FAULT TOLERANCE AND RELIABLE ROUTING IN
AUGMENTED HYPERCUBE ARCHITECTURES

M. Suitan Alam

Rami Melhem

Dept. of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

ABSTRACT

Two schemes for augmenting hypercubes with spare nodes are
presented. In both schemes, fault coverage is local in the sense that only
the neighbors of the faulty nodes need to know about the faults. Routing in
the presence of faults is accomplished by distributed algorithms that deliver
messages reliably to their destination nodes. A message destined to a faulty
node will be delivered to the spare node that replaces the faulty node. Both
node and link failures may be accommodated in both schemes, and because
no switches are used for reconfiguration, there is no assumptions about
fault-free switches.

The two schemes differ in the complexity of the interconnections
between the spare nodes and the original cube nodes. More complex inter-
connections results in more flexible coverage algorithms and thus, more
reliable systems. However, increased flexibility increases the complexity of
the routing algorithm because more care has to be given to the possibility of
messages looping in cycles, thus never reaching their destinations. The reli-
ability of the fault coverage schemes and the efficiency of the routing algo-
rithms are evaluated from simulation results.

1. INTRODUCTION

Hypercube multiprocessor systems are being used for a variety of
scientific applications and dedicated real time systems where error free
computations are expected. However, as the number of processors in a
hypercube system increases, the complexity of the system increases, leading
to a possible high rate of both transient and permanent failures. For appli-
cations where degraded performance is not allowed it is nécessary to reas-
sign the tasks of the failing processors to some spare processors without
destroying the logical hypercube interconnection among the functioning
processors.

One approach to achieve fault tolerance where degraded performance
is not allowed is to initially designate only some of the processors as active
and designate the rest as spares that may cover for faulty active processors.
Such approach is only useful for applications that (1) require a number of
processors less than the number of processors in the available hypercube
and (2) exhibit an interconnection structures that may be embedded in
hypercubes (7). Another approach to achieve fault tolerance is to decom-
pose the hypercube structure hierarchically and add redundancy at several
levels (2,8,9). This approach requires a global reconfiguration algorithm in
which a global controller reconfigures a set of cross-bar switches. It also
does not take full advantage of the available hardware because a given
module at a specific level may be replaced by a spare module even when
most of its components are functioning properly.

In this paper we suggest a different approach in which an N node
hypercube is augmented with E extra nodes that are to be used as spares.
From the application point of view, only N nodes are used and messages

CH2713-6/89/0000/0019$01.00 © 1989 IEEE

between them are interchanged by using the usual logN hypercube
addresses. When a node fails, one of the spare nodes takes over its task and
inherits its address. From this point on, messages addressed to the failed
node should be routed to the spare node that replaces it. Hence, the sug-
gested fault tolerance approach consists of two components: a node replace-
ment policy, and a routing algorithm. Our basic goal is to ensure that both
components are executed distributively without the intervention of a central
controller.

Two schemes are proposed in Sections 2 and 3 for achieving this
goal. In both schemes, the replacement policy is extremely local in the
sense that only the neighbors of a faulty node need to know of the fault and
take some action in a manner transparent to the application program. Also,
routing is completely distributed and may not lead to a live-lock situation in
which a message circulates in a cycle, and thus never reaches its destina-
tion. The routing algorithms reduce to the bit-wise routing algorithm for
hypercubes [5,6] when no faulty nodes are encountered, and adapts to
faults gracefully. No switches are used and link failures can be accommo-
dated.

In the first scheme, one spare node is added to each 2° original nodes,
for some integer i, O<i<n. The 2° original nodes and the spare node form
a module which we call a fault tolerant basic block (FTBB). An n dimen-
sional hypercube may be built using 2*~ FTBB’s. Although this scheme is
simple and results in an efficient routing algorithm, it has very little flexibil-
ity for fault coverage. Specifically, more than than one failure in an FTBB
results in a system failure.

