
1

1Copyright © 2010, Elsevier Inc. All rights Reserved

Chapter 4

Shared Memory Programming 
with Pthreads

An Introduction to Parallel Programming
Peter Pacheco

2

P threads (POSIX)
(see https://computing.llnl.gov/tutorials/pthreads/) 

• Threads provide support for expressing concurrency and synchronization. 
• Can be used for hiding memory latency
• A thread is a light weight process (has its own stack and execution state, 

but shares the address space with its parent).
• Hence, threads have local data but also can share global data.



2

3

P threads (POSIX)
(see https://computing.llnl.gov/tutorials/pthreads/) 

4

The Pthread API 

• Pthreads has emerged as the standard threads API, supported by most 
vendors. 

• The concepts discussed here are largely independent of the API and can be 
used for programming with other thread APIs (NT threads, Solaris threads, 
Java threads, etc.) as well. 

• Provides two basic functions for specifying concurrency:

#include <pthread.h> 

int pthread_create (pthread_t *  thread_p, 
const pthread_attr_t *  attribute, 
void (*thread_function)(void *), 
void *arg_p); 

int pthread_join (pthread_t thread_p, 
void * *ptr); 

declares the various Pthreads

functions, constants, types, etc.

Wait for  the thread associated 
with thread_p to complete

Create a thread identified 
by a thread handle



3

5

A closer look

Copyright © 2010, Elsevier Inc. All rights Reserved

int pthread_create (

pthread_t*  thread_p /* out */ ,

const pthread_attr_t*  attr_p /* in */ ,

void*  (*thread_function ) ( void ) /* in */ ,

void*  arg_p /* in */ ) ;

We won’t be using, so we just pass NULL.

Allocate handle before calling.

The function that the thread is to run.

Pointer to the argument that should

be passed to the function thread_function.

6

Notes

 Variables declared within the thread function are 
local to the thread

 Variable declared outside the thread function are 
shared by all threads

Copyright © 2010, Elsevier Inc. All rights Reserved

 Data members of pthread_t objects aren’t 
directly accessible to user code. 

 However, a pthread_t object stores enough 
information to uniquely identify the thread with 
which it’s associated.



4

7

Hello World! (1)- Sec. 4.2

Copyright © 2010, Elsevier Inc. All rights Reserved

8

Hello World! (2)

Copyright © 2010, Elsevier Inc. All rights Reserved



5

9

Function started by pthread_create

 void*  thread_function ( void*  args_p ) ;

• void* can be cast to any pointer type in C.

• args_p can point to a list containing the 
argument to  thread_function.

• the return value of thread_function can point 
to a list of one or more values.

Copyright © 2010, Elsevier Inc. All rights Reserved

10

Matrix/vector multiplication (Sec. 4.3)

Copyright © 2010, Elsevier Inc. All rights Reserved



6

11

Pthreads matrix-vector multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

12

Synchronization (race conditions – Sec. 4.4)
What is the output of the following program??

i

P0 P1 P2 P3

Read dp from memory
Add 1 to dp
Write dp to memory

Most parallel languages 
provides ways to declare and
use locks or critical sections

dp = 0 ; 
for (id = 0; id < 4; id++)

create_thread (…, sum_computed_values, 
…);

void sum_computed_values ( );
{  pdp = compute the value ( ) ;

dp += pdp ; 
}
 A critical section is a section of code that can be executed by one 

processor at a time (to guarantee mutual exclusion)
 locks can be used to enforce mutual exclusion

get the lock ;
dp += pdp ;
release the lock ; 



7

13

Mutual Exclusion 
• Critical sections in Pthreads are implemented using mutex locks. 

• Mutex-locks have two states: locked and unlocked. At any point of time, 
only one thread can lock a mutex lock. A lock is an atomic operation. 

• A thread entering a critical section first tries to get a lock. It goes ahead 
when the lock is granted. 

