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PARALLEL HARDWARE
A programmer can write code to exploit.

Copyright © 2010, Elsevier Inc. All rights Reserved

32

Flynn’s Taxonomy

Copyright © 2010, Elsevier Inc. All rights Reserved

SISD

Single instruction stream

Single data stream

(SIMD)

Single instruction stream

Multiple data stream

MISD

Multiple instruction stream

Single data stream

(MIMD)

Multiple instruction stream

Multiple data stream
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SIMD (two flavors)

1) Synchronous, lockstep execution
PE

data

PE

data

PE

data

PE

data

controlprogram

2) Vector processing

All processing elements (PE) execute the 
same instructions on different data (data 
parallelism)

The same instruction is repeatedly 
executed on different data
VU = Vector unit

VUcontrolprogram

data

34

SIMD example

Copyright © 2010, Elsevier Inc. All rights Reserved

control unit

ALU1 ALU2 ALUn

…

for (i = 0; i < n; i++)
x[i] += y[i];

x[1] x[2] x[n]

 What if we don’t have as 
many ALUs as data items? 

 Divide the work and process 
iteratively.

 Ex. m = 4 ALUs   and   n = 
15 data items.

Roun
d3

ALU1 ALU2 ALU3 ALU4

1 X[0] X[1] X[2] X[3]

2 X[4] X[5] X[6] X[7]

3 X[8] X[9] X[10] X[11]

4 X[12] X[13] X[14]
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Graphics Processing Units (GPU)

 Real time graphics application programming 
interfaces or API’s use points, lines, and triangles 
to internally represent the surface of an object.

Copyright © 2010, Elsevier Inc. All rights Reserved

 Graphics processing functions convert the 
internal representation into an array of pixels that 
can be sent to a computer screen.

 These functions (called shader functions) are 
implicitly parallel, since they can be applied to 
multiple elements in the graphics stream.

36

GPUs
 GPU’s optimize performance by using SIMD 

parallelism. 

 The current generation of GPU’s use SIMD 
parallelism, but are not pure SIMD systems

Copyright © 2010, Elsevier Inc. All rights Reserved

PE

CPU memory

PE PE PE

GPU memory

controlGPU
programcontrolCPU

program

ALU
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Vector processors
 Operate on arrays or vectors of data while conventional 

CPU’s operate on individual data elements or scalars.

 Vector registers.
 Capable of storing a vector of operands and operating 

simultaneously on their contents.

Copyright © 2010, Elsevier Inc. All rights Reserved

 Vectorized and pipelined functional units.
 The same operation is applied to each element 

in the vector (or pairs of elements).

 Vector instructions.
 Operate on vectors rather than scalars.

VU

Vector 
registers

38

Interleaved memory
 Multiple “banks” of memory, which can be accessed independently.

 Distribute elements of a vector across multiple banks to reduce or 
eliminate delay in loading/storing successive elements.

 Strided memory access: the program accesses elements of a 
vector located at fixed distances from each other.

Copyright © 2010, Elsevier Inc. All rights Reserved

X[0]

X[16]

.

X[1]

X[17]

.
…

X[15]

X[31]

.

X[2]

X[18]

.

Memory controller
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Vector processors 
 Fast and easy to use.

 Vectorizing compilers can identify code to exploit.

 Compilers also can provide information about 
code that cannot be vectorized.
 Helps the programmer re-evaluate code.

 High memory bandwidth.

Copyright © 2010, Elsevier Inc. All rights Reserved

Pros

 They don’t handle irregular data structures as 
well as other parallel architectures.

 A very finite limit to their ability to handle ever 
larger problems. (scalability)

Cons

40

MIMD

PE0

data

program

PE1

data

program

PE2

data

program

PE3

data

program

Multiple programs executing on different data – However, if 
all PEs are to cooperate to solve the problem (as opposed to 
solving different problems), there should be interaction 
between the programs and/or the data.