In order to improve the system reliability, the second scheme is intro-
duced in which spare nodes may be shared. In this scheme an FTBB is a
3-dimensional hypercube with four spares. The spares are connected to the
original nodes such that each node may be covered by two spares, and each
spare can cover four nodes. This flexibility improves the reliability consid-
erably at the expense of a more complex routing algorithm. The reliability
and the routing performance of the two schemes are analyzed in Section 4
using simulation results.

2. SCHEMEI: A Modular Fault Tolerant Architecture

In this scheme, the ensemble architecture is composed of 2* original
nodes and 2"~ spare nodes. The 2 original nodes are interconnected in a
hypercube structure of dimension n, called the original cube. As is the
case in any hypercube architecture, each node in the original cube hasann
bit address. The 2™~ spare nodes are also interconnected in a hypercube
structure of dimension n—i, which we call the spare cube. In order to
describe the interconnection between the spare and the original nodes, we
consider a decomposition of the original cube into 2*~ disjoint subcubes,
for some i, O<i<n. Each subcube consists of 2 nodes which have identical
n—i most significant address bits. We then allocate one spare node to each
subcube and connect this spare to all the nodes in that subcube. A subcube
and its spare form a module that we call a Fault Tolerant Basic Block
(FTBB) which is identified by the n—i most significant bits in the addresses
of its original nodes. For example if n=5 and i=2, then there is a spare
node for every four nodes in the original cube. Each four nodes which
have the same 3 most significant address bits are connected to a spare node

from the spare cube. The augmented hypercube architecture is shown in
Fig 1.

00000 00100 01000 01100 10000 10100 11000 11100
00001 00101 01001 01101 10001 10101 11001 11101
0001 0011 010, 011 1001 1011 110! 11110
00011 00111 010]\1 o1 10041 10141 11010 mi
J
et i
Original
Cube
i |
S 1 8 % R, R S I R PR W 5 P A JE W R, 0 PR
! ,
\ \ SSpare
Cube
000xx 001 xx 010xx Oitxx 100xx 10txx 110xx 111xx

O Original node
a Spare node

Fig 1 - The augmented hypercube architecture in SCHEME 1

Initially, each spare node has a generic address of the form
¥a--Yis1X..X, where the X bits are generic bits and y,...y;,; is the address
of the FTTB which contains that spare. When a node y, - - y, in the origi-
nal cube fails then the spare node y,...y; 4 X...X in the same FTBB replaces
it and inherits its address. Since each FTBB contains only one spare, more
than one node failure in the same FTBB will cause a system failure. Hence,
the system in this scheme is single fault tolerant in the sense that the failure
of any two nodes in the same FTBB will lead to the failure of the system.

The bit-wise routing algorithm usually used in hypercube architec-
tures [5,6] needs to be modified to route messages around faulty nodes.
Specifically, a message addressed to some node y, - - - y; should be routed
to the original node having this address, or, if the original node is faulty, to
the spare node y,...y;,1X..X which replaces the faulty node. The routing
algorithm that we present for achieving this goal is completely distributed
and requires only local knowledge of node failures. This means that only
the neighbors of a failing node need to know about the failure. The perfor-
mance measure described in [3,4,4] is used to evaluate our routing algo-
rithm. Specifically, we prove that the upper-bound on the routing perfor-
mance is 2+ steps, where v, y<n, is the number of steps required for a
message to reach its destination in a fault free n-cube.

The routing algorithm is described in terms of the action taken at
each node upon the reception of a message. Specifically, when a node
p=p, - p, receives a message with a destination address d=d, - - d,, it
computes x=x, - * * x,, the bit-wise "exclusive or" of p and d. If x;=0, for
i=1,...,n, then p is the destination node, otherwise, the message is sent to a
neighboring node according to some set of rules which depends on whether
p is an original node or a spare node. The rules specify a list of altematives
for the next node to which the message should be sent. If a specified next
node is down, then the next alternative in the list is tried until one is suc-
cessful. For the original nodes the alternatives are (in order);

1. the node across dimension j, where j is the largest integer such that x;=1
2. the spare node which is connected to p
3. any adjacent node in the current FTBB.