• The API provides the following functions for handling mutex-locks:

int pthread_mutex_init ( pthread_mutex_t *mutex_lock, 

const pthread_mutexattr_t *lock_attr); 

int pthread_mutex_lock ( pthread_mutex_t *mutex_lock); 

int pthread_mutex_unlock (pthread_mutex_t *mutex_lock); 

14

Types of Mutexes 

• Pthreads supports three types of mutexes. 

– A normal mutex deadlocks if a thread that already has a lock 
tries a second lock on it. 

– A recursive mutex allows a single thread to lock a mutex as 
many times as it wants. It simply increments a count on the 
number of locks. A lock is relinquished by a thread when the 
count becomes zero. 

– An error check mutex reports an error when a thread with a lock 
tries to lock it again (as opposed to deadlocking in the first case, 
or granting the lock, as in the second case). 

• The type of the mutex can be set in the attributes object before it is 
passed at time of initialization.



8

15

Attributes Objects for Mutexes 

• Initialize the attrributes object using function: 
pthread_mutexattr_init (pthread_mutexattr_t  *attr) ;

• The function pthread_mutexattr_settype_np can be used for setting the type 
of mutex specified by the mutex attributes object. 

pthread_mutexattr_settype_np ( pthread_mutexattr_t *attr, int type); 

• Here, type specifies the type of the mutex and can take one of: 

– PTHREAD_MUTEX_NORMAL_NP 

– PTHREAD_MUTEX_RECURSIVE_NP 

– PTHREAD_MUTEX_ERRORCHECK_NP 

16

Controlling Thread Attributes 

• In general, the Pthreads API allows a programmer to change the default attributes 
of entities using attributes objects. 

• An attributes object is a data-structure that describes entity (thread, mutex, 
condition variable) properties. 

• Once these properties are set, the attributes object can be passed to the method 
initializing the entity. 

• Enhances modularity, readability, and ease of modification. 

• Use pthread_attr_init to create an attributes object. 
• Individual properties associated with the attributes object can be changed using the 

following functions: 
 pthread_attr_setdetachstate, 
 pthread_attr_setguardsize_np, 
 pthread_attr_setstacksize, 
 pthread_attr_setinheritsched,
 pthread_attr_setschedpolicy,
 pthread_attr_setschedparam



9

17

Overheads of Locking 

• Locks represent serialization points since critical sections must be 
executed by threads one after the other. 

• Encapsulating large segments of the program within locks can lead to 
significant performance degradation. 

• It is often possible to reduce the idling overhead associated with locks 
using

int pthread_mutex_trylock (pthread_mutex_t *mutex_lock); 

which attempts to lock mutex_lock, but if unsuccessful, will return 
immediately with a “busy” error code.

18

Busy-Waiting (sec. 4.5) 
 Synchronization by enforcing order

 A thread repeatedly tests a condition, but, 
effectively, does no useful work until the 
condition has the appropriate value.

 Beware of optimizing compilers, though!

Copyright © 2010, Elsevier Inc. All rights Reserved

flag initialized to 0 by main thread



10

19

An example: Estimating π

Copyright © 2010, Elsevier Inc. All rights Reserved

20

A thread function to compute π

Copyright © 2010, Elsevier Inc. All rights Reserved



11

21

Computing π using busy-waiting

Copyright © 2010, Elsevier Inc. All rights Reserved

22

Inefficient computation of π 

Copyright © 2010, Elsevier Inc. All rights Reserved



12

23Copyright © 2010, Elsevier Inc. All rights Reserved

Run-times (in seconds) of π programs using n = 108 
terms on a system with two four-core processors.

24Copyright © 2010, Elsevier Inc. All rights Reserved

Possible sequence of events with busy-waiting and 
more threads than cores (5 threads and two cores).



13

25

Notes
• Busy-waiting orders  the accesses of threads to a critical section.

• Using mutexes, the order is left to chance and the system.

• There are applications where we need to control the order of thread 
access to the critical section. For example:

– Any non-commutative operation, such as matrix multiplication.

