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Embedding Rectangular Grids into Square 
Grids with Dilation Two 

Rami G. Melhem, Member, IEEE, and Ghil-Young Hwang, Member, IEEE 

Absfrucl-In this paper, a new technique, the multiple ripple propa- 
gation technique, is presented for mapping an h x w grid into a w x h 
grid such that the dilation cost is 2, i.e., such that any two neighboring 
nodes in the first grid are mapped onto two nodes in the second grid that 
are separated by a distance of at most 2. This technique is then used as a 
basic tool for mapping any rectangular source grid into a square target 
grid with the dilation two property preserved. The ratio of the number 
of nodes in the source grid to the number of nodes in the target grid, 
called the expansion cost, is shown to be always less than 1.2. This is a 
significant improvement over the previously suggested techniques, where 
the expansion cost could be bounded by 1.2 only if the dilation cost was 
allowed to be as high as 18. 

Index Terns-Embeddings among grids, mapping onto meshes, mini- 
mizing the dilation cost, squaring up rectangular grids, theory of VLSI 
layout. 

I. INTRODUCTION 

N THIS paper, we study the problem of squaring up a I rectangular grid, that is, embedding an h x w rectangular 
grid into a k x k square grid, where k 2 r 6 1  , and r 1 
is the ceiling function. The results of this research may be 
applied to the VLSI design of highly eccentric circuits that, 
without squaring up, would have to be laid out in a rectangular 
area with a height/width ratio deviating significantly from unity 
[ 7 ] ,  [ l o ] .  They may also be applied to the mapping of toroidal 
[6]  and rectangular problem domains [ 3 ] ,  [8]  onto mesh-con- 
nected architectures [ 1 1 ,  [9]. Mapping of rectangular program 
graphs onto hypercube architectures may also benefit from this 
research. Specifically, it has been shown [5]  that this mapping 
may be accomplished by embedding the graph into a square 
graph which is, then, mapped easily to the hypercube. 

Two measures may be used to estimate the quality of an 
embedding. The first measure is the expansion cost E, which is 
the ratio of the number of nodes in the square target grid to the 
number of nodes in the source rectangular grid. That is E = 
k 2 / h w .  The other measure is the dilation cost D, which is a 
measure of the communication penalty that has to be paid due to 
the squaring up. More specifically, if a link X in the source grid 
connects two neighboring nodes, say (i, j )  and (i, j + l ) ,  and 
these two nodes are mapped to the nodes (i’, j’) and (i’ + ci, j’ 
+ c,) in the target grid, then the dilation of the edge X after the 
embedding is defined by D(X) = 1 ci I + I cj 1 .  The dilation 
cost of the embedding is then given by D = maxh D(X). 

The best known results for embedding an h x w grid into the 
smallest possible k x k grid are given in [ 2 ] ,  where different 

Manuscript received April 2 ,  1988; revised June 9, 1989. This work was 
supported in part by ONR Contract N00014-85-K-0339. A shorter version of 
this paper appeared in the Proceedings of the Allerton Conference on 
Computer, Control, and Communications, September 1988. 

R.  G. Melhem is with the Department of Computer Science, University of 
Pittsburgh, Pittsburgh, PA 15260. 

G.-Y.  Hwang is with the Sukua Computer Company, Seoul, Korea. 
IEEE Log Number 9038763. 

embedding methods are suggested for different ranges of the 
eccentricity ratio p = w / h .  Assuming that h 2 25, all the 
methods suggested in [2]  produce embeddings with expansion 
costs smaller than 1.2, and dilation costs ranging from 2 to 18, 
depending on the value of p .  Specifically, the dilation cost is less 
than or equal to 3 if p is in one of the ranges ( 1 , 2 ] ,  ( 1 0 / 3 , 4 ] ,  
( 8 , 9 ] ,  or (155, 00). Otherwise, the dilation cost is larger than 5. 

In this paper, we first introduce, in Section 11, the multiple 
ripple propagation technique which may be used to embed an 
h x w grid onto a w x h grid with expansion cost 1 and 
dilation cost 2 .  This basic technique is then used in Sections 111 
and IV to embed any rectangular grid with p I 4 into a square 
grid. The idea is to apply the ripple propagation technique to 
carefully chosen subrectangles of the rectangular grid. For grids 
with p > 4 ,  the ripple propagation technique may be combined 
with the technique of folding [ 2 ] .  This is described and analyzed 
in Section V. Finally, in Section VI, we summarize our results 
and show that it is always possible to square up any rectangular 
grid at a dilation cost of 2 and an expansion cost less than 1.2. 
This is a clear improvement over the results given in [ 2 ] .  

