integer between 1 and 3 that is different from « and 3, then
face(:_)ﬁ consists of the four nodes that have p, = b and that
are neighbors across the two dimensions « and 3. For example in
Fig. 8, the primary nodes 0000, 0010, 0011, and 0001 form far:e(IUL
of FTBB 0. Each FTBB, p, - - - ps4, has one spare node on each of

face(._(z. fa(tegfé. faceg%. and facegl_;, and is connected to the four

primary nodes on that face. The spare on face(ll?; is identified by

Pn -+ -psbbX and the spare on face% is identified by py, - -- p@l)X.

In systems constructed from FTBB’s of Fig. 8, any two primary
nodes p and C(p), along with their two common spares form what
we call a corner-quad (a set ¢, in Fig. 6), and two adjacent corner-
quads form a half-cube (a set 7, in Fig. 6.) If the primary node p
and the spare node s belongs to the corner-quad g, then gtwin (s, p)
denotes the spare node v, where v € ¢ and v # s. For example, in Fig.
8, nodes 0000, 0001, 010x and 000x form a corner-quad and 0000,
0010, 0011, 0001 and three spare nodes 010x, 000x, and 00ix form
a half-cube. Also, qtwin(0000,010x) denotes the spare node 000x.
A two-phase routing algorithm of the type described above can be
designed for such a system because, by Proposition 3, there exists
a path from any FTBB to another FTBB and also by the following
lemma no nodes can become isolated from all its neighbors within
its FTBB.

Lemma 2: Node isolation within an FTBB is impossible in a live
system which is built from the FTBB’s shown in Fig. 8.

Proof: A corner-quad is a complete graph of four nodes. Since
no more than two nodes per corner-quad can fail, the live nodes
in a corner_quad are connected by a healthy link. A FTBB is
made of four corner-quads which are labeled 0,1,2, and 3 such
that corner_quad i is adjacent to corner_quad((: + 1) mod 4) and
corner_quad((i + 3) mod 4), for i=0,1,2, and 3. In any two
adjacent corner-quads, the live nodes are either connected by a
healthy path or not. If the nodes in any two adjacent corner-quads i
and i + 1 are connected then the result follows directly. Otherwise,
three nodes in corner-quads i and i + 1 must be faulty and they must
form a diagonal (for example the nodes P, Ps, and s» in Fig. 6). In
this case, however, only one more node in the FTBB can fail and this
guarantees that there exists a path from corner-quad i to corner-quad
i + 1 through corner-quads ((i +3) mod 4) and ((i +2) mod 4).

O

Proposition 3 and the above lemma allows the design of a two-
phase routing algorithm in which the path between a source and a
destination may be determined distributively. That is, each node on
the path may determine the next node from local information about
the status of its neighbors. More specifically, if a node p = pn - -+ p1
receives a message addressed to a node d = d,, ---dy which is
different from p, then it determines the next node on the message
path by using the following information:

1) & = x,- - & = p XOR d, the bitwise Exclusive OR of p and d.

2) For each node g adjacent to p within the current FTBB (the

FTBB whose address is pr - - - p4) an indication on whether g
is faulty or is /-accessible, where a node is called I-accessible
if it has only onc nonfaulty neighbor in its FTBB.

3) The node v = vy, - - - v1 from which the message was received.

Given that a corner-quad contains only two spare nodes, no more
than two nodes can fail in any corner quad in a live system. Since a
corner-quad is a fully connected graph of four nodes, any two node
failures within a corner quad results in a connected graph of two
nodes. This implies that if we can route a message to a nonfaulty
node in the corner-quad that contains the destination node, then it
can be routed to its destination. The routing rules at p is a list of
alternatives for the “next node” to which the message is to be sent.
The alternatives are attempted in order, and an alternative is skipped
if it specifies: 1) a faulty node, 2) the node v, 3) a node which is
1-accessible unless this node is d or 4) an option that does not apply.
The reason for not sending a message to v or to a I-accessible node
which is not d is to prevent messages from possibly looping in a cycle.

Before describing the routing algorithm we define some func-
tions that are necessary to explain the routing steps. Sa(z) is
the spare node added to the faceg?(),, which contains primary node
x. Note that the value of a can either be 2 or 3. The func-
tion Chra,...n(x) = Ci(Ca(-++(Cu(a))---)). Function Ti(d,p) =
Py -+ d; -+ papi, Teplaces the ith bit of p by di. Ti2...n(d.p) =
T (To(- -+ (Tu(d,p))--+)). HD(x.y) is the Hamming distance be-
tween the nodes x and y, and HF(F,, F,) is the Hamming distance
between two FTBB’s F, and F,.

Routing Rules for primary nodes:

If there exists at lcast one j such that &; = 1, then try the following
alternatives in order: (message is not at the destination FTBB)

1) Forj =n.n—1,---4try C;(p)if z; =1

2) Ci(p)

3) Sa(p) and S3(p): if Ca(p) = v then try S3(p) first, while if
Ci(p) = v then try Sa(p) first

4) Cy(p) and Cs(p).