Many flavors depending on the memory architecture and the 
address space of each PE (the range of memory addresses 
that an instruction executing on the PE can access).
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Interconnection

Mem

PE PE PE

Mem Mem Mem

Global, shared memory architecture (Symmetric Multi-Processors – SMP)

Mem Mem Mem Mem

PE PE PE

PE

Interconnection

PE

PE PE PE PE

Mem Mem Mem Mem

Interconnection

Physical memory Architectures

Distributed memory architecture

EX: Bus, crossbar, tree, 
multistage network, mesh, …

42

Distributed address space

PE0

data

PE1

data

PE2

data

PE3

data

PE0 can directly access N locations with addresses 0,…,N-1
PE1 can directly access N other locations with addresses 0,…,N-1
PE2 can directly access N other locations with addresses 0,…,N-1
PE3 can directly access N other locations with addresses 0,…,N-1

Interconnection Network

• In order for PEi to access data in the address space of PEj, the 
two processors have to communicate through sending/receiving 
messages.

N N N N
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Shared address space

PE0 PE1 PE2 PE3

Each of PE0, PE1, PE2 and PE3 can address (directly access 
using load and store instructions) locations 0,…, 4N-1

Interconnection network 

data data data data

• No need for message passing – communicate through shared 
memory locations.

N N N N

Shared 
address 
space

44

Distributed shared memory systems

PE0

data

PE1 PE2 PE3

Shared address space, but physically distributed memory.

• No need for message passing – communicate through shared memory 
locations.

• Data is physically distributed, but a runtime system is responsible to access 
data that do not reside in the local memory.

data data data

Interconnection network 

Results in the so called “Non Uniform Memory Access” –
NUMA (as opposed to UMA, “Uniform Memory Access”)
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multicore systems

UMA multicore system NUMA multicore system

46

Clusters

• Off the shelf computing nodes

• Commodity switches
• Ethernet
• Myrinet
• Quadrics
• Infiniband
• Fiber Channel

• Distributed address space

• Communicate through message 
passing



9

47

5 x 5A 5x5 switch or router

A processor-memory pair

2 x 2
A 2x2 switch 
or router

Input or output 
ports

Interconnection networks (two classes)

Direct interconnects: Each switch is 
directly connected to a processor-
memory pair, and the switches are 
connected to each other.

Indirect interconnects: Switches may 
be connected to other switches, to a 
processor or to a memory module

48

Indirect networks

Can be used for distributed memory 
systems to connect processor/memory 
nodes

Indirect networkIndirect network

A processor + memory

Can also be used for shared memory 
systems to connect processors to 
memory modules

Processor 
memory
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Bus Interconnect
 Mostly used in shared memory systems

 A collection of parallel communication wires together with 
some hardware that controls access to the bus

 Communication wires are shared by the devices that are 
connected to it.

 As the number of devices connected to the bus increases, 
contention increases, and performance decreases.

Copyright © 2010, Elsevier Inc. All rights Reserved

° ° °

Control Lines
Address Lines
Data Lines

50

Crossbars
 Uses switches to control the routing of data among the connected 

devices.

 Allows simultaneous communication among different devices

 Faster than buses. 

 But the cost of the switches and links is relatively high.

Copyright © 2010, Elsevier Inc. All rights Reserved

A crossbar switch connecting 
4 processors (Pi) and 4 
memory modules (Mj)

Configuration of 
internal switches 
in a crossbar 

Simultaneous memory 
accesses by the 
processors
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Some direct network topologies

(a) (b)

Linear arrays

(a) (b)

A star connected networkA completely-connected network

with wraparound link (ring).with no wraparound links

52

Two- and Three Dimensional Meshes

3-D mesh with 
no wraparound.

(c)(b)(a)

2-D mesh with no 
wraparound

2-D mesh with 
wraparound link 

(2-D torus)
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0
1

2

3

4

5

6
7

8

9

10

11

0
1

2

3

4

5

6
7

8

9

10

11

Enhanced ring networks

• Cords (in a chordal ring) may bypass any given number of nodes

• May have more than one set of chords

54

Evaluating Interconnection Network topologies

• Diameter: The distance between the farthest two nodes in the 
network. 