– Emulating message passing on shared memory systems.

P0 P1 P2 P3

Messages
[0]

Messages
[1]

Messages
[2]

Messages
[3]

26

A first attempt at sending messages using pthreads

Copyright © 2010, Elsevier Inc. All rights Reserved



14

27

Semaphores (sec 4.7)

• Unsigned integers that count up to a given value, MAX (if 
MAX=1, then it is a binary semaphore)

• A semaphore is available if its value is larger than zero, 
otherwise, it is unavailable.

• When a thread “waits” on a semaphore: The count is 
decremented if it is larger than 0. Otherwise the thread blocks 
until the count becomes larger than 0.

• When a thread “posts” to a semaphore: The count is incremented 
(up to MAX).

28

Syntax of the various semaphore functions

Copyright © 2010, Elsevier Inc. All rights Reserved

Semaphores are not part of Pthreads;

you need to add this.



15

29

Producer-Consumer Using Locks 

The producer-consumer scenario imposes the following constraints: 

• The producer thread must not overwrite the shared buffer when the 
previous task has not been picked up by a consumer thread. 

• The consumer threads must not pick up tasks until there is something 
present in the shared data structure. 

• Individual consumer threads should pick up tasks one at a time.

Buffer - Queue 
(one value)

producer consumer

consumer

consumer

producer

producer

We can start with the assumption that there is one producer and one consumer

30

Producer-Consumer implementation   

/* Producer */

while (!done()) { 

create_task (&my_task);   

while (task_available == 1)  ;     /* wait until buffer is empty */

insert_into_queue(&my_task);    /* put task in buffer */

task_available = 1;                        /* indicate that buffer is occupied*/

} 

/* Consumer */

while (!done()) { 

while (task_available == 0)  ;      /* wait until buffer is full */

extract_from_queue(&my_task); /* consume task from buffer */

task_available = 0;                        /* indicate that buffer is not occupied */

process_task(&my_task) ;

} 

What is wrong with this implementation?

lock

unlock

lock

unlock



16

31

A fix for the Producer-Consumer program   
/* Producer */
while (!done()) { 

create_task (&my_task);   
inserted = 0 ;                   /* to flag successful insertion */
while (inserted == 0)  {

pthread_mutex_lock (&task_queue_lock); 
if (task_available == 0) {                            

insert_into_queue(my_task);            
task_available = 1;
inserted = 1; } 

pthread_mutex_unlock(&task_queue_lock); 
} 

/* Consumer */
while (!done()) { 

extracted = 0;                   /* to flag success extraction */
while (extracted == 0) { 

pthread_mutex_lock (&task_queue_lock); 
if (task_available == 1) {                      

extract_from_queue(&my_task); 
task_available = 0;                        
extracted = 1 ;} 

pthread_mutex_unlock(&task_queue_lock); 
} 
process_task(&my_task);                             

} 

32

Producer-Consumer Using Locks 

pthread_mutex_t  task_queue_lock; 
int  task_available; 
... 
main() { 

.... 
task_available = 0; 
pthread_mutex_init (&task_queue_lock, NULL); 
Create producer threads and consumer threads ;

} 
void *producer (void *producer_thread_data) { 

int inserted; 
struct task my_task; 
while (!done()) { 

create_task (&my_task);    /* a procedure that produces a data structure for a new task */
inserted = 0; 
while (inserted == 0) { 

pthread_mutex_lock (&task_queue_lock); 
if (task_available == 0) {                            /* if buffer is empty */

insert_into_queue(&my_task);          /* put task in buffer */
task_available = 1;                            /* indicate that buffer is occupied */
inserted = 1;                                      /* and that insertion is successful */

} 
pthread_mutex_unlock(&task_queue_lock); 

} 
} 

} 



17

33

Producer-Consumer Using Locks 

void *consumer (void *consumer_thread_data) { 
int extracted; 
struct task my_task; 

while (!done()) { 
extracted = 0; 
while (extracted == 0) { 

pthread_mutex_lock (&task_queue_lock); 
if (task_available == 1) {                      /* if buffer is not empty */

extract_from_queue(&my_task); /* get task from buffer */
task_available = 0;                        /* indicate that buffer is empty */
extracted = 1;                               /* and that task is consumed */

} 
pthread_mutex_unlock(&task_queue_lock); 

} 
process_task(my_task);                            /* a procedure to process the task */

} 
} 

Modify the above code to replace the buffer by a FIFO queue of length L.