For the spare nodes, the alternatives are:

1. if x;=0, j=i+1,...,n, then send the message to 4. This is
possible because the current node is in the destination FTBB.

2. the spare node across dimension j, where j is the largest
integer between i+1 and n such that x;=1

3. any original node within the current FTBB.

20

According to the above lists, if an original node can’t route a message
to the next FTBB because of a node failure, then it tries to route the mes-
sage to that FTBB through the spare cube. More descriptively, If a node p
in some FTBB, say ftbb, wants to route a message to another node p’
across dimension j, where p’ is in a different FTBB, say ftbb’, and p’ is
faulty, then p has i+1 other disjoint paths through fibb to cross dimension
Jj and reach some node in ftbb’. These disjoint paths are through i +1 nodes
in ftbb which are neighbors to p. Out of the i+1 nodes, at most one node
can be faulty. If p sends the message to some non-faulty node r in fibb,
then, r will be able to route the ge across di ion j to anode r” in
fibb’. 1f the system have not failed, then neither is 7 because no more than
one node can fail in fibb” and p” has already failed. Hence, at most 2 steps
will be required to reach fibb’ from ftbb. A similar argument may be used
for spare nodes.

Now, consider a message that would require ¥ routing step in a fault
free environment. In the presence of faults, this message will require at
most 2y steps to reach a node in the destination FTBB. Once the message
reaches the destination FTBB it can be shown that it may reach the destina-
tion node in at most i steps. This leads to the following proposition:

Proposition 1: The upper bound on the number of steps required for rout-
ing a message in the presence of k faults is min{2y+i , y+k+i}, where Yis
the number of steps required for routing the same message in a non- faulty
cube and 2 is the number of original nodes in an FTBB.

In Section 3, simulation results will show that, on the average, the
routing performance is much better than the worst case bound of Proposi-
tion 1. For the maximum number of faults, that is 2° faults, the average
number of routing steps is found to be 1.2y.

Although the fault tolerance scheme described in this section exhibits
good routing performance, it leads to a relatively poor reliability. This is
due to the fact that each node may be covered by only one specific spare.
In the following scheme, a more flexible architecture is used at the expense
of a more complex routing algorithm.

3. SCHEME II: A Double coverage Fault Tolerant Architecture.

In this scheme, the basic block (FTBB) for constructing a fault
tolerant hypercube is a 3-dimensional hypercube of original nodes with an
2-dimensional hypercube of spare nodes embedded in it. That is four spare
nodes are assigned to each eight original nodes. As shown in Fig 2, the
spares are placed in four faces of the FTBB in a regular fashion such that
each spare covers four original nodes and each original node has 2 adjacent
spares that can cover it.

100 110

000 010

1:\1‘
xix
x
Ox
111
001 011

Figure 2. FTBB for scheme 11

An original node in an FTBB has a three bit address and a face is a
side/plane of the FTBB defined by a set of four original nodes. There are
six faces in an FTBB, and each is identified by a generic address of the
form bXX, XbX or XXb, where b=0 or 1 is called the face bit and X is a
generic bit. One spare node is added to each of the faces 0XX, 1XX, X 0X
and X 1X, and is connected to all the nodes on that face. A spare node that
is added to a face has a generic address identical to the address of that face.
For example, in Fig 2 the original nodes 000, 001, 010, 011 define the face
0XX to which the spare 0XX is added.

At any time during the operation of the system, a spare node is in one
of the following three states:

Ready : Ready to take over a failed node.
Busy : Already took over a failed node.
Down : Spare node has failed

If an original node fails, then any of its two adjacent spare nodes can take
over. For example, the original node 011 has the spare nodes 0XX and
X1X adjacent to it and, if it fails, either 0XX or X1X can take over. If one
of the spares is in the busy or the down state, then the other may be used to
cover for 011. If both spares are in the busy or down states, then the sys-
tem fails. It will be shown in Section 4 that this double coverage feature
leads to a very good spare utilization, and thus, high probability of system
survival.

