
1

1

PARALLEL SOFTWARE

Copyright © 2010, Elsevier Inc. All rights Reserved

2

Programming parallel computing systems

Program
(using some programming model)

Parallel processes (threads) 

Compiler

Access to address space 

Parallel architecture 
(Multiple processors and a physical memory architecture)

Run-time system

+

Note the decoupling between the programming model and the physical 
architecture – For instance, a parallel program can run on a single processor!!!.



2

3

Two schools for programming parallel systems:
• Automatic detection of parallelism in serial programs and 

automatic distribution of data and computation.

• User specified parallelism (data distribution, computation 
distribution, or both).

Writing parallel programs:

1. Divide the work among the processes/threads such that

(a) each process/thread gets roughly the same  amount of work

(b) communication is minimized.

2. Arrange for the processes/threads to synchronize.

3. Arrange for communication among processes/threads.

4

Parallel Programming Models 
(control threads - processes).

1) Start with one control thread, and 
create other threads when needed

2) Start with multiple control threads 
– usually multiple copies of the 
same program (SPMD – single 
program, multiple data).

Examples: Pthreads (explicit thread 
creation) and OpenMP (implicit thread 
creation).



3

5

Parallel Programming Models 
(scope of variables).

2) Variables declared private to a process or thread

1) Variables declared shared among threads or processes –
any process can read/write to these variables. 

Problems with race conditions???

To make the value of a private variable available to other 
processes, one has to either exchange messages, or copy the 
value to a shared variable.

A programming model can combine private and 
shared variables, as well as allow message passing.

6

Thread creation strategies
 On demand, Dynamic thread creation

 Master thread waits for work, forks new threads, 
and when threads are done, they terminate

 Efficient use of resources, but thread creation 
and termination is time consuming.

 Static thread creation
 Pool of threads created and are allocated work, 

but do not terminate until cleanup.

 Better performance, but potential waste of 
system resources.

Copyright © 2010, Elsevier Inc. All rights Reserved



4

7

Example - Pthreads
int main(int argc, char *argv) {
double A[100]  ;    /* global, shared variable*/
int i ;
…
for (i = 0; i < 4 ; i++)  pthread_create( … , DoStuff, int i ) ;
…   /* execution continues in parallel with 4 copies of DoStuff*/
…
for (i = 0; i < 4 ; i++)  pthread_join (… , DoStuff, …) ;
…
}

void DoStuff (int threadID) {
int  k ;  /* k is a local variable – each instance of DoStuff has a copy*/
…       /* do stuff in parallel with main */
for (k = threadID*25 ; k < (threadID+1)*25 ; k++) … do something with 

A[k] …
…
}

The five threads can be executed on separate CPUs or time_shared on one CPU

8

Example - OpenMP
int main(){     
print(“Start\n”);
…   /* serial code */
#pragma omp parallel {

…
printf(“Hello World\n”);
…

}
…     /* resume serial code */
printf(“Done\n”);
}

% Result of execution
Start
Hello World
Hello World
Hello World
Hello World
Done

The user can control the number of parallel threads 
by setting the environment variable
setenv OMP_NUM_THTREADS 4 

…



5

9

Example - OpenMP

#define n 1000
int main(){     
int i, a[n], b[n], c[n] ;
…
…
#pragma omp for shared(a,b,c), private(i)  
{ for (i = 0; i < n ; i++)    

c[i] = a[i] + b[i] ;  
}  /* end of parallel section */

…     /* resume serial code */
…
}

The loop will be automatically broken down into smaller 
loops and each small loop will be given to one thread 

...

Warning: the loop iterations should be 
independent (no loop carried dependences)

10

Example – a message passing program

int main(){     
int x ,sum,  i ;   /* local variables */
…
call a function to get the num_processors ;
…
call a function to get your processorID ;
compute a local value for x;
if (processorID > 0)

send the value of x to processor 0 ;
else {

sum = x ;
for (i = 1; i < num_processors ; i++)    
{ receive a value from processor i ;

add that value to sum
} 

} ;

…
}

In SPMD, the number of 
processes (threads) is specified 
before execution starts

processID =  0          1          2           3
x = 10        20        40        80 

20 30 40

sum = 10

sum = 30

sum = 70

sum = 150

sum =  150         ??       ??       ??