34

BARRIERS AND CONDITION 
VARIABLES (SEC. 4.8)

Copyright © 2010, Elsevier Inc. All rights Reserved



18

35

Condition Variables for Synchronization (signals)

• A condition variable allows a thread to block itself until a specified condition 
becomes true. 

• When a thread executes  

pthread_cond_wait(condition_variable), 

it is blocked until another thread executes

pthread_cond_signal(condition_variable) or

pthread_cond_broadcast(condition_variable)

• pthread_cond_signal () is used to unblock one of the threads blocked waiting on 
the condition_variable.

• pthread_cond_broadcast() is used to unblock all the threads blocked waiting on 
the condition_variable.

• If no threads are waiting on the condition variable, then a pthread-cond_signal() 
or pthread-cond_broadcast() will have no effect.

36

Condition Variables for Synchronization 

int pthread_cond_init (pthread_cond_t *cond, const pthread_condattr_t *attr); 

int pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mutex); 

int pthread_cond_signal (pthread_cond_t *cond); 

int pthread_cond_broadcast (pthread_cond_t *cond); 

int pthread_cond_destroy (pthread_cond_t *cond); 

• A condition variable always has a mutex associated with it. A thread locks this 
mutex before issuing a wait, a signal or a broadcast.

• While the thread is waiting on a condition variable, the mutex is automatically 
unlocked, and when the thread is signaled, the mutex is automatically locked 
again.

• Pthreads provides the following functions for condition variables



19

37

Typical use of condition variables

We will see an example later.

38

Synchronization (barriers)

int main(int argc, char *argv) {

double A[5] , B[5], C[5] ;    /* global, shared variables*/
for (i = 0; i < 5 ; i++)  A[i] = B[i] = 1 ;
for (i = 0; i < 4 ; i++)  pthread_create( … , DoStuff, int i ) ;

…

for (i = 0; i < 4 ; i++)  pthread_join (… , DoStuff, …) ;

Print the values of C ;

}

void DoStuff (int threadID) {

int  k ; 

B[threadID+1] = 2 * A[threadID] ;

…..

C[threadID] = 2 * B[threadID] ;

}

What is the output of the following Pthread program??

Barrier

A    1   1   1   1   1

B    1   1   1   1   1

B    1   2   2   2   2

C    2   4   4   4   2



20

39

• A barrier holds a thread until all threads participating in the barrier have 
reached it. 

• Barriers can be implemented using a counter, a mutex and a condition 
variable. 

• A single integer (counter) is used to keep track of the number of threads that 
have reached the barrier. 

• If the count is less than the total number of threads, the threads execute a 
condition wait. 

• The last thread entering (and setting the count to the number of threads) 
wakes up all the threads using a condition broadcast and resets the count to 
zero (to prepare for the next barrier).

Barriers - a composite synchronization construct

• By design, Pthreads provide support for a basic set of operations. 

• Higher level constructs can be built using basic synchronization constructs. 

• We discuss one such constructs - barriers.