II. A MULTIPLE RIPPLE PROPAGATION TECHNIQUE 
The purpose of the technique described in this section is to 

map an h x w grid satisfying 

h c w s 2 h  ( 1 )  
onto a w x h grid with unity expansion cost and with dilation 
cost equal to 2 .  In order to accomplish that, the w nodes in each 
row in the original grid should be Compressed to occupy only h 
columns. For this, we let I = w - h ,  and compress 21 nodes 
from each row into I columns by repeated rippling. The remain- 
ing s = w - 21 = 2 h  - w nodes are left uncompressed. In 
Fig. l o ) ,  we show the grid of Fig. l(a) after compressing each 
of its rows. As shown in the figure, the positions of the 1 ripples 
in each row are chosen as follows. In the first row, the I ripples 
are grouped to the right, and in the last row, the I ripples are 
grouped to the left. At each row, one of the ripples, that was 
grouped to the right in the previous row, starts its propagation to 
the left (moves one column). The propagation of that ripple 
continues at a rate of one column every row until it can no 
longer propagate. The propagation of the ripples is very similar 
to the motion of the legs of a walking worm. 

Fig. l(b) is laid out to occupy w + s rows and h columns. 
However, it may be noticed that s positions in each column are 
not utilized. This allows for the compression of Fig. l(b) into an 
w x h grid which has a dilation cost equal to 2 [see Fig. l ( c ) ] .  
In order to be more formal, we let F(i, j )  = (u(i, j ) ,  u ( i ,  j ) )  
be the function which maps each point (i, j )  in the source grid to 
a corresponding point (U( i, j ) ,  U( i, j ) )  in the target grid. Here, 
( 1 ,  1 )  is the node at the top left comer of the grid. For any node 
( 1 ,  j )  in the first row of the source grid, the mapping function F 
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Partitioning of the source grid for s 5 1. Fig. 2. 

is defined as follows: ( u ( i -  1 , j )  

where rem( ) denotes the remainder of integer division. The 
function F may then be defined recursively such that, for any 
node (i ,  j )  not in the first row, F( i ,  j )  is specified in terms of 
F(i - 1, j ) .  In order to simplify the recursive definition of F ,  
we partition the source grid into four regions as shown in Figs. 2 
and 3 ,  and we use different recursive formulas for differenr 
regions. Specifically, 

u ( i  - 1 , j )  + 1 if ( i ,  j )  €Region 1 
u ( i  - 1 , j )  + 2 if ( i , j )  €Region2 
u ( i -  1 , j )  + ~ ~ , ~ ( i , j )  i f ( i , j )EReg ion3  

u( i  - 1,  j >  + A u , 4 ( i ,  j )  if ( i , j )  €Region4 

( 3 4  
I u( i ,  j )  = 

1 

u ( i  - 1 , j )  
u ( i -  1 , j )  - A v , 3 ( i , j )  i f ( i , j ) ~ R e g i o n 3  

u ( i ,  j )  = 

if ( i ,  j )  €Region 1 
if ( i , j )EReg ion2  

where and depend on the remainder r(i ,  j )  = rem((j 
- s + i - 1)/3). Specifically, 

o i f r ( i ,  j )  = 2 
2 otherwise 

A u . 3  = 

1 i f r ( i , j )  = 2 
0 otherwise. A u , 3  = 

Similarly, if F(i, j )  = rem((j - 2 i  + 2 s  + 2)/3),  then 

O if i ( i , j )  = 2 
2 otherwise 

1 
0 otherwise. 

if i ( i ,  j )  = 2 

{ A u , 4  = 

Av.4 = 

Given the above formulas, the following theorem proves that 
the dilation cost of the mapping F is at most two. 
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Region 1:j<s-i+2 OR j>w-i+l+l 
Region 2: j>s+2i-2 OR j<2i-2s-1 
Region 3: j2s-i+2 AND j<s+2i-2 AND iQ+l  AND j<w-i+l+l 
Region4:122i-2s-1 AND jlw-i+l+l ANDi>s+l. 

