
1

1

PARALLEL SOFTWARE

Copyright © 2010, Elsevier Inc. All rights Reserved

2

Programming parallel computing systems

Program
(using some programming model)

Parallel processes (threads)

Compiler

Access to address space

Parallel architecture
(Multiple processors and a physical memory architecture)

Run-time system

+

Note the decoupling between the programming model and the physical
architecture – For instance, a parallel program can run on a single processor!!!.

2

3

Two schools for programming parallel systems:
• Automatic detection of parallelism in serial programs and

automatic distribution of data and computation.

• User specified parallelism (data distribution, computation
distribution, or both).

Writing parallel programs:

1. Divide the work among the processes/threads such that

(a) each process/thread gets roughly the same amount of work

(b) communication is minimized.

2. Arrange for the processes/threads to synchronize.

3. Arrange for communication among processes/threads.

4

Parallel Programming Models
(control threads - processes).

1) Start with one control thread, and
create other threads when needed

2) Start with multiple control threads
– usually multiple copies of the
same program (SPMD – single
program, multiple data).

Examples: Pthreads (explicit thread
creation) and OpenMP (implicit thread
creation).

3

5

Parallel Programming Models
(scope of variables).

2) Variables declared private to a process or thread

1) Variables declared shared among threads or processes –
any process can read/write to these variables.

Problems with race conditions???

To make the value of a private variable available to other
processes, one has to either exchange messages, or copy the
value to a shared variable.

A programming model can combine private and
shared variables, as well as allow message passing.

6

Thread creation strategies
 On demand, Dynamic thread creation

 Master thread waits for work, forks new threads,
and when threads are done, they terminate

 Efficient use of resources, but thread creation
and termination is time consuming.

 Static thread creation
 Pool of threads created and are allocated work,

but do not terminate until cleanup.

 Better performance, but potential waste of
system resources.

Copyright © 2010, Elsevier Inc. All rights Reserved

4

7

Example - Pthreads
int main(int argc, char *argv) {
double A[100] ; /* global, shared variable*/
int i ;
…
for (i = 0; i < 4 ; i++) pthread_create(… , DoStuff, int i) ;
… /* execution continues in parallel with 4 copies of DoStuff*/
…
for (i = 0; i < 4 ; i++) pthread_join (… , DoStuff, …) ;
…
}

void DoStuff (int threadID) {
int k ; /* k is a local variable – each instance of DoStuff has a copy*/
… /* do stuff in parallel with main */
for (k = threadID*25 ; k < (threadID+1)*25 ; k++) … do something with

A[k] …
…
}

The five threads can be executed on separate CPUs or time_shared on one CPU

8

Example - OpenMP
int main(){
print(“Start\n”);
… /* serial code */
#pragma omp parallel {

…
printf(“Hello World\n”);
…

}
… /* resume serial code */
printf(“Done\n”);
}

% Result of execution
Start
Hello World
Hello World
Hello World
Hello World
Done

The user can control the number of parallel threads
by setting the environment variable
setenv OMP_NUM_THTREADS 4

…

5

9

Example - OpenMP

#define n 1000
int main(){
int i, a[n], b[n], c[n] ;
…
…
#pragma omp for shared(a,b,c), private(i)
{ for (i = 0; i < n ; i++)

c[i] = a[i] + b[i] ;
} /* end of parallel section */

… /* resume serial code */
…
}

The loop will be automatically broken down into smaller
loops and each small loop will be given to one thread

...

Warning: the loop iterations should be
independent (no loop carried dependences)

10

Example – a message passing program

int main(){
int x ,sum, i ; /* local variables */
…
call a function to get the num_processors ;
…
call a function to get your processorID ;
compute a local value for x;
if (processorID > 0)

send the value of x to processor 0 ;
else {

sum = x ;
for (i = 1; i < num_processors ; i++)
{ receive a value from processor i ;

add that value to sum
}

} ;

…
}

In SPMD, the number of
processes (threads) is specified
before execution starts

processID = 0 1 2 3
x = 10 20 40 80

20 30 40

sum = 10

sum = 30

sum = 70

sum = 150

sum = 150 ?? ?? ??