Fault tolerant embedded hypercubes of higher dimensions can be
built by connecting several FTBB’s. For example a 4-dimensional fault
tolerant hypercube can be constructed by taking two FTBB’s and connect-
ing the corresponding nodes (see Fig 3). In general, a n-+1-dimensional
fault tolerant hypercube can be built by connecting two n -dimensional fault
tolerant hypercubes.

0100 0110 1100 1110
ooooJ 0010 1000 1010
01x; X
;ﬁ< Ix1x
Ox 1x
00 10
11 1111
0001 00TT 100T 1011

Fig 3. A 4-dimensional Scheme II architecture

In an n-dimensional (n>3) fault tolerant hypercube each node has an
n-bit address. The most significant n—3 address bits of a node form the
address of the FTBB which contains the node and the least significant
address bits form the address of the node within the FTBB. For example, if
the address of a node is given by p,p.—i - -pwp1 ,» n>3, then
DaPa-1"" " Pa is the address of the FTBB containing the node, and p3pp; is
the address of a node within that FTBB. For simplicity, a node will be
identified by its 3-bit address within an FTBB whenever a specific FTBB is
identified by the context.

The routing algorithm.

As in SCHEME I, a spare that covers for a node inherits its address
and it is the responsibility of the routing algorithm to deliver a message to
its correct destination. This task is made complex by the fact that a failing
node may be covered by one of two spares and a message addressed to the
failing node should be delivered to the correct spare. Also, because of the
flexibility of the architecture, a distributed routing algorithm that is not
carefully designed may lead to a live-lock situation in which a message cir-
culates in a closed loop, thus never reaching its destination. We will
describe a correct, live-lock free, distributed routing algorithm in which
each node has local knowledge of the system. Specifically, each node
needs to know only the status of its neighboring nodes. This knowledge is
used to relay any received message not destined to that node to some other
node according to a set of rules.

In order to avoid live-lock, some order need to be defined among the
neighbors of a given node within an FTBB. Consider first an original node
whose address is p =papop;. The node p has five neighbors within its
FTBB, three original nodes and two spare nodes. An order among the ori-
ginal nodes is explicitly defined by the dimensions of the cube and an order
among the spare nodes may be defined according to the position of the face
bits in their generic addresses. More precisely, the two spares connected to
p have addresses of the form bXX and Xb’X , with b and b’ being zero or
1. The node bXX is called the zeroeth spare of p and the node Xb'X is
called its first spare.

21

A spare node s has six neighbors within its FTBB, four original
nodes and two spare nodes. The original nodes are ordered according to the
bits at which they differ. For instance, if s=bXX, b=0 or 1, then its four
original neighboring nodes 500, 501, b10 and b 11 are called, respectively,
the zeroth, first, second and third adjacent original node of s. Similarly, if
s=XbX then the four nodes 00, 0b 1, 150 and 1b 1 are called, respectively,
the zeroth, first, second and the third adjacent original nodes of s. Finally,
the two spare neighbors of s are ordered according to the value of their face
bit. The node with a face bit equal to zero is called the zeroeth spare neigh-
bor of s, and the node with a face bit equal to one is called the first spare
neighbor of s. For example, the spare node 1XX has two adjacent spare
nodes X0X and X1X, which are called the zeroth and the first adjacent
spare nodes of 1XX, respectively.

100 100 3 110
1XX IXX
X XX X1X
101 101 O 1
@ ()

Fig 4. (a) CornerQuad (b) HalfCube

Definition 1: A node is called k—accessible if, within its FTBB, all but k of
its neighbors are faulty. Accordingly, a 1-accessible node has only one
non-faulty neighbor within its FTBB, and all the neighbors of a O—accessi-
ble node within its FTBB are faulty. A O-accessible node is called iso-
lated .

Definition 2: A corner—quad is a configuration (within a FTBB) of two
original nodes along with two common adjacent spare nodes such that these
four nodes along with their links form a complete graph of four
vertices/nodes. The two original nodes are neighbors along dimension 1, the
dimension that separates the two faces in the FTBB that do not contain
spares, namely faces XX 0 and XX 1 (see Fig 4(a)).