Partitioning of the source grid for s > 1. Fig. 3. 

Theorem: For any ( i ,  j ) ,  where i, j > 1, the following is 

I u ( i , j ) - u ( i - l , j ) l  + [ u ( i , j ) - u ( i - ~ , j ) [  1 2  

true 

(4.a) 

and 

I u ( i , j )  - u ( i , j -  1)I + I u ( i ,  j )  - u ( i , j -  1)I 1 2 .  

( 4 4  

That is, any two adjacent nodes in the source grid are mapped 
onto two nodes whose separation distance in the target grid is 
less than or equal to 2 .  

Proof: The proof of (4.a) is straightforward if (i, j )  is in 
Region 1 or Region 2 .  If (i, j )  is in region 3, then the left side 
of (4.a) reduces to 1 A U , J i ,  j )  1 + 1 A u , 3 ( i ,  j )  1,  which is equal 
to 1 if r ( i ,  j )  = 2 ,  and to 2 otherwise. The case (i, j )  E Region 
4 is similar. 

To prove (4.b) we use induction on i. For i = 1, the proof is 
by direct substitution from (2) .  Next, assuming that (4.b) holds 
for i - 1, we should show that it also holds for i. Again the 
inductive proof is straightforward if (i, j )  is in Regions 1 or 2, 
and is similar if (i, j )  is in Regions 3 and 4. For this reason we 
will consider in the rest of this proof only the case in which 
(i, j )  E Region 3. For this case, we will prove, by induction, a 
more restrictive form of (4.b), namely 

If r(i, j )  = 2 ,  then A , , 3 ( i , J )  = 0 and A U , 3 ( i , j  - 1) = 2 be- 
cause r(i, j - l )  = l .  Also, r(i - l ,  j )  = l ,  which, from the 
induction hypothesis, gives u(i - 1, j )  - u( i  - 1, j - 1) = 1. 
Therefore, from (6.a) we have u(i, j )  - u(i, j - 1) = 1 + 0 
- 2 = -1. Similarly, A u , 3 ( i , J )  = 1, A u , 3 ( i , j  - 1) = 0, and 
u(i - 1, j )  - u(i  - 1, j - 1) = 1, from which we obtain 
u(i, j )  - u(i, j - 1) = 1 - 1 + 0 = 0. A similar argument ap- 
plies if r(i, j )  = 0 or 1. 

Finally, if (i, j - 1) is in Region 1, then j = s - i + 2 and 
thus, r ( i ,  j )  = 1. From (3.a), we get u ( i ,  j )  - u ( i ,  j - 1) = 
u(i - 1, j )  - u( i  - 1, j - 1) + 2 - 1 and from (3.b) we get 
u ( i , j )  - u ( i , j  - 1) = u(i - 1 , j )  - u(i - 1 , j  - 1). But both 
( i  - 1, j )  and ( i  - 1, j - 1) are in Region 1 ,  and thus u(i - 
1, j )  = u(i - 1, j - l) ,  and u ( i  - 1, j )  = u(i - 1, j - 1) + 

0 
The above theorem proves that it is possible to map an h x w 

grid, h < w 1 2 h ,  exactly into a w X h grid with dilation cost 
2 .  It is also possible to concatenate the w x h target grid with 
its symmetric image (reflected across the line U = h )  to obtain 
an exact embedding of an h X 2 w grid into a w X 2 h grid with 
dilation cost 2 .  Along the same line of thinking, an h x 2 w + 1 
source grid may be divided into h x w + 1 and h x w sub- 
grids. These two subgrids may then be embedded into a w + 1 
x h and a w x h grid, respectively, and by concatenating the 
former with the symmetric image of the latter, we may obtain a 
w + 1 x 2 h  target grid. The dilation cost at the line of concate- 
nation may be shown to be at most two. Grid concatenations of 
the type described here will be used repeatedly and tacitly in the 
rest of this paper. 

In the following sections, we apply the above technique to our 
original problem of mapping an h x p h  rectangular grid ( p  is 
assumed to be greater than unity), into a square grid. First, two 
basic methods are introduced for grids with p 5 4. These 
methods are then combined with folding and applied effectively 
to the embedding of any grid with p > 4. 