6

11

Avoiding race conditions

 To guarantee correctness, use critical sections

 Enforce mutual exclusion

 Can use mutual exclusion lock (mutex, or simply lock)

Copyright © 2010, Elsevier Inc. All rights Reserved

my_val = Compute_val () ;
Lock(&add_my_val_lock) ;
x += my_val ;
Unlock(&add_my_val_lock) ;

my_val = Compute_val () ;
x += my_val ;

my_val = Compute_val () ;
x += my_val ;

Thread 0 Thread 1

Private variableShared variable Private variableShared variable

12

Busy-waiting to enforce order

Copyright © 2010, Elsevier Inc. All rights Reserved

my_val = Compute_val (my_rank) ;
i f (my_rank == 1)

while (! ok_for_1) ; /* Busy−wait loop */
x += my_val ; /* Critical section */
i f (my_rank == 0)

ok_for_1 = true ; /* Let thread 1 update x */

/* Initially, ok_for_1 = 0 */

How do you extend this method to more than two threads?

7

13

Input and Output

 Only one thread/process should access stdin.

 All processes/threads may access stdout, but it is
clearer if only one process/thread accesses stdout.

 Debug output should always include the rank or id
of the process/thread that’s generating the output

 Only a single process/thread will attempt to access
any single file other than stdin, stdout

Copyright © 2010, Elsevier Inc. All rights Reserved

14

PERFORMANCE

Copyright © 2010, Elsevier Inc. All rights Reserved

8

15

Speedup, S, and Efficiency, E.

 Number of cores = p

 Serial run-time = Tserial

 Parallel run-time = Tparallel

Copyright © 2010, Elsevier Inc. All rights Reserved

Tserial

Tparallel

S =

E =
S
p

=
Tserial

p Tparallel
.

16

S and E change with problem sizes

Copyright © 2010, Elsevier Inc. All rights Reserved

9

17

Amdahl’s Law
 Unless virtually all of a serial program is

parallelized, the possible speedup is going to be
limited — regardless of the number of cores
available.

Copyright © 2010, Elsevier Inc. All rights Reserved

Hence, even with unlimited number of processors, the speedup
cannot be larger than 1 / α.

α + (1 – f) / p

1
S <

Let α be the fraction of a program that has to be performed
serially, then, using p processors, the maximum possible speedup
is:

18

Example
 We can parallelize 90% of a serial program.

 Parallelization is “perfect” for any number of cores

 Tserial = 20 seconds

Copyright © 2010, Elsevier Inc. All rights Reserved

 Speed up

0.9 x Tserial / p + 0.1 x Tserial

Tserial

S = =
18 / p + 2

20

10

19

Scalability

 In general, a problem is scalable if it can handle ever
increasing problem sizes.

 If we increase the number of processes/threads and keep
the efficiency fixed without increasing problem size, the
problem is strongly scalable.

 If we keep the efficiency fixed by increasing the problem
size at the same rate as we increase the number of
processes/threads, the problem is weakly scalable.

Copyright © 2010, Elsevier Inc. All rights Reserved

20

Taking Timings

 What is time?

 Start to finish?

 A program segment of interest?

 CPU time?

 Wall clock time?

Copyright © 2010, Elsevier Inc. All rights Reserved

11

21

Taking Timings

Copyright © 2010, Elsevier Inc. All rights Reserved

theoretical

function

MPI_Wtime omp_get_wtime

Need to find the maximum across all threads

22

PARALLEL PROGRAM
DESIGN

Copyright © 2010, Elsevier Inc. All rights Reserved

12

23

Foster’s methodology
1. Partitioning: divide the computation and the data

operated on by the computation into small tasks.

Copyright © 2010, Elsevier Inc. All rights Reserved

2. Communication: determine what communication
needs to be carried out among the tasks.

Goal: balance the load and minimize communication.

3. Aggregation: combine tasks and communications
into larger tasks.

4. Mapping: assign the composite tasks identified in
the previous step to processes/threads.

24

Example - histogram
 data = 1.3,2.9,0.4,0.3,1.3,4.4,1.7,0.4,3.2,0.3,4.9,2.4,

3.1,4.4,3.9,0.4,4.2,4.5,4.9,0.9

Copyright © 2010, Elsevier Inc. All rights Reserved

Bin 0 Bin 1 Bin 2 Bin 3 Bin 4

For each bin, find the number of data elements and the maximum data value.

13

25

First two stages of Foster’s Methodology

Copyright © 2010, Elsevier Inc. All rights Reserved