40

Defining your own barrier construct  

typedef struct {
pthread_mutex_t  count_lock;
pthread_cond_t  ok_to_proceed;
int count;

} mylib_barrier_t;
void mylib_init_barrier (mylib_barrier_t *b) {

b.count = 0;
pthread_mutex_init (&(b.count_lock), NULL);
pthread_cond_init (&(b.ok_to_proceed), NULL);

}

void mylib_barrier (mylib_barrier_t *b,  int thread_count) {
pthread_mutex_lock (&(b.count_lock));
b.count ++;
if (b.count == thread_count) {

b.count = 0;
pthread_cond_broadcast (&(b.ok_to_proceed));
}

else
pthread_cond_wait (&(b.ok_to_proceed), &(b.count_lock)) ;

pthread_mutex_unlock(&(b.count_lock));
}



21

41

Using the defined barrier

mylib_barrier_t  my_barrier ;                     /*declare a barrier */

int main(int argc, char *argv) {

mylib_init_barrier (my_barrier) ;                /* initialize the barrier */

double A[5] , B[5], C[5] ;    /* global, shared variables*/
for (i = 0; i < 5 ; i++)  A[i] = B[i] = 1 ;
for (i = 0; i < 4 ; i++)  pthread_create( … , DoStuff, int i ) ;

for (i = 0; i < 4 ; i++)  pthread_join (… , DoStuff, …) ;

Print the values of C ;

}

void DoStuff (int threadID) {

int  k ; 

B[threadID+1] = 2 * A[threadID] ;

mylib_barrier ( my_barrier, 4) ;                 /* call the barrier */

C[threadID] = 2 * B[threadID] ;

}

42

Implementing barriers using busy waiting

We need one counter 

variable for each 

instance of the barrier,

otherwise problems
are likely to occur.



22

43

Implementing a barrier with semaphores

Copyright © 2010, Elsevier Inc. All rights Reserved

Used as a lock to 
protect the counter.

44

Producer-Consumer Using Condition Variables

pthread_cond_t queue_not_full,  queue_not_empty; 
pthread_mutex_t  queue_cond_lock; 
int task_available; 
/* other data structures here */ 
main() { 

/* declarations and initializations */ 
task_available = 0; 
pthread_init(); 
pthread_cond_init(&queue_not_empty, NULL); 
pthread_cond_init(&queue_not_full, NULL); 
pthread_mutex_init(&queue_cond_lock, NULL); 
/* create and join producer and consumer threads */ 

} 

Use default attributes

• If the buffer is full, a producer thread will wait on condition “queue not full”. 
That is, wait until a consumer thread will remove an item from the buffer and 
signal “queue not full”.

• If a buffer is empty, a consumer thread will wait on condition “queue not empty”. 
That is, wait until a producer thread will put an item in the buffer and signal 
“queue not empty”



23

45

Buffer is empty

(assuming infinite buffer)

void *producer (void *producer_thread_data) { 
… 
while (!done()) { 

create_task(); 
pthread_mutex_lock (&queue_cond_lock); 
insert_into_queue(); 
task_available ++ ; 
pthread_cond_signal (&queue_not_empty); 
pthread_mutex_unlock (&queue_cond_lock); 

} 
} 

void *consumer (void *consumer_thread_data) { 
… 
while (!done()) { 

pthread_mutex_lock(&queue_cond_lock); 
if (task_available == 0) 

pthread_cond_wait (&queue_not_empty,  &queue_cond_lock); 
my_task = extract_from_queue(); 
task_available -- ; 
pthread_mutex_unlock (&queue_cond_lock); 
process_task(my_task); 

} 
} 

46

Buffer is empty

Assuming a buffer with one entry
void *producer (void *producer_thread_data) { 

… 
while (!done()) { 

create_task(); 
pthread_mutex_lock (&queue_cond_lock); 
if (task_available == 1) 

pthread_cond_wait (&queue_not_full,  &queue_cond_lock); 
insert_into_queue(); 
task_available = 1; 
pthread_cond_signal (&queue_not_empty); 
pthread_mutex_unlock (&queue_cond_lock); 

} 
} 

void *consumer (void *consumer_thread_data) { 
… 
while (!done()) { 

pthread_mutex_lock(&queue_cond_lock); 
if (task_available == 0) 

pthread_cond_wait (&queue_not_empty,  &queue_cond_lock); 
my_task = extract_from_queue(); 
task_available = 0; 
pthread_cond_signal (&queue_not_full); 
pthread_mutex_unlock (&queue_cond_lock); 
process_task(my_task); 