1, which proves (5.a) and (5.b), respectively. 

For i = 2 ,  (5) is proved directly from ( 2 )  and (3). To prove 
the induction step, we notice that if ( i ,  j )  is in Region 3, then 
( i , j  - 1) is either in Region 3 or in Region 1. We first assume 
that (i, j - 1) is in Region 3 and use (3) to obtain 

u ( i , j ) - u ( i , j - l ) = u ( i - l , j ) - u ( i - l , j - l )  

+ A U , 3 ( i , j )  - ~ ~ , 3 ( i , j  - 1) (6.a) 

- A u , 3 ( i , j )  + A u , 3 ( i , J  - 1). (6.b) 

u ( i , j ) - u ( i , j -  1 ) = u ( i -  ~ , j ) - u ( i - l , j - l )  

111. THE METHOD OF EXACT Row FITTING 
Let k ,  k 2 h ,  be the dimension of the square grid (called the 

target grid) onto which a given h x ph grid (called the source 
grid) is to be mapped. Of course, it is desirable to choose the 
smallest possible k in order to minimize the expansion cost 
E = k 2 / p h 2 .  Given such a k ,  the method of exact row fitting 
assumes that the leftmost h x k subgrid of the source grid may 
be mapped exactly into the k x h leftmost subgrid of the target 
grid (see Fig. 4). This is possible if and only if condition (1) is 
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Fig. 4. Embedding a 7 x 1 1  grid into a 9 x 9 grid using the method of 

exact row fitting. 

satisfied. That is 

Moreover, if 

k - h r p h - k  

that is, the number of columns, k - h ,  remaining in the target 
grid is at least equal to the number of columns, p h  - k ,  
remaining in the source grid, then these columns may be mapped 
in a trivial way with dilation cost 2. In other words, the mapping 
may be completed with dilation cost 2 provided that the size of 
the target grid, k ,  satisfies the conditions (7.a/b). 

The solution of inequalities (7.a/b) may be found by, first, 
computing the minimum k that satisfies (7.b), and then checking 
that this value is consistent with (7.a). Specifically, (7.b) is 
satisfied if 

(8) 
k = K ,  = [ ~ h ] .  P + l  

It is straightforward to check that the value of k given by (8) 
satisfies (7.a) if p I 3 - l / h .  Hence, the method of exact row 
fitting may be applied only if p I 3 - l / h .  Noting that K ,  5 
(( p + 1)h + 1)/2, we may obtain an upper bound on the expan- 
sion cost of the resulting embedding. Namely, 

The value of E, increases monotonically with p for p > 1 + 
l / h ,  and hence may exceed 1.2 for large values of p .  For 

examples, assuming h = 12, then E, > 1.2 if p 2 2.06. More- 
over, if p > 3 - l / h ,  the method may not be applied. In these 
cases, the method of exact column fitting, described in the 
following section, can be used. 

IV. THE METHOD OF EXACT COLUMN FITTING 

The embedding technique used in this section is based on the 
vertical dissection of both the source and the target grids, each 
into two subgrids which are as equal as possible. Each of the 
source subgrids is then embedded into the corresponding target 
subgrid in a way that ensures that all the columns of the target 
grid are efficiently used. In order to deal with the case of p h  
being an odd integer, the number of columns in the two source 
subgrids is taken to be rph/21 and Lph/2] , respectively, 
where L ] is the floor function. For the same reason, the 
number of columns in the target subgrid is divided into r k/21 
and L k /2J  columns, respectively, (see Fig. 5). 

The optimal size, k = K , ,  of the target grid should be 
determined by the embedding of h x rph/21 + k x r k/21 
or the embedding h x Lph/2] -+ k x L k /2J  , whichever 
gives a more strict condition on k .  It turns out that the latter 
embedding is more restrictive than the former, and hence, 
should be used to derive k .  In the remainder of this section, we 
will denote the h x L p h / 2 ]  grid by G,, and the k x L k / 2 ]  
grid by G,, and we will describe an embedding of G, into G, .  
The embedding of the other half of the source grid (the h x 
rph/21 subgrid) into the other half of the target grid (the 

k x r k/21 subgrid) may be accomplished in a similar fashion. 
Consider the upper Lk/2]  x Lh/2] subgrid of G,, and 

embed it into the upper Lph/2] x Lk/2J subgrid of G, 
using the ripple propagation technioue of Section 11. In order to 
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Fig. 6. Expansion cost versus eccentricity for 1 < p 5 4 ( h  = 20) 

accomplish this embedding we should have 

Lk/2J  5 h (1O.a) 

and condition (1) should be satisfied, namely 

Lk/2J  5 Lph/2J  I 2 Lk /2J  . (lO.b) 