• Average distance: The average distance between any two 
nodes in the network. 

• Node degree: The number of neighbors connected to any 
particular node. 

• Bisection Width: The minimum number of links you must cut 
to divide the network into two almost equal parts – Reflects the 
severity of the communication bottleneck.

• Cost: The number of links and switches is a meaningful 
measure of the cost. Other factors affecting cost are the ability 
to layout the network, the length of wires, etc.
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The bisections bandwidth

Copyright © 2010, Elsevier Inc. All rights Reserved

 A measure of network quality.

 Instead of counting the number of links joining 
the halves, it sums the bandwidth of the links.

For a ring For a toroidal mesh (torus)

56

0 1

1110

Dimension 0
00 01

0

1

2

Hypercube interconnections 

100 101

110 111

000

010 011
0

1

001

• An interconnection with low diameter and large bisection 
bandwidth.

• A q-dimensional hypercube is built from two (q-1)-dimensional 
hypercubes.
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0100 0101

0110 0111

0000 0001

0010 0011
0

1

2
1100 1101

1110 1111

1000 1001

1010 1011

3

For a q dimension  hypercube, calculate 

• The number of nodes, n,  and the number of edges, e
• The node degree
• The diameter
• The bisection bandwidth

58

0100 0101

0110 0111

0000 0001

0010 0011
0

1

2
1100 1101

1110 1111

1000 1001

1010 1011

3

• Each node in a q-dimension hypercube has a q-bits identifier xq-1 , . . . ,  x1 , x0

• Identifiers of nodes across a dimension j differ in the jth bit (have a unit 

Hamming distance*)

• How do you find the route between a source, s, and a destination, d?

*) The Hamming distance between two binary numbers is the number of positions at which 
the bits in the two strings are different.
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Common interconnection topologies

N = 1024

Type Degree Diameter Av Dist Bisection Diam Av. D

1D mesh 2 N-1 N/3 1

2D mesh 4 2(N1/2 - 1) 2N1/2 / 3 N1/2 63 21

3D mesh 6 3(N1/3 - 1) 3N1/3 / 3 N2/3 ~30 ~10

Ring 2 N / 2 N/4 2

2D torus 4 N1/2 N1/2 / 2 2N1/2 32 16

k-ary n-cube 2n n(N1/n) nN1/n/2 15 8 (3D) 
(N = kn) nk/2 nk/4 2kn-1

Hypercube n n = LogN n/2 N/2 10 5

60

Routing messages in 2D mesh networks

The problem: 
• Assume that each switch in an n x n mesh is labeled 

by (x,y), where 0 < x < n-1 and 0 < y < n-1.
• Assume also that each message has a header which 

contains the address, (xd , yd), of its destination. 
• A routing algorithm determines at any intermediate 

node, (xc , yc), where to send the message next.

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

xc,yc

xd,yd

message
body

message
header

EastWest

South

North

X-Y routing:

1) If xc < xd then send the message to the East port

elseif xc > xd then send it to the West port

2) If yc < yd then send the message to the North port

elseif yc > yd then send it to the South port

3) Deliver the message to the local node

Local nodeMessages travel along the x-direction 
before traveling along the y-direction
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Type of routing algorithms

• Minimal routing: A message always follows one of the shortest paths 
between a source and a destination.

• Deterministic routing: a message between a source and a destination 
always follow the same route.

X-Y routing is a minimal deterministic routing

• Non-deterministic routing: a message between a source and a 
destination does not have to always follow the same route. 

• Adaptive routing: a non-deterministic routing which chooses the route 
based on current network condition (example congestion or faults).

• Deflection routing: a non-minimal adaptive routing. May follow a “non-
shortest” path.

Other types of routings

62

0100 0101

0110 0111

0000 0001

0010 0011
0

1

2
1100 1101

1110 1111

1000 1001

1010 1011

3

A message from a source, sq-1 , . . . , s0, to a destination dq-1 , . . 
. , d0 has to cross any dimension, b, for which db ≠ sb

How many distinct routes there are between any source and 
destination?