} 
} 

Buffer is full



24

47

READ-WRITE LOCKS 
(SEC. 4.9)

Copyright © 2010, Elsevier Inc. All rights Reserved

48

Controlling access shared data structures

Copyright © 2010, Elsevier Inc. All rights Reserved

Inserting a new node deleting a node

A linked list



25

49

Simultaneous access by two threads

Copyright © 2010, Elsevier Inc. All rights Reserved

Has to be a 
shared 
variable

Have to be 
private variables

50

Solution #1
 An obvious solution is to simply lock the list any time that 

a thread attempts to access it (use Mutex). 

Copyright © 2010, Elsevier Inc. All rights Reserved

 Drawbacks:
 We’re serializing access to the list.

 If the vast majority of our operations are calls to Member, we’ll fail to 
exploit this opportunity for parallelism.

 On the other hand, if most of our operations are calls to 
Insert and Delete, then this may be the best solution since 
we’ll need to serialize access to the list for most of the 
operations, and this solution will certainly be easy to 
implement.



26

51

Solution #2
 Instead of locking the entire 

list, we could try to lock 
individual nodes.

 A “finer-grained” approach.

Copyright © 2010, Elsevier Inc. All rights Reserved

 This is much more complex than the original Member
function.

 It is also much slower, since, in general, each time a node 
is accessed, a mutex must be locked and unlocked.

 The addition of a mutex field to each node will 
substantially increase the amount of storage needed for 
the list.

52Copyright © 2010, Elsevier Inc. All rights Reserved



27

53

Pthreads Read-Write Locks
 Neither of our multi-threaded linked lists exploits the 

potential for simultaneous access to any node by threads 
that are executing Member.

 The first solution only allows one thread to access the 
entire list at any instant.

 The second only allows one thread to access any given 
node at any instant.

Copyright © 2010, Elsevier Inc. All rights Reserved

 A read-write lock is somewhat like a mutex except that it 
provides two lock functions. 

 The first lock function locks the read-write lock for reading, 
while the second locks it for writing.

54

Pthreads Read-Write Locks
 So multiple threads can simultaneously obtain the lock by 

calling the read-lock function, while only one thread can 
obtain the lock by calling the write-lock function.

 Thus, if any thread owns the lock for reading, any thread 
that wants to obtain the lock for writing will block in the call 
to the write-lock function.

Copyright © 2010, Elsevier Inc. All rights Reserved

 If any thread owns the lock for writing, 
any threads that want to obtain the lock 
for reading or writing will block in their 
respective locking functions.



28

55Copyright © 2010, Elsevier Inc. All rights Reserved

int pthread_rwlock_init ( pthread_rwlock_t*  rwlock_p ,

pthread_rwlock_attr_t*  attr_p) ;

int pthread_rwlock_udestroy ( pthread_rwlock_t*  rwlock_p) ;

Syntax of read-write locks

int pthread_rwlock_rdlock ( pthread_rwlock_t*  rwlock_p) ;

int pthread_rwlock_wrlock ( pthread_rwlock_t*  rwlock_p) ;

int pthread_rwlock_unlock ( pthread_rwlock_t*  rwlock_p) ;

56

Linked List Performance

Copyright © 2010, Elsevier Inc. All rights Reserved

100,000 ops/thread

99.9% Member

0.05% Insert

0.05% Delete

100,000 ops/thread

80% Member

10% Insert

10% Delete



29

57

Thread-Safety (Sec. 4.11)
 A block of code is thread-safe if it can 

be simultaneously executed by multiple 
threads without causing problems.

Copyright © 2010, Elsevier Inc. All rights Reserved

 Suppose we want to use multiple threads to 
“tokenize” a file that consists of ordinary 
English text. 

 The tokens are just contiguous sequences of 
characters separated from the rest of the text 
by white-space — a space, a tab, or a newline.