With this, each of the remaining h - 1 k / 2 ]  rows in G, 
may then be compressed to have the same pattern as the last row 
of the Lph/2J x L k / 2 ]  -+ Lk/2J  x Lph/2J embedding. 
This results in a dilation cost equal to 2 and requires 2 ( h  - 
L k / 2 J  ) additional rows in GI.  Thus, the following should be 

satisfied: 

k - L p h / 2 J  I 2 ( h  - L k / 2 J ) .  (1o.c) 

Noting that ( x  + 1) /2  2 L x / 2 J  5 ( x  - 1)/2, we may calcu- 
late the minimum value of k which always satisfies (10.c). 
Namely, 

This value of K ,  satisfies conditions (lO.a) and (lO.b) as long as 

With the value of k given by ( l l ) ,  the two halves of the 
source grid may be successfully embedded into the two halves of 
the target grid with dilation cost 2 .  Noting that r x /41  I ( x  + 
3)/4, it is possible to bound the expansion cost of the embedding 
as follows: 

p 5 4 .  

( P  + 4  + i)’ 
E, 5 EC,- = (12 )  16 P 

For 1 < p 5 4 ,  the value of E, is monotonically decreasing 
with p ,  which suggests the use of the method of fitting columns 
whenever the method of fitting rows fails to satisfy E, 5 1.2 
(see Fig. 6). The critical value of p that determines which of the 
two methods has a smaller expansion cost may be found by 
solving E,,,, = E,,- .  From (9) and (12), this gives p = 2 
+ 3/h. The expansion cost at this value of p is (3h + 
4)’ / (4h(2h + 3)), which is always smaller than 1.2 if h > 17. 

Hence, for 1 < p 5 4 ,  the most efficient embedding method 
depends on the value of p .  Specifically, if p 5 2 + 3 / h ,  then 
the methods of exact row fitting should be used, otherwise, the 
method of exact column fitting should be used. For values of p 
larger than four, the above methods can be combined with the 
known method of folding [2] as described in the next section. 

V. COMBINING RIPPLE PROPAGATION WITH FOLDING 
If p = ( q  + 1)’ for some integer q 2 1 ,  then the source grid 

may be folded q + 1 times to fit exactly an ( q  + 1)h x ( q  + 
1)h target grid. In fact, it is easy to show that if 

( q  + l)’  < p 5 ( q  + 
1.2 

(13.a) 

for some integer q 2 1 ,  then folding the source grid into an 
( q  + 1)h x ( q  + l ) h  target grid will result in an expansion 
cost less than 1.2. In Fig. 7, we illustrate the technique of 
folding by an example. As clear from this figure, successive 
tracks (a track consists of h consecutive rows of the target grid) 
are joined by two h x h corner tiles that guarantee a dilation 
cost equal to two. 

As described above, folding may result in few unused columns 
in the last track of the target grid, and condition (13.a) limits the 
number of these unused columns. It is also possible to apply 
folding and leave some rows of the target grid unused. More 
precisely, if the eccentricity of the source grid satisfies 

q2 5 p 5 1.2q2 (13 .b) 

then it is possible to fold this grid into an p h / q  x p h / q  target 
grid. This will leave ( p  - q 2 ) h / q  unused rows in the target 
grid, and condition (13.b) will guarantee that the number of 
unused rows does not exceed 0.2qh.  Thus, the expansion cost 
will be less than 1.2. 

