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Disclaimer 
 

In my presentations, I will use two types of slides: 
 

My own slides                 
 

Slides provided by the publisher 
(may be modified) 
 

http://www.cs.pitt.edu/~melhem/courses/xx45p/index.html
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Evolution of parallel hardware 

• I/O channels and DMA (direct memory access) 

• Pipelined functional units 

• Vector processors (ILLIAV IV was built in 1974) 

• Multiprocessors (cm* and c.mmp were built in the 70’s) 

• Instruction pipelining and superscalers  

• 80’s and 90’s supercomputers  - Massively Parallel Processors (Connection 
machine, Cray T3D, Intel Hypercube, …) 

• Symmetric Multiprocessors (sequent, Encore, Pyramid, quad-cores, ….) 

• Distributed computing (Clusters, server farms, grids, the cloud) 

• Multi-core processors and Chip Multiprocessors 

• Graphics Processor Units (GPU) as accelerators 

Parallel processing used to be a luxury --- now it is a necessity 
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Exploring Instruction Level Parallelism (ILP) 

through Pipelining  

• Pipelining overlaps various stages of instruction execution to achieve 

performance.  

• At a high level of abstraction, an instruction can be executed while the 

next one is being decoded and the next one is being fetched.  

 

• Pipelining, however, has several limitations.  

– The speed of a pipeline is limited by the slowest stage.  

– Data and structural dependencies 

– Control dependencies - in typical programs, every 5-6th instruction is a 
conditional jump! This requires very accurate branch prediction.  

• One simple way of alleviating these limitations is to use multiple pipelines.  
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Superscalar architecture 

• Use multiple pipelines and start more than one instruction in the same cycle 

Instruction 

memory 

Register  

file 

Pipeline 1 

Pipeline N 

PC 

• Scheduling of instructions is determined by a number of factors:  

– Resource, branch and data dependencies 

– The scheduler, a piece of hardware, looks at a large number of instructions 

in an instruction queue and selects appropriate number of instructions to 

execute concurrently 

– In-order or out-of-order execution 

– The complexity of the hardware is a constraint on superscalar processors.  
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Industry trend 

• Up to 2002, performance increases have been due to increasing VLSI density 

• More complex logic 

• Faster clocks 

• Faster clocks  increased power/energy consumption 

       increased heat dissipation 

       increased cooling  

• Increased heat  lower reliability 

Solution: Instead of designing and building faster microprocessors, 

put multiple processors on a single integrated circuit. 
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Why do we need ever-increasing performance 

 Computational power is increasing, but so 

are our computation problems and needs. 

 Problems we never dreamed of have been 

solved because of past increases, such as 

decoding the human genome. 

 More complex problems are still waiting to 

be solved. 
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Example problems 

Climate modeling Protein folding 

Drug 

discovery Data analysis Energy research 
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Why we need to write parallel programs 

 Running multiple instances of a serial 

program often isn’t very useful. 

 Think of running multiple instances of your 

favorite game. 

 

 What you really want is for 

it to run faster. 
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Approaches to the serial problem 

 Rewrite serial programs so that they’re 

parallel. 

 

 Write translation programs that 

automatically convert serial programs into 

parallel programs. 

 This is very difficult to do. 

 Success has been limited. 



6 

11 

More problems 

 Some coding constructs can be 

recognized by an automatic program 

generator, and converted to a parallel 

construct. 

 However, it’s likely that the result will be a 

very inefficient program. 

 Sometimes the best parallel solution is to 

step back and devise an entirely new 

algorithm. 
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Thinking parallel: The sum algorithm  

 

+16 

+15 

+14 

+12 

 

 

+5 

+4 

+3 

1+2 

time 

. . . 

sum = 0 

For (i = 0 ; i < 16  ;  i++) 

   { 

      sum +=  x[i] 

   } 

• Takes n-1 steps to sum n numbers on 

one processor 

 

• Applies to associative and commutative 

operations (+, *, min, max, …) 

• The following computes the sum of 

x[0]+…+x[15] serially:  

x[i] = i+1 
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Parallel sum algorithm (on 8 processors) 

P0 P1 P2 P3 P4 P5 P6 P7 

1+2       3+4        5+6       7+8   9+10    11+12    13+14   15+16   

time 

P0 P2 P4 P6 3+7 11+15 19+23 27+31 

P0 P4 42+58 10+26 

P0 
36+100 

• Takes log n steps to sum n 

numbers on n/2 processor 
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• For a given problem A, of size n, let Tp (n) be the execution time 

on p processors, and Ts(n) be the execution time on one 

processor.  Then, 

  Speedup Sp (n) = Ts(n) / Tp (n) 

  Efficiency Ep (n) =  Sp (n) / p 

    Speedup is between 0 and p, and efficiency is between 0 and 1. 