Example

58

Simple approach
 Divide the input file into lines of text and assign the lines to 

the threads in a round-robin fashion.

 The first line goes to thread 0, the second goes to thread 1, 
. . . , the tth goes to thread t, the t +1st goes to thread 0, etc.

Copyright © 2010, Elsevier Inc. All rights Reserved

 We can serialize access to the lines of input using 
semaphores. 

 After a thread has read a single line of input, it can tokenize 
the line using the strtok function.



30

59

The strtok function
 The first time it’s called the string argument should be the 

text to be tokenized.
 Our line of input.

 For subsequent calls, the first argument should be NULL.

Copyright © 2010, Elsevier Inc. All rights Reserved

 The idea is that in the first call, strtok caches a pointer to 
string, and for subsequent calls it returns successive 
tokens taken from the cached copy.

60

Multi-threaded tokenizer

Copyright © 2010, Elsevier Inc. All rights Reserved



31

61

Running with two threads

Copyright © 2010, Elsevier Inc. All rights Reserved

Oops!

Pease porridge hot.

Pease porridge cold.

Pease porridge in the pot

Nine days old.

Input

Output

62

What happened?
 strtok caches the input line by declaring a 

variable to have static storage class. 

 This causes the value stored in this variable 
to persist from one call to the next.

 Unfortunately for us, this cached string is 
shared, not private.

Copyright © 2010, Elsevier Inc. All rights Reserved

 Thus, thread 0’s call to strtok with the third line of the input 
has apparently overwritten the contents of thread 1’s call 
with the second line.

 So the strtok function is not thread-safe. If multiple threads 
call it simultaneously, the output may not be correct.



32

63

Re-entrent functions.

 Regrettably, it’s not uncommon for C library functions to 
fail to be thread-safe.

 The random number generator rand in stdlib.h.

 The time conversion function localtime in time.h.

Copyright © 2010, Elsevier Inc. All rights Reserved

 Some functions are provided with a safe thread capability 
– these are called re-entrent functions 

 For example, can use rand_r() rather than rand() 

 Need to compile with 
“gcc -D_REENTRANT –lpthread   program.c”

64

Concluding Remarks (1)
 A thread in shared-memory programming is analogous to 

a process in distributed memory programming. 

 However, a thread is often lighter-weight than a process.

 In Pthreads programs, all the threads have access to 
global variables, while local variables usually are private 
to the thread running the function.

Copyright © 2010, Elsevier Inc. All rights Reserved

 When indeterminacy results from multiple threads 
attempting to access a shared resource such that at least 
one of the accesses is an update, we have a race condition.

 A critical section is a block of code that updates a shared 
resource that can only be updated by one thread at a time.

 So execution in a critical section is effectively serialized.



33

65

Concluding Remarks (2)
 Busy-waiting can be used to avoid conflicting access to 

critical sections (can be very wasteful of CPU cycles). 

 Can also be unreliable if compiler optimization is turned on.

Copyright © 2010, Elsevier Inc. All rights Reserved

 A mutex can be used to avoid conflicting access to critical 
sections as well.

 Think of it as a lock on a critical section, since mutexes 
arrange for mutually exclusive access to a critical section.

 A semaphore is the third way to enforce critical sections.

 It is an unsigned int together with two operations: sem_wait 
and sem_post. 

 Semaphores are more powerful than mutexes since they 
can be initialized to any nonnegative value.

66

Concluding Remarks (3)
 A barrier is a point in a program at which the threads block 

until all of the threads have reached it.

 A read-write lock is used when it’s safe for multiple threads 
to simultaneously read a data structure, but if a thread 
needs to modify or write to the data structure, then only that 
thread can access the data structure during the 
modification.

Copyright © 2010, Elsevier Inc. All rights Reserved

 Some C functions cache data between calls by declaring 
variables to be static, causing errors when multiple threads 
call the function.

 This type of function is not thread-safe.