Else, try the following alternatives in order: (message is at the
destination FTBB)

1) Forj = 3,2.1try Ci(p)ife; =1

2) Su(p), it HD(p.d) < 2 and p,d € face”,

3) any of the two adjacent spare nodes of p

4) For j = 1.2.3 try C;(p).

Routing Rules for spare nodes:
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If there exists at least one j such that z; = 1, then try the following
alternatives in order: (message is not at the destination FTBB)

1) Forj=nn—1,---4ty Cj(p)ifz; =1

2) any adjacent primary node, if the message originates at p or
came from a different FTBB
qtwin(p, v)

4) C1(Cq(v)) and then Cy(v), if p € face(lljzr.

Else, try the following alternatives in order: (message is at the
destination FTBB)

1) node 4, if d is adjacent to p

2) adjacent spare s, such that s, = d,, if p € facegb()l

3) the other adjacent spare node in the current FTBB

4) Ti.o(d.p) and then Cy(Ty (d, p)), if p € face(”)

5) Ci(Ta(d,v)) and then Ca 1(Tu(d,v)), if p € facel’).

In the above algorithm, two lists of alternative next nodes are used
to route messages at each node. The first list is used for routing
messages among FTBB’s, and is applied whenever p is not in FTBB
Fq, where d € fq. That is, whenever z; # O for at least one
j. 4 £ j < n In this case, p is in the first phase of the message
route. If, during this phase, routing from one FTBB to another fails
then the algorithm tries to limit the routing trials, first to a corner
quad and then to a half-cube. The reason is that limiting trials to a
corner quad (or a half-cube) allows the message to reach the next
FTBB in at most 3 steps (or 4 steps). If the fault distribution makes it

3)

impossible to stay within the same half-cube then at most 5 steps may
be required to reach the next FTBB. The second list of alternatives
in the routing algorithm is basicaily used to route a message to the
destination node after the message is in the destination FTBB. Once
the message reaches the destination FTBB, it takes at most 6 steps
within the FTBB to reach d as shown in Lemma 4.

Lemma 3: In phase 1 of the routing algorithm, a message never
loops in a cycle. Moreover, if a message starts at a node p in FTBB
F,, then it is routed to FITBB C;(F}) in at most 5 steps, where
HF(C;(F,), Fa) = HF(F,, Fy) — 1.

Proof: We construct a tree starting from a given node p with all
possible paths specified by phase 1 of the routing algorithm before a
message is routed to a node in C;(F,). We define 3 types of paths
denoted by m;, where 2 < ¢ < 4. The length of a m; path is i
and contains ¢ + 1 nodes. A m, w3, and w4 path contains distinct
nodes from a corner-quad, a half-cube, and an FTBB, respectively.
Therefore, a message taking a m; path takes at most ¢ 4+ 1 steps to
reach a node in C;(F}). This is because no more than 2, 3, and 4
nodes can fail in any corner-quad of C;(F},), in any half-cube of
C;(F,), and in FTBB Cj(F},), respectively. From the construction
of the routing trees if we can show that all the paths in the trees are
of type m;, where 2 < ¢ < 4, then the result follows directly.

Phase 1 of this routing algorithm may be initiated in F}, by a spare
or a primary node. Therefore, we construct two trees given in Figs. 9
and 10. In Fig. 9, phase 1 is initiated at a primary node and in Fig. 10
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it is initiated at a spare node. These two trees are constructed from
all the possible paths that a message can take while still in F,.

In Figs. 9 and 10 the ith branch from any given node is
taken if branches 1,2,---,i — 1 specify a node that is faulty or
1-accessible. For example in Fig. 10 the third branch from y towards
Cs(y) is chosen only when nodes Ci(y) and Sa(y) are faulty (the
first and second branches, respectively, from y). We explain the
construction of the tree in Fig. 10 in detail. The message originates
from a spare node z, therefore, is routed to C;(z) if Cj(z) is
not faulty. Otherwise, the message goes to node y. Node y tries
to route the message to C;(y) and may fail if C;(y) is faulty.
If C;(y) is faulty then y tries to send the message to the nodes
Ci(y), S2(y), Ca(y), and Cs(y) in order. That is, if node Ci(y)
is faulty then y tries to send the message to S:(y) and then
if Sa(y) is faulty to Cy(y) and so on. The paths {z,y,Ci(y)}
and {z,y,S2(y)} are of length 2 and each contains three distinct
nodes from a corner-quad. Therefore, these paths are of type .
Similarly the paths {z,y, C2(y), CL2(v)}, {2,4,Ca(y), Sa(Ca(y))}s
{=.y.Ca(y). Cr.a(y)} and {=, y, Ca(y), Sa(Cs(y))} are of type ms.
In Fig. 9, the path from z to C3(z) is selected only if Ci(z) is
1-accessible. 1t can also be shown that all the paths in Fig. 9 are
of type m;, 2 < i < 4. Therefore, the result follows. O

Lemma 4: In phase 2 of the routing algorithm, a message never
loops in a cycle and is sent to the destination node in at most 6 steps.