A .  Combining Folding with Exact R o w  Fitting 
Consider an h x ph  source grid which satisfies 1.2q’ < p < 

(q  + 1)’/1.2. Clearly, folding this grid into a square grid is too 
expensive (expansion cost larger than 1.2) because neither (13.a) 
nor (13.b) is satisfied. In this section, we introduce a method 
which combines folding and exact row fitting. This method will 
be denoted by FR. In order to describe the FR method we 
assume that the source grid is to be embedded into a target grid 
of size k ,  where k satisfies qh I k I ( q  + 1)h. The embed- 
ding starts by folding the source grid into the target grid q times 
as shown in Fig. 8(a). Clearly, the rightmost h x ( p h  - q k )  
subgrid of the source grid will not fit into the target grid, and the 
last k - qh rows of the target grid will be unused. The idea is 
to consider the last track resulting from the folding (an h x p h  
- ( q  - 1)k grid denoted by G,), and to squeeze it into an 
k - ( q  - l ) h  x k grid (denoted by GI)  that fits the target grid. 

The squeeze is performed by partitioning G, vertically into P 
subgrids G,, o ,  * e ,  G,, p -  and partitioning GI vertically into 
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Fig. 7. Folding a 5 x 40 grid into a 15 x 15 grid. 
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Fig. 8. Combining folding with exact row fitting ( q  = 4 and P = 4). 

P subgrids, G,,o,. . e ,  G[, p- and then mapping each G,, ; into 
the corresponding G,, ;. The partitioning of G, is such that G,,,, 
is an h x h grid and each remaining G,, ;, i = 1; . . , P - 1 is 
an h x r ( p h  - ( q  - 1)k - h ) / ( P  - 1)1 grid. Note that if 
p h  - ( q  - l )k  - h does not divide P - 1 then G,, p -  will 
have few empty columns. Similarly, the partition of G, is such 
that G,,o is a k - ( q  - 1)h X h grid and each of the remaining 
G t , ; ,  i = I;.., P - 1 is a k - ( q  - 1)h x L(k - h) / (P  - 
l)J grid. 

The method of exact row fitting introduced in Section III is 
used to map each G,, ;, i = 1, * . . , q - 1, into the correspond- 
ing Gt ,  ;. As for the mapping G5,0 ---* GtTo,  it should ensure that 
the transition from track q - 1 to track q does not increase the 
dilation cost beyond two. This may be accomplished by expand- 
ing the h x h comer tiles (see Fig. 7) into a k - ( q  - 1)h x h 
pattern that fits G,,o such that the distribution of the h nodes in 
the last column of G,,o is similar to the distribution of the h 
nodes in the first column of G,, ,. This is always possible when 
exact row fitting is used to map G,, to Gt, ,. Specifically, as a 
result of exact row fitting, the nodes n,, * * ,  n h  in the first 
column of G,, are mapped to the nodes F( n,), . . . , F( n h )  in 
the first column of G,,, such that one of the following two 
conditions is satisfied for some integer z ,  1 5 z 5 h: 

1) the distance between F ( n j )  and F ( n ; + , )  is one, for i = 
l;.., z - 1, and two, for i = z ; . . ,  h - 1. 

2) the distance between F(n, )  and F ( n ; + , )  is two, for 
i = I; . . ,  h - z ,  and one, for i = h - z + l;.., h - 1. 
For example, in the mapping of Fig. 4, h = 7, z = 5 ,  and the 
second case applies. In general, using the notation in Fig. 4, the 

value of z may be found from 
z = 2 h - k  

Because of the above property, it is straightforward to expand 
the h X h corner tile Gs,o into G,,o such that the maximum 
dilation in Gt,o is two and the node distribution in the last 
column of G,,o is identical to the node distribution in the first 
column of G t , l .  In Fig. 9, we show the expansion of a 7 x 7 
comer tile to match the grid of Fig. 4(b). 

In order to compute the optimum size k of the target grid, we 
follow the same reasoning as in Section 111. Specifically, the 
method of exact row fitting may be used for mapping any G,,; 
into the corresponding G,, ;. For this, the following conditions 
should be satisfied (refer to Fig. 10): 

(14.a) 

h s k -  ( 4 -  l ) h 5 2 h  (14.b) 

1 ( P  - 1)h - (4 - 1 ) k  
- h r  

P -  1 

- ( k  - ( 4  - 1)h ) .  ( 1 4 . ~ )  

In order to solve the above system of inequalities, we first find 
the minimum value of k which always satisfies (14.c). This 
value is 

( P  + q ( P  - 1))h + 2 ( P  - 2 )  
q + P - 1  

k = K f r  = 
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Fig. 9. Mapping a 7 x 7 comer tile into a 9 x 7 grid. 

fP-l)-(q-I)k 1 , -r P-1 

e- k-(q- l )h __* 

I E 3  
Fig. 10. Mapping G,, , into Gt,  in the FR method. 