Routing on a hypercube
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0100 0101

0110 0111

0000 0001

0010 0011
0

1

2
1100 1101

1110 1111

1000 1001

1010 1011

3

When a node, cq-1 , . . . , c0, receives a message for destination node dq-1 , . . 
. , d0 , it executes the following

• If dk = ck for k = 0, … , q-1, , keep the message

• Else { Find the largest k such that dk ≠ ck ;

Send the message to the neighbor across dimension k }

Dimension-order routing

64

Tree Network topology

S

SS

S

SS

S

P0 P2 P3 P4 P5 P6 P7

• The route between a source node, sq-1 , . . . , s0 , and a destination 

node , dq-1 , . . . , d0 , can be expressed as a sequence of up moves 

(U) followed by a sequence of right (R) and left (L) moves.

• Example: the route between 001 and 101 is  UUURLR

• What is the bisection width of a tree with n leave nodes?

Level 0 switches

Level 1 switches

Level 2 switches

000        001    010      011   100      101    110      111   

00- 01- 10- 11-

0-- 1--

n = 2q processors

---

P1
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Fat tree networks
Eliminates the bisection bottleneck of a binary tree

66

A 16-node fat tree network

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15A fat tree networks using 

2x2 bidirectional switches

stage0 1 32

Routing in fat trees?? switchesprocessors
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A 16-node fat tree network

0
1

2
3

4
5
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7

8
9

10
11
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15

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15A fat tree networks using 

2x2 bidirectional switches

stage0 1 32

Routing in fat trees?? switchesprocessors
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Multistage Networks

Memory banks

0

1

0

. . . . . . . . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Stage 1

b-1

Stage 2 Stage n

p-1

Processors Multistage interconnection network

1

The schematic of a typical multistage interconnection 
network.
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Multistage Omega Network

A nxn Omega network consists of:
- log n stages, 
- each stage has n/2, 2x2 switches
- Perfect shuffle connection between stages

i connects to 2i for i = 0, … , n/2-1
i connects to 2i+1-n for i = p/2, … , n-1

000

010

100

110

001

011

101

111

000

010

100

110

001

011

101

111

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

= left_rotate(000)

= left_rotate(100)

= left_rotate(001)

= left_rotate(101)

= left_rotate(010)

= left_rotate(110)

= left_rotate(011)

= left_rotate(111)
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An 8x8 omega network 

111

110

101

100

011

010

001

000 000

001

010

011

100

101

110

111

Multistage Omega Network

• cost grows as n log n
• Unique route between a source, s, and a destination, d. 
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Routing in an OMEGA network

000
001

010

011

101

110

100

111

000
001

010

011

101

110

100

111

Example: to route from source 101 to destination 110 (101 xor 110 = 011)

101  011    011    110      111      111      110
shuffle                      shuffle exchange      shuffle      exchange

straight                           cross                              cross

72

Routing in an OMEGA network

000
001

010

011

101

110

100

111

000
001

010

011

101

110

100

111

Example: to route from source 010 to destination 100 
010 xor 100 = 110 = (cross, cross, straight)
Route: cross at level 0, cross at level 1, straight at level 2
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Example: one of the messages (010 to 111 or 110 to 100) is 
blocked at link AB.

111

110

101

100

011

010

001

000 000

001

010

011

100

101

110

111

 A

 B

The Omega Network is blocking

74

More definitions

 Any time data is transmitted, we’re 
interested in how long it will take for the 
data to reach its destination.

 Latency
 The time that elapses between the source’s 

beginning to transmit the data and the 
destination’s starting to receive the first byte.

 Bandwidth
 The rate at which the destination receives data 

after it has started to receive the first byte.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Message transmission time = l + n / b

latency (seconds)

bandwidth (bytes per second)

length of message (bytes)

Example: what is the transmission time for a message 
of length 256 Bytes if the network delay is 500 nsec
and bandwidth is 100 MB/sec?