Proof: This proof is similar to the one in Lemma 3. O

Theorem 1: The routing algorithm correctly routes the message
to the destination in at most 5y + 6 steps if the Hamming distance
between the source and the destination is ~.

Proof: By Lemma 3, HF(F),, F,;) decreases by one after at most
5 steps. Therefore, the message reaches Fy in at most 5+ steps. Once
the message is in Fy, then by Lemma 4, the message reaches the
destination node in at most 6 steps. Therefore, the result follows
directly. 0

The upper bound on routing given in the above theorem is
achievable only if the source and the destination nodes are in two
FTBB’s that are neighbors across some dimension j, and the eight
faults in the two FTBB’s are such that no two nodes across dimension
j are faulty. The probability that the system reaches the above
configuration is very small and thus the average number of routing
steps is expected to be much less than this worst case bound. Also
relatively complex routing rules are needed to primarily guarantee
live-lock free routing. In typical fault configurations, only the first
few alternatives in the list of “next nodes” needs to be examined.
Finally, we note that the routing rules may be easily translated into
a binary function which determines, at each node, the output link to
which a message should be relayed in terms of x, v, and a vector which
specify the status of the neighboring nodes. This function is relatively
simple and may be implemented in hardware if fast message relaying
is desired.

IV. CoNcLusioN

Full spare utilization in FTBB’s is desirable to achieve better
reliability, but it may be very expensive to implement in large
FTBB’s. Therefore, given a specific hardware overhead, i.e., given
a set of K, deg, and flex, the goal is to design a coverage scheme
in FTBB’s without full spare utilization such that the reliability is
optimal. In Section II, we show that maximum module reliability is
achieved by minimizing the coverage overlap, i.e., by maximizing
sharing of the spare nodes. We have given a sufficient condition to
minimize ®. Necessary conditions may be formulated in terms of
choosing M different subsets of {1,2,---, K'}, each of size deg such
that each integer j, 1 < j < K, appears exactly in flex subsets.

We have also presented two modular approaches to achieve fault
tolerance in binary hypercubes. The first approach is very flexible and
uses switches to invoke a spare node that replaces a faulty primary
node. In the second approach, no attempt is made to preserve the
physical adjacency of the nodes in the hypercube. Instead, fault
tolerant routing algorithms are used to route messages to their

destinations, thus bypassing faulty nodes. We derive an upper bound
on the number of routing steps it takes for a message to be delivered
to its destination. This upper bound is derived for all possible fault
configurations including some configurations that occur with very
low probability. If message loss is allowed when one of these less
probable configurations occur then much simpler algorithms may be
designed and better bounds may be derived. The fault tolerant routing
approach is very robust because it does not require switches and may
tolerate the failure of routers and links. This robustness, however, is
attained at the expense of routing overhead.

Finally, we note that both of these schemes can tolerate up to X
faults per module since each module contains only K spare nodes.
However, single point failures (e.g., power line failure) that affect
all the nodes in a module cannot be tolerated unless the architecture
incorporates spare modules. If a system is designed such that there
are y spare modules for every x module, then a faulty module may
be replaced by a spare module by applying the hardware switching
mechanism that is described in Section III-A.

APPENDIX
DEFINITIONS
FTBB Fault tolerant basic block
PS(S) The set of primary nodes that spare node S can
replace
SS(P) The set of spare nodes that can replace primary
node P
flex(S) The cardinality of PS(S)
deg(P) The cardinality of SS(P)
() The number of deg + 1 fault combinations that a
coverage scheme C cannot tolerate
c(P) If P = po,-oo,piv,p1, then Ci(P) =
2 RRRRY JTRRRRY J1
Tl(dvp) Ifd:dnw"'adia"'vdl and p = pn,+*, pisc e,
psi, then Ti(dvp) =Pny"" " di, -+, p1
Crzn(P)  Crn(P) = Ci(Co(-+- (Cn(P))---))

F, Is the FTBB that contains the node p. If the
address of p is pn,-- -, p1, then the address of F,
is pTl! T 9p4'

T, n(dyp) = Ti(Ta(- -+ (Tn(d,p)) )
Hamming distance between two nodes x and y
Hamming distance between FTBB F: and FTBB
F,

Fully connected graph of two spare and two pri-
mary nodes. For example in Fig. 7, the following
four nodes form a corner-quad 1100, 1101, 110x,
and 111x.

Denotes a spare node v, such that, if the primary
node p and spare node s belongs to corner-quad
q, then v € ¢ and v # s. For example in Fig. 7,
qtwin(1100, 110x) = 111x.

Formed by two adjacent corner-quads. For example
in Fig. 7, the following seven nodes along with
their links form a half-cube 1100, 1110, 1111,
1101, 110x, 111x, and 101x.

Th2,...n(d,p)
HD(z, y)
HD(F, F2)

corner-quad

qtwin( p, s)

half-cube
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