By substituting (15) in (14.a) and (14.b), we conclude that 
these two conditions are satisfied, respectively, if 

( P  + - 3)( P - 2) 
p L P 2  + q - P +  (16.a) 

h 
and 

3 P + q - 6  
p s q ( q + l ) + P - 1 -  . (16.b) 

Hence, given any rectangular grid, the method may be used if 
there exists a P that satisfies (16). The number of partitions P 
also affects the expansion cost. More precisely, from (15), we 
find that K f r  5 (ph + q ( P  - l ) h  + 3 P  + q - 6)/(q + P - 
l), which may be used to bound the expansion cost by 

h 

( p  + q ( P  - 1) + ( 3 P  + q - 6)/h)’ 
Efr 5 E f r ,  max = 

( p  + 4 - q 2 P  

(17) 

The derivative aEfr,,/aP is negative for p L q2 which 
means that, from the point of view of minimizing Efr ,  it is 
advantageous to find the maximum P which satisfies (16). For 
P > q,  the two conditions (16.a) and (16.b) may not be satisfied 
simultaneously. If, however, p is in the range 

4 q  - 6 
s p s ( q + l ) 2 - 2 - - -  

( 4  - 2) (2q  - 3) 
h h ’  4’ + 

then (16.a/b) are satisfied for P = q ,  and hence the embedding 
may be completed with q partitions in a target grid whose size i s  
given by (15). The maximum expansion cost may then be found 

by substituting P = q in (17) to obtain 

In Section VI, it will be shown that, for q L 3, Efr is smaller 
than 1.2 for any p in the range specified by (18), and that, 
outside that range, p satisfies (13.a) or (13.b), which means that 
folding may be used with expansion cost less than 1.2. The case 
q = 2, however, is slightly more complicated. For instance, if 
h L 20, then, folding is too expensive in the range 5.85 5 p 5 
7.5 (expansion cost is larger than 1.2). Also, in that range, the 
FR method either does not apply (if p > 6.9) or gives Efr > 1.2 
(if 5.85 < p < 6.9). In this case, combining folding with the 
method of exact column fitting (the FC method) turns out to be 
useful. Although we only need this combination for q = 2, the 
FC method will be described in the next section for general q.  
The reason for doing so is that for q L 3, although both the FC 
and the FR methods realize an expansion cost less than 1.2, it 
will be shown that the FC method gives better results than the 
FR method for some subranges of p .  

B. Combining Folding with Exact Column Fitting 
In this method, denoted from now on by FC, the source grid 

is folded into the target grid as described in the previous section, 
and also each of G, and G, is partitioned into P subgrids. The 
FC method is different from the FR method in that each subgrid 
G s, 1 )  . i = 1,. . . , P - 1, is mapped into the corresponding Gl, ; 
using the method of exact column fitting rather than exact row 
fitting. 

The conditions that have to be satisfied in order to map G,,; 
into Gt, ;  using exact column fitting are analogous to the condi- 
tions (lO.a/b/c) of Section IV. Specifically, these conditions are 
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--+ 
P - l  

Fig. 11. Mapping G,, into G,. in the FC method 

(refer to Fig. 11): 

I k - ( q  - 1)h (20.a) 
( P  - 1)h - ( 4  - 1)k  

P - 1  

2 2 (  h - 1-1). k - h  (20.c) 
P -  1 

The same technique that was used in the last sections is 
applied to the solution of the above inequalities. From (2O.c), 
the minimum size of the target grid is found to be 

1 .  (21) 
( p  + qP + P - q ) h  + 3 ( P  - 2) I p + q  

k = Krc = 

By substituting (21) in (20.a) we obtain the condition 

p I P2 - P + + ( P  + - 3 ) ( P  - 2)/h 

which may be satisfied only if P > q. Also, by using (21) to 
compute the expansion cost Efc,  and then differentiating the 
resulting formula, we find that aEfc/aP is positive for p 5 P2 
- P + q. This means that using P = q + 1 partitions will give 
the best expansion cost. Now using P = q + 1 in (21), and 
substituting the result in (20.a) and (20.b), we find that these 
conditions are satisfied if p lies in the following range 