Definition 3: A half —cube consists of two adjacent corner-quads of an
FTBB. It has four original nodes and three spare nodes along with their
links (see Fig 4(b)).

Definition 4: For any FTBB, say ftbb, the neighbor of ftbb across dimen-
sion k, k>3, is the FTBB whose nodes are neighbors to the nodes of fibb
across dimension k. Neighboring corner-quads and half-cubes are defined
similarly.

Definition 5: A hypercube architecture, augmented using SCHEME I, fails
if it contains a failing node that cannot be covered by a spare. A system
which have not failed is called live.

Given that a corner quad contains only two spare nodes, it is implied
that no more than two nodes can fail in any corner quad in a live system.
Since a corner-quad is a fully connected graph of four nodes, any two node
failures within a corner quad results in a connected graph of two nodes.
This implies that if we can route a message to a non faulty node in the
proper corner-quad then it should reach the destination since there exists a
path to the destination. Similarly, in a half-cube, no more than three nodes
can fail.

We are now ready to describe the routing algorithm. As in the algo-
rithm for SCHEME I, a message is first routed to the FTBB containing its
destination node, and once the message has reached the destination FTBB,
it is then routed within that FTBB to the destination node. In order to use
such a two phase routing algorithm, we have to guarantee that there always
exists a non-faulty path (through non-faulty nodes) between any two
FTBB’s, and that there always exists a non-faulty path between any two
non-faulty nodes within an FTBB. In graph theoretical terms this means
that the FTBB’s and the non-faulty nodes within an FTBB should remain
connected.

Lemma 1: If the system is live, then there exist a path between any two
FTBB’s.

Proof: Let e, e<8, be the number of spares in an FTBB. There are 8+e
nodes in any FTBB, which means that there exists 8+¢ different paths
through 8+¢ nodes of the FTBB to any adjacent FTBB. Since no more than
e nodes can fail in one FTBB, a total of 2e nodes can fail in any two adja-
cent FTBB's, implying that at most 2¢ out of the 8+e paths are faulty.
Since e <8, there exists a non faulty path between any two FTBB’s. O

Lemma 2: No node within an FTBB becomes isolated if the fault coverage
scheme described in this section is used.

Proof: We will prove this lemma by proving that any node within an FTBB
is at least I-accessible. Within a FTBB the original nodes have degree five
and the spare nodes have degree six. In a FTBB no more than 4 nodes can
fail otherwise the system would have failed. This means that no more than
four neighbors of a node within the FTBB can fail implying that an original
node within a FTBB is at least 1-accessible and a spare node is at least
2-accessible . This implies that any node within a FTBB is at least 1-acces-
sible. O

The above two lemmas show that there exists a path between any two
non-faulty nodes in the augmented hypercube structure. For a specific mes-
sage, this path may be determined distributively. That is each node on the
path may determine the next node from local information about the status of
its neighbors. More specifically, if a node p=p,...p; receives a message
addressed to a node d=d, - - - d, which is different from p, then it deter-
mines the next node on the message path by using the following informa-
tion:

1) x=p,---p,=p xor d, the bit-wise exclusive or of p and d

2) For each node, g, adjacent to p within the current FTBB (the
FTBB whose address is p, - - p,), an indication on whether g
is failing, is 1~accesible or is k—accessible , for some k>1,

For any neighboring node g within the current FTBB which is
in the busy state, the inherited address of g. That is the address
of the node that g have replaced.

The node v=v, - - - v, from which the message was received.

3)

4)

The routing rules at p is a list of alternatives for the "next node" to
which the message is to be sent. The altemnatives are attempted in order, and
an alternative is skipped if: (1) it specifies a failing node, (2) the node v
from which the message was received or (3) a node which is 1—accessible
unless this node is the destination node d. The reason for not sending a
message to v or to a 1-accesible node which is not d is to prevent mes-
sages from possibly looping in a cycles.