6

11

Avoiding race conditions

 To guarantee correctness, use critical sections

 Enforce mutual exclusion

 Can use mutual exclusion lock (mutex, or simply lock)

Copyright © 2010, Elsevier Inc. All rights Reserved

my_val = Compute_val ( ) ;
Lock(&add_my_val_lock ) ;
x += my_val ;
Unlock(&add_my_val_lock ) ;

my_val = Compute_val ( ) ;
x += my_val ;

my_val = Compute_val ( ) ;
x += my_val ;

Thread 0 Thread 1

Private variableShared variable Private variableShared variable

12

Busy-waiting to enforce order

Copyright © 2010, Elsevier Inc. All rights Reserved

my_val = Compute_val ( my_rank ) ;
i f  ( my_rank == 1)

while ( ! ok_for_1 ) ;  /* Busy−wait loop */
x += my_val ;  /* Critical section */
i f  ( my_rank == 0)

ok_for_1 = true ;  /* Let thread 1 update x */

/* Initially, ok_for_1 = 0 */

How do you extend this method to more than two threads?



7

13

Input and Output

 Only one thread/process should access stdin. 

 All processes/threads may access stdout, but it is 
clearer if only one process/thread accesses stdout.

 Debug output should always include the rank or id 
of the process/thread that’s generating the output

 Only a single process/thread will attempt to access 
any single file other than stdin, stdout

Copyright © 2010, Elsevier Inc. All rights Reserved

14

PERFORMANCE

Copyright © 2010, Elsevier Inc. All rights Reserved



8

15

Speedup, S, and Efficiency, E. 

 Number of cores = p

 Serial run-time = Tserial

 Parallel run-time = Tparallel

Copyright © 2010, Elsevier Inc. All rights Reserved

Tserial 

Tparallel

S = 

E = 
S 
p 

= 
Tserial 

p  Tparallel
.

16

S and E change with problem sizes

Copyright © 2010, Elsevier Inc. All rights Reserved



9

17

Amdahl’s Law
 Unless virtually all of a serial program is 

parallelized, the possible speedup is going to be 
limited — regardless of the number of cores 
available.

Copyright © 2010, Elsevier Inc. All rights Reserved

Hence, even with unlimited number of processors, the speedup 
cannot be larger than 1 / α.

α + ( 1 – f ) / p

1
S <

Let α be the fraction of a program that has to be performed 
serially, then, using p processors, the maximum possible speedup 
is:

18

Example
 We can parallelize 90% of a serial program.

 Parallelization is “perfect” for any number of cores 

 Tserial = 20 seconds

Copyright © 2010, Elsevier Inc. All rights Reserved

 Speed up

0.9 x Tserial / p + 0.1 x Tserial

Tserial

S = =
18 / p + 2

20



10

19

Scalability

 In general, a problem is scalable if it can handle ever 
increasing problem sizes.

 If we increase the number of processes/threads and keep 
the efficiency fixed without increasing problem size, the 
problem is strongly scalable.

 If we keep the efficiency fixed by increasing the problem 
size at the same rate as we increase the number of 
processes/threads, the problem is weakly scalable.

Copyright © 2010, Elsevier Inc. All rights Reserved

20

Taking Timings

 What is time?

 Start to finish?

 A program segment of interest?

 CPU time?

 Wall clock time?

Copyright © 2010, Elsevier Inc. All rights Reserved



11

21

Taking Timings

Copyright © 2010, Elsevier Inc. All rights Reserved

theoretical 

function

MPI_Wtime omp_get_wtime

Need to find the maximum across all threads 

22

PARALLEL PROGRAM
DESIGN

Copyright © 2010, Elsevier Inc. All rights Reserved



12

23

Foster’s methodology
1. Partitioning: divide the computation and the data 

operated on by the computation into small tasks. 

Copyright © 2010, Elsevier Inc. All rights Reserved

2. Communication: determine what communication 
needs to be carried out among the tasks.

Goal: balance the load and minimize communication.

3. Aggregation: combine tasks and communications 
into larger tasks. 

4. Mapping: assign the composite tasks identified in 
the previous step to processes/threads.

24

Example - histogram
 data = 1.3,2.9,0.4,0.3,1.3,4.4,1.7,0.4,3.2,0.3,4.9,2.4,

3.1,4.4,3.9,0.4,4.2,4.5,4.9,0.9

Copyright © 2010, Elsevier Inc. All rights Reserved

Bin 0   Bin 1   Bin 2   Bin 3   Bin 4

For each bin, find the number of data elements and the maximum data value.



13

25

First two stages of Foster’s Methodology

Copyright © 2010, Elsevier Inc. All rights Reserved


