
1

1

CS1645 and CS2045: Introduction to
High Performance Computing

Dept. of Computer Science
University of Pittsburgh

http://www.cs.pitt.edu/~melhem/courses/xx45p/index.html

2

Disclaimer

In my presentations, I will use two types of slides:

My own slides

Slides provided by the publisher
(may be modified)

http://www.cs.pitt.edu/~melhem/courses/xx45p/index.html

2

3

Evolution of parallel hardware

• I/O channels and DMA (direct memory access)

• Pipelined functional units

• Vector processors (ILLIAV IV was built in 1974)

• Multiprocessors (cm* and c.mmp were built in the 70’s)

• Instruction pipelining and superscalers

• 80’s and 90’s supercomputers - Massively Parallel Processors (Connection
machine, Cray T3D, Intel Hypercube, …)

• Symmetric Multiprocessors (sequent, Encore, Pyramid, quad-cores, ….)

• Distributed computing (Clusters, server farms, grids, the cloud)

• Multi-core processors and Chip Multiprocessors

• Graphics Processor Units (GPU) as accelerators

Parallel processing used to be a luxury --- now it is a necessity

4

Exploring Instruction Level Parallelism (ILP)

through Pipelining

• Pipelining overlaps various stages of instruction execution to achieve

performance.

• At a high level of abstraction, an instruction can be executed while the

next one is being decoded and the next one is being fetched.

• Pipelining, however, has several limitations.

– The speed of a pipeline is limited by the slowest stage.

– Data and structural dependencies

– Control dependencies - in typical programs, every 5-6th instruction is a
conditional jump! This requires very accurate branch prediction.

• One simple way of alleviating these limitations is to use multiple pipelines.

3

5

Superscalar architecture

• Use multiple pipelines and start more than one instruction in the same cycle

Instruction

memory

Register

file

Pipeline 1

Pipeline N

PC

• Scheduling of instructions is determined by a number of factors:

– Resource, branch and data dependencies

– The scheduler, a piece of hardware, looks at a large number of instructions

in an instruction queue and selects appropriate number of instructions to

execute concurrently

– In-order or out-of-order execution

– The complexity of the hardware is a constraint on superscalar processors.

6

Industry trend

• Up to 2002, performance increases have been due to increasing VLSI density

• More complex logic

• Faster clocks

• Faster clocks increased power/energy consumption

 increased heat dissipation

 increased cooling

• Increased heat lower reliability

Solution: Instead of designing and building faster microprocessors,

put multiple processors on a single integrated circuit.

4

7

Why do we need ever-increasing performance

 Computational power is increasing, but so

are our computation problems and needs.

 Problems we never dreamed of have been

solved because of past increases, such as

decoding the human genome.

 More complex problems are still waiting to

be solved.

8

Example problems

Climate modeling Protein folding

Drug

discovery Data analysis Energy research

5

9

Why we need to write parallel programs

 Running multiple instances of a serial

program often isn’t very useful.

 Think of running multiple instances of your

favorite game.

 What you really want is for

it to run faster.

10

Approaches to the serial problem

 Rewrite serial programs so that they’re

parallel.

 Write translation programs that

automatically convert serial programs into

parallel programs.

 This is very difficult to do.

 Success has been limited.

6

11

More problems

 Some coding constructs can be

recognized by an automatic program

generator, and converted to a parallel

construct.

 However, it’s likely that the result will be a

very inefficient program.

 Sometimes the best parallel solution is to

step back and devise an entirely new

algorithm.

12

Thinking parallel: The sum algorithm

+16

+15

+14

+12

+5

+4

+3

1+2

time

. . .

sum = 0

For (i = 0 ; i < 16 ; i++)

 {

 sum += x[i]

 }

• Takes n-1 steps to sum n numbers on

one processor

• Applies to associative and commutative

operations (+, *, min, max, …)

• The following computes the sum of

x[0]+…+x[15] serially:

x[i] = i+1

7

13

Parallel sum algorithm (on 8 processors)

P0 P1 P2 P3 P4 P5 P6 P7

1+2 3+4 5+6 7+8 9+10 11+12 13+14 15+16

time

P0 P2 P4 P6 3+7 11+15 19+23 27+31

P0 P4 42+58 10+26

P0
36+100

• Takes log n steps to sum n

numbers on n/2 processor

14

• For a given problem A, of size n, let Tp (n) be the execution time

on p processors, and Ts(n) be the execution time on one

processor. Then,

 Speedup Sp (n) = Ts(n) / Tp (n)

 Efficiency Ep (n) = Sp (n) / p

 Speedup is between 0 and p, and efficiency is between 0 and 1.