Routing Rules for original nodes:

If there exists at least one k such that x;=1, then try the following alternatives
in order: (message is not at the destination FTBB)
1. For k=4,...n, the node across dimension k if x;=1.
2. the node across dimension 1
3. the spare nodes bXX and XbX :
if the message is received from v across dimension 2 then try XbX first,
while if it is received across dimension 3, ry bXX first.
Otherwise the order is irrelevant.
4. a node across dimension 2 or dimension 3
Else, try the following alternatives in order: (p is in the destination FTBB)
1. For k=1,2,3, the node across dimension k if x,=1.
2. the spare in the same face as d if that spare is adjacent to p
3. any of the two adjacent spare nodes in the current FTBB
4. anode across dimension 2 or dimension 3
5. the node across dimension 1

Routing Rules for spare nodes:

If there exists at least one k such that x;=1, then try the following alternatives
in order: (message is not at the destination FTBB)

1. For k=4,...n, the node across dimension k if x;=1.

2. If the message is received from a different FTBB (v;#p;, for some

n—4sk<n), then for k=0,...3, the k** original neighbor of p
3. the spare node in the same comner quad as p and v
4. if p=bXX then try node v3 ¥, ¥; and then node v4 v, vy,
where a bar denotes the bit complement
5.if p=XbX then try node V3 v, ¥, and then node ¥3 v, v;,

22

Else, try the following al in order: (is at the d FTBB)
1.node d, if d is adjacent to p
2. the spare in the same face as d
3. the other spare node within the current FTBB
4.if v is a spare node, then route to the original node which is at
a minimum distance from d _
5.1f p=bXX then try node vd,v) and then vad,7,

6.1f p=XbX then try node d3v,¥) and then d3v,v,

Informal description of the routing algorithm

Two lists of alternative next nodes are used to route messages at each
node. The first is used for routing messages among FTBB’s, and is applied
whenever the current node is not in the same FTBB as the destination node.
That is, whenever not all x;’s, k=4,...,n are equal to zero. In this case, p is
said to be in the first phase of the message route. If, during this phase, rout-
ing from one FTBB to another fails then the algorithm tries to limit the rout-
ing trials, first to a corner quad and then to a half —cube. The reason is
that limiting trials to a corner quad (or a half —cube) will allow the mes-
sage to reach the next FTBB in at most 3 steps (or 4 steps). If the fault dis-
tribution makes it impossible to stay within the same half —cube , then at
most 5 steps may be required to reach the next FTBB.

We clarify this by an example. Let ftbb be the FTBB that contains
the current node, p, and assume that p tries to route a message along
dimension k, k>4, to a node p” in fibb’. If p’ is faulty, then, according to
the routing rules, p sends the message to a node p, which is in the same
corner quad as p . Denote this quad by C and its neighbor across dimension
k by C’. If the node p,” which is across dimension k from p, is not faulty,
then the message can be delivered to fibb” in two step. However, if p,” is
also faulty, then p, tries to route the message to another node p, in C
because, in this case, the node p,” across dimension k from p, may not be
faulty (only two nodes can fail in the corner quad C”). If such p, cannot be
found in C, then the next node, p,, will be in a half —cube containing C.
Denote this half —cube by H and its neighbor across dimension k by H’.

Now, if the node p," across dimension k from p, is not faulty, then
the message can be delivered to ftbb’ in three steps. But, p,” may also be
faulty. In this case, the algorithm will try to route the message to a non-
faulty node p, in H because the neighbor of such p, across dimension k
cannot not be faulty (at most three nodes may be faulty in H”). However, if
p2 does not have a non-faulty adjacent node in H, then the next node, p,,
will not be in H. In this case p,” may be faulty, and, once again, p, will
have to route the message to a fourth node p4 within ftbb. Now, p, may
not be faulty (at most 4 nodes may fail in ftbb") and the message will be
delivered to ftbb” in 5 steps.