 

 

Speedup and efficiency (page 58) 

• Linear Speedup means that S is linear 

with p (linearly scalable system) 

• If speedup is independent of n, then the 

algorithm is said to be perfectly 

scalable. 

S 

p 
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Minsky’s conjecture: 

 Speedup is logarithmic in p 

 

Speedup and efficiency 

S 

p 

For parallel sum, Sn/2 (n) = (n-1) / log n  ≈  n / log n 

       En/2 (n) = (n-1) / n log n  ≈  1 / log n 

 

Example: sum 1024 numbers on 512 processors: 

 Speedup ≈  1024 / 10 = 10.24 

   Efficiency ≈  10.24 / 512 = 2% 
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time 
• Takes 5 steps to sum 16 numbers 

on 4 processor 

• Takes 255+2 steps to sum 1024 

numbers on 4 processors 

• Speedup = 1023/257 = 3.9 

 

• How long does it take to sum n 

numbers on p processors? 

 

• What is the speedup? 
1+2 5+6 9+10 13+14 

+3 

+4 

+7 

+8 

+11 

+12 

+15 

+16 

10+26 42+48 

36+100 

An efficient parallel sum (on 4 processors) 

• Divide the array to be summed 

into 4 parts and assign one part 

to each processor 

P0        P1        P2       P3 

P0          P1          P2          P3 
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Example 

 Problem: compute and add n values 

 We have p cores, p much smaller than n. 

 Each core performs a partial sum of 

approximately n/p values. 

Each core uses it’s own private variables 

and executes this block of code 

independently of the other cores. 
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Example (cont.) 

 After each core completes execution of the 

code, is a private variable my_sum 

contains the sum of the values computed 

by its calls to Compute_next_value. 

 
 Once all the cores are done computing 

their private my_sum, they form a global 

sum by sending results to a designated 

“master” core which adds the final result. 
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Example (cont.) 

Uses the linear algorithm. 

Less efficient than the tree structured 

algorithm described earlier 

5 2 9 4 8 6 5 8 

master 

7 

16 

34 

39 

20 

47 

28 
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If (id mod 2 == 1)  

              send sum to core id-1 ; 

    else { receive value from core id+1 ; 

              sum = sum + value }; 

5 2 9 4 8 6 5 8 

id =  0        1       2       3      4        5      6        7 

7 13 14 13 

20 27 

If (id mod 4 == 2)  

              send sum to core id-2 ; 

    elseif (id mod 4 == 0) 

           { receive value from core id+2 ; 

              sum = sum + value }; 

47 

If (id mod 8 == 4)  

              send sum to core id-4 ; 

    elseif (id mod 8 == 0) 

           { receive value from core id+4 ; 

              sum = sum + value }; 

The tree structured algorithm  

log n steps 

 

n  = 8 



11 

21 

How do we write parallel programs? 

 Task parallelism  

 Partition various tasks carried out solving the 

problem among the cores. 

 

 Data parallelism 

 Partition the data used in solving the problem 

among the cores. 

 Each core carries out similar operations on it’s 

part of the data. 
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Professor P 

15 questions 

300 exams 

TA#1 TA#2 TA#3 
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Division of work  

TA#1 

TA#2 

100 exams 

100 exams 

TA#3 

100 exams 

Data parallelism Task parallelism 

TA#1 

Questions 1 - 5 

TA#2 

Questions 6 - 10 

TA#3 

Questions 11 - 15 
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Coordination 

 Cores usually need to coordinate their work. 

 Communication – one or more cores send 

their current partial sums to another core. 

 Load balancing – share the work evenly 

among the cores so that one is not heavily 

loaded. 

 Synchronization – because each core works 

at its own pace, make sure cores do not get 

too far ahead of the rest. 
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Type of parallel systems 

Shared-memory Distributed-memory 
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Terminology 

Concurrent 

computing 

Parallel 

computing 
Distributed 

computing Multiprogramming 

The difference is how tight is the 

synchronizations and how fast is the 

communication? 
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Concluding remarks 

• The laws of physics have forced multicores and parallel 

computing. 

• Serial programs typically don’t benefit from multiple cores. 

• Automatic parallel program generation from serial program 

code isn’t the most efficient approach to get high performance 

from multicore computers. 

• Learning to write parallel programs involves learning how to 

coordinate the cores. 

• Parallel programs are usually complex and therefore, require 

sound program techniques and development. 

 