That is, the FC method may be applied if p satisfies (22). The 
expansion cost may then be computed from (21) with P = q + 

1. The upper bound on this cost is given by 

( P  + 4 ( 4  + 1) + 1 + (5q - 3)/h)* 

(2q + q 2 P  
Efc  5 Efc,max = 

VI. DISCUSSION AND CONCLUSION 
Given an h x p h  source grid, let q be the integer that 

satisfies q2 I p < ( q  + 1)2. For q = 1, it has been shown in 
Sections 111 and IV that the mapping of the source grid into a 
square rectangular grid may be accomplished by using the 
method of exact row fitting if p I 2 + 3/h,  or the method of 
exact column fitting if p > 2 + 3/h. In both cases, the expan- 
sion cost is proven to be less than 1.2. 

For q 2 2, the FR or the FC methods described in Section V 
may be applied provided that p ,  < p < p z ,  where the critical 
values p1 and p2 are specified from (18) and (22). Namely, 

(24.a) 
( 4  - 2)(2q - 3) 

h P1 = q2 + 

In order to determine which of the two methods gives a smaller 
expansion cost, we notice from (19) and (23) that, for p > 0, 
Ef,,, and Ef,,, intersect at only one point, namely 

1 2 q 2 - 3 q + 9  
p 3 = q ( 4 7 + 1 ) - 5 +  2 h  . (24.c) 

We also observe that both Efr,,, and Eft,, are of the form 
f ( p )  = ( p  + a ) * / ( b p ) ,  for some constants a and b. Given that, 
for p > 0, the function f has only one local minimum at p = 4, 
we may determine that Efr,,, has its local minimum at pfr = 
q(q - 1) + (4q - 6) /h ,  and Eft,, has its minimum at pfc 
= q(q + 1) + 1 + (5q  - 3 ) / h .  Clearly, pfr is smaller than p 1  
for h > 4, and pfc lies between p1 and p2. This leads to the 
conclusion that Ere,, < Ef,,,, if p > p3 and Eft,, > 
E f r , ,  if p < p3. In Fig. 12, both Efc,,x and E f r , ,  are 
plotted for q = 2, h = 20, and for q = 4, h = 10. 

Hence, if p lies between p1 and p 3 ,  the FR method is 
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(b) 
Fig 12. Expansion cost for q2 5 p < ( q  + l)’, (a) q = 2, h = 20. (b) 

q = 4, h = 10. 

recommended, and if p lies between p3 and p2, then the FC 
method is recommended. If this strategy is applied, then the 
largest expansion cost occurs at either p = p 2  or p = p3.  By 
direct substitution of (24.b) and (24.c) into (23), and after simple 
algebraic manipulation, it may be shown that, for h 2 18, the 
value of Efc,,x is less than 1.2 at p2 and p 3 .  

Neither the FR method nor the FC method may be applied if 
p is less than p ,  or larger than p2. However, in these two cases, 
the expansion cost resulting from simple folding is low because 
p is close enough to q 2  and (q + 1)2, respectively. In fact, if 
p 5 p , ,  then p < q2(1 + 2 / h ) ,  which satisfies (13.b) if h > 10. 
Also, if p 2 p2, then p 2 (q + 1)2(1 - l /qh) - 1, which sat- 
isfies (13.a) if h > 10. In other words, the application of simple 
folding in these two regions will result in an expansion cost less 
than 1.2. 

In brief, new techniques have been presented and analyzed in 
this paper, for embedding an h x p h  rectangular grid into a 
square grid with dilation cost equal to two. The most appropriate 
technique for a given grid has been shown to depend on the size 
of that grid, that is on h and p .  By adhering to the selection 
strategy suggested in the paper, the expansion cost is guaranteed 
to be smaller than 1.2 if h is larger than or equal to 18. 

Finally, it should mentioned that, recently, the same problem 
of embedding rectangular grids into square grids has been 

studied independently by Ellis [4]. Specifically, it is shown in [4] 
that it is possible, with dilation at most three, to embed any 
h x w grid into a k + 1 x k + 1 grid, where k = . 
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