Once the message arrives at a node p in the FTBB which contains the
destination node d (x;=0, k=4,...,n), the second phase of routing begins and
the second list of alternative nodes applies. According to the routing rules
for that second phase, if d+#p, then the routing algorithm tries to route the
message to a node in the corner quad that contains 4. If not successful, it
tries to route the message to a node in a half ~cube that contains 4. If not
successful, it tries the nearest node from the destination node within the
FTBB itself. In the worst case, it may be shown that the message will be
delivered to d in at most 6 steps.

From the above informal argument, it is clear that the upper bound on
the number of steps required for routing a message using SCHEME II is
5¥+6, where 1 is the number of steps required for routing the message in a
non-faulty cube. However, this upper bound is achievable only if the
source and the destination nodes are in two FTBB’s that are neighbor across
some dimension &, and the eight faults in the two FTBB’s are such that no
two nodes across dimension k are faulty. The probability that the system
reaches the above configuration is very small, and according to some initial
simulation results, the average number of routing steps is much less than
this worst case bound.

Using a proof technique which is based on the construction of a rout-
ing tree at each routing step, it is possible to prove [1] that if each node
applies the above routing rules, then a particular message will not visit the
same node twice, and hence, messages may not circulate in loops. Such
guarantee of live-lock free routing in all possible fault configurations is the

main contributor to the complexity of the routing rules. It should be noted,
however, that in typical fault configurations, only the first few altematives
in the list of "next nodes" will need to be examined. Moreover, the routing
rules may be easily translated into a binary function which determines, at
each node, the output link to which a message should be relaid in terms of
x, v and a vector which specify the status of the neighboring nodes. This
function is relatively simple [1] and may be implemented in hardware if fast
message relaying is desired.

4. Experimental Analysis

In order to find out the reliability of both schemes, we wrote a simula-
tion software tool that generated 1000 different fault combinations for every
j node failures, where j may vary from 1 to E, the total number of spares,
and a single failure is defined as a failure in either an original node or a
spare node. For each such j, we computed the number of system failures
and used it to calculate the reliability curves shown in Fig 5. From these
curves, it is clear that the reliability for scheme I is good for relatively small
number of faults. But as the number of faults increases, the reliability of
the system decreases rapidly and practically diminishes as the number of
faults approaches E. In other words, the probability of fully utilizing the
spare node in the system (16 spares in Fig 5(a) and 32 spares in Fig 5(b)) is
practically zero. As noted earlier, this is due to the fact that each node in
scheme 1 is covered by only one spare. The reliability of scheme II is much
better than scheme I since a node may be covered by more than one spare.
As portrayed in Fig 5(b), the system failure rate does not drop significantly
as the number of faults increases. In fact 100% spare utilization is accom-
plished with probability 0.82 and 0.65 in Fig 5(a) and 5(b), respectively.

In order to study the average performance of the routing algorithms,
we considered, for each number j of faults, all the configurations in which
the system were live. For each such configuration, a 1000 messages were
generated with random sources and destinations, and the routing algorithm
on these messages were simulated. The total number of steps, say s, were
calculated for the 1000 messages and compared with the minimum number
of steps, say ¢, that would be required to route these messages in a fault-free

Probability of Probability of
Surviva Survival
1 Scheme 11

L Scheme Il]

9 Rt :

1 T

5 5

3 Scheme 1 3 Scheme I
1 1

0 0

2 4 6 8 10121416 4 8 12 16 20 24 28 32

Number of faults
Fig 5a. 32 Nodes with 16 spares

Number of faults
Fig 5b. 64 Nodes with 32 spares

Routing Routing
overhead overhead
1| pemmmmenes Theoretical Limit .\ _______ Theoretical Limit ___
9 9
a1 7
5] 5
3 Scheme 1 3 Scheme I
1k 1
0 0
2 4 6 8 10 12 14 16 4 8 12 16 20 24 28 32

Number of Faults
Fig 6a. 32 Nodes with 16 spares

Number of Faults
Fig 6b. 64 Nodes with 32 spares

hypercube using the usual bit-wise routing algorithm. Specifically, the rout-
ing overhead, s—t, were averaged for all configurations of j faults and nor-
malized with respect to the average of ¢. This have been repeated for each
j=1,++- E and the results are plotted in Fig 6 for the routing algorithm for
scheme 1. The Figure also shows the worst case overhead given in Proposi-
tion 1. As expected, the average overhead increases with the number of

23

faults and reaches a maximum of 14% and 20% for the 5-dimensional and
6-dimensional hypercubes, respectively. This is clearly much less than the
worst case overhead of about 100% specified in Proposition 1. We are
currently working on the simulation software for the routing algorithm of
scheme II and we expect similar results.