Speedup and efficiency (page 58)

• Linear Speedup means that S is linear

with p (linearly scalable system)

• If speedup is independent of n, then the

algorithm is said to be perfectly

scalable.

S

p

8

15

Minsky’s conjecture:

 Speedup is logarithmic in p

Speedup and efficiency

S

p

For parallel sum, Sn/2 (n) = (n-1) / log n ≈ n / log n

 En/2 (n) = (n-1) / n log n ≈ 1 / log n

Example: sum 1024 numbers on 512 processors:

 Speedup ≈ 1024 / 10 = 10.24

 Efficiency ≈ 10.24 / 512 = 2%

16

time
• Takes 5 steps to sum 16 numbers

on 4 processor

• Takes 255+2 steps to sum 1024

numbers on 4 processors

• Speedup = 1023/257 = 3.9

• How long does it take to sum n

numbers on p processors?

• What is the speedup?
1+2 5+6 9+10 13+14

+3

+4

+7

+8

+11

+12

+15

+16

10+26 42+48

36+100

An efficient parallel sum (on 4 processors)

• Divide the array to be summed

into 4 parts and assign one part

to each processor

P0 P1 P2 P3

P0 P1 P2 P3

9

17

Example

 Problem: compute and add n values

 We have p cores, p much smaller than n.

 Each core performs a partial sum of

approximately n/p values.

Each core uses it’s own private variables

and executes this block of code

independently of the other cores.

18

Example (cont.)

 After each core completes execution of the

code, is a private variable my_sum

contains the sum of the values computed

by its calls to Compute_next_value.

 Once all the cores are done computing

their private my_sum, they form a global

sum by sending results to a designated

“master” core which adds the final result.

10

19

Example (cont.)

Uses the linear algorithm.

Less efficient than the tree structured

algorithm described earlier

5 2 9 4 8 6 5 8

master

7

16

34

39

20

47

28

20

If (id mod 2 == 1)

 send sum to core id-1 ;

 else { receive value from core id+1 ;

 sum = sum + value };

5 2 9 4 8 6 5 8

id = 0 1 2 3 4 5 6 7

7 13 14 13

20 27

If (id mod 4 == 2)

 send sum to core id-2 ;

 elseif (id mod 4 == 0)

 { receive value from core id+2 ;

 sum = sum + value };

47

If (id mod 8 == 4)

 send sum to core id-4 ;

 elseif (id mod 8 == 0)

 { receive value from core id+4 ;

 sum = sum + value };

The tree structured algorithm

log n steps

n = 8

11

21

How do we write parallel programs?

 Task parallelism

 Partition various tasks carried out solving the

problem among the cores.

 Data parallelism

 Partition the data used in solving the problem

among the cores.

 Each core carries out similar operations on it’s

part of the data.

22

Professor P

15 questions

300 exams

TA#1 TA#2 TA#3

12

23

Division of work

TA#1

TA#2

100 exams

100 exams

TA#3

100 exams

Data parallelism Task parallelism

TA#1

Questions 1 - 5

TA#2

Questions 6 - 10

TA#3

Questions 11 - 15

24

Coordination

 Cores usually need to coordinate their work.

 Communication – one or more cores send

their current partial sums to another core.

 Load balancing – share the work evenly

among the cores so that one is not heavily

loaded.

 Synchronization – because each core works

at its own pace, make sure cores do not get

too far ahead of the rest.

13

25

Type of parallel systems

Shared-memory Distributed-memory

26

Terminology

Concurrent

computing

Parallel

computing
Distributed

computing Multiprogramming

The difference is how tight is the

synchronizations and how fast is the

communication?

14

27

Concluding remarks

• The laws of physics have forced multicores and parallel

computing.

• Serial programs typically don’t benefit from multiple cores.

• Automatic parallel program generation from serial program

code isn’t the most efficient approach to get high performance

from multicore computers.

• Learning to write parallel programs involves learning how to

coordinate the cores.

• Parallel programs are usually complex and therefore, require

sound program techniques and development.