5. Conclusion

We have presented two approaches for achieving fault tolerance in a
hypercube architecture where degraded performance is not allowed. The
first scheme applies a straight forward reconfiguration scheme and a fairly
simple routing algorithm, but suffers from rapid reliability degradation
when the number of faults increases. This degradation is avoided in the
second scheme by allowing any of two spares to cover for an original node.
The improved reliability in this scheme is obtained at the expense of a com-
plex routing algorithm which ensures that, for any configuration of faults,
the messages will be delivered to their correct destinations without circulat-
ing in loops indefinitely. Although relatively complex, the routing algo-
rithms are particularly attractive because, in the absence of faults, they
degenerate to the ordinary bit-wise routing algorithm used in non fault
tolerant hypercubes. Another possible advantage of the augmented archi-
tecture is the utilization of the many alternative message routes to alleviate
traffic congestion. Such run-time adaptation of the routing algorithm to the
message traffic is not considered in this paper.

Both schemes assume extremely local information at the nodes.
Specifically, it is assume that each node knows only the status and address
of its immediate neighbors. If this condition is relaxed, and more global
knowledge is assumed at the nodes, then routing can be greatly simplified.
For instance, if each node in an FTBB knows the status of all the other
nodes in that FTBB, then the uncertainty at each node about future routing
steps within the FTBB will be eliminated and a route that avoids cycles may
be easily planed.

The augmented architectures described in this paper accommodate
link failures as well as node failures. If a link fails, then a node that wants
to route a message to a node d across the failed link may assume that d is
faulty and apply the routing algorithm accordingly. Messages will be
delivered correctly because, in our model, a node failure is considered to be
a failure of a processor along with all of its links. Hence, a link failure is
less severe than a node failure.

References

1. M. Alam and R. Melhem, ‘‘Fault Tolerance and Reliable Routing in Aug-
mented Hypercube Architectures,” Technical Report - Department of Com-
puter Science - The University of Pittsburgh.. In preparation.

2. W. Bouricious, W. Carter, D. Jessep, P. Schneider, and A. Wadia, ‘‘Reliabil-
ity Modeling for Fault Tolerant C. " IEEE Ti on Comput-
ers, pp. 1306-1311, Nov. 1971.

3. A. Broder, M. Fisher, D. Dolev, and B. Simons, ‘‘Efficient Fault Tolerant
Routings in Networks,”” Proc. ACM Symp. on Theory of Compusation, pp.
536-541, 1984.

4. D. Dolev, J. Halpern, B. Simons, and R. Strong, “‘A New Look at Fault

Tolerant Network Routing,”” Proc. ACM Symp. on Theory of Computation,

Ppp- 526-535, 1984.

D. Hillis, **The Connection Machine,”* MIT Press, Cambridge, Mass., 1985.

K. Hwang and F. Briggs, in Computer Architecture and Parallel Processing,
McGraw Hill, 1984.

7. F. Provost and R. Melhem, *‘Distributed Fault Tolerant Embedding of Binary
Trees and Ring in Hypercubes,”* Proceedings of the International Workshop
on Defect and Fault Tolerance in VLSI Systems, Oct. 1988. To appear.

o

8. D. A. Rennels, **Fault Tolerant Computing: Concepts and Examples,” JEEE
Trans. Computers, pp. 1116-1129, Dec 1984.
9. D. A.R 1s, *‘On Impl Fault-Tolerance in Binary Hypercubes,”

Proc. IEEE Fault Tolerant Computing, pp. 344-349, 1985